Change BenchmarkTfLiteModel::InputTensorData to use proper type-erased pointers for data storage, avoiding undefined behaviors around aliasing rules, alignment requirements, and C++ object lifetimes. Also use unique_ptr for memory management.
PiperOrigin-RevId: 274698661
This commit is contained in:
parent
8ae730be26
commit
68fedf4c80
@ -16,6 +16,7 @@ limitations under the License.
|
||||
#include "tensorflow/lite/tools/benchmark/benchmark_tflite_model.h"
|
||||
|
||||
#include <cstdarg>
|
||||
#include <cstdint>
|
||||
#include <cstdlib>
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
@ -130,14 +131,6 @@ std::vector<std::string> Split(const std::string& str, const char delim) {
|
||||
return results;
|
||||
}
|
||||
|
||||
// Fill random integer values between [low, high]
|
||||
template <typename T>
|
||||
void FillRandomIntValues(T* ptr, int num_elements, int low, int high) {
|
||||
for (int i = 0; i < num_elements; ++i) {
|
||||
*ptr++ = static_cast<T>(rand() % (high - low + 1) + low);
|
||||
}
|
||||
}
|
||||
|
||||
void FillRandomString(tflite::DynamicBuffer* buffer,
|
||||
const std::vector<int>& sizes,
|
||||
const std::function<std::string()>& random_func) {
|
||||
@ -279,13 +272,7 @@ BenchmarkTfLiteModel::BenchmarkTfLiteModel(BenchmarkParams params)
|
||||
: BenchmarkModel(std::move(params)) {}
|
||||
|
||||
void BenchmarkTfLiteModel::CleanUp() {
|
||||
if (inputs_data_.empty()) {
|
||||
return;
|
||||
}
|
||||
// Free up any pre-allocated tensor data during PrepareInputData.
|
||||
for (int i = 0; i < inputs_data_.size(); ++i) {
|
||||
delete[] inputs_data_[i].data.raw;
|
||||
}
|
||||
inputs_data_.clear();
|
||||
}
|
||||
|
||||
@ -431,59 +418,54 @@ TfLiteStatus BenchmarkTfLiteModel::PrepareInputData() {
|
||||
}
|
||||
InputTensorData t_data;
|
||||
if (t->type == kTfLiteFloat32) {
|
||||
t_data.bytes = sizeof(float) * num_elements;
|
||||
t_data.data.raw = new char[t_data.bytes];
|
||||
std::generate_n(t_data.data.f, num_elements, []() {
|
||||
t_data = InputTensorData::Create<float>(num_elements, []() {
|
||||
return static_cast<float>(rand()) / RAND_MAX - 0.5f;
|
||||
});
|
||||
} else if (t->type == kTfLiteFloat16) {
|
||||
t_data.bytes = sizeof(TfLiteFloat16) * num_elements;
|
||||
t_data.data.raw = new char[t_data.bytes];
|
||||
#if __GNUC__ && \
|
||||
(__clang__ || __ARM_FP16_FORMAT_IEEE || __ARM_FP16_FORMAT_ALTERNATIVE)
|
||||
// __fp16 is available on Clang or when __ARM_FP16_FORMAT_* is defined.
|
||||
std::generate_n(t_data.data.f16, num_elements, []() -> TfLiteFloat16 {
|
||||
__fp16 f16_value = static_cast<float>(rand()) / RAND_MAX - 0.5f;
|
||||
TfLiteFloat16 f16_placeholder_value;
|
||||
memcpy(&f16_placeholder_value, &f16_value, sizeof(TfLiteFloat16));
|
||||
return f16_placeholder_value;
|
||||
});
|
||||
t_data = InputTensorData::Create<TfLiteFloat16>(
|
||||
num_elements, []() -> TfLiteFloat16 {
|
||||
__fp16 f16_value = static_cast<float>(rand()) / RAND_MAX - 0.5f;
|
||||
TfLiteFloat16 f16_placeholder_value;
|
||||
memcpy(&f16_placeholder_value, &f16_value, sizeof(TfLiteFloat16));
|
||||
return f16_placeholder_value;
|
||||
});
|
||||
#else
|
||||
TFLITE_LOG(FATAL) << "Don't know how to populate tensor " << t->name
|
||||
<< " of type FLOAT16 on this platform.";
|
||||
#endif
|
||||
} else if (t->type == kTfLiteInt64) {
|
||||
t_data.bytes = sizeof(int64_t) * num_elements;
|
||||
t_data.data.raw = new char[t_data.bytes];
|
||||
int low = has_value_range ? low_range : 0;
|
||||
int high = has_value_range ? high_range : 99;
|
||||
FillRandomIntValues<int64_t>(t_data.data.i64, num_elements, low, high);
|
||||
t_data = InputTensorData::Create<int64_t>(num_elements, [=]() {
|
||||
return static_cast<int64_t>(rand() % (high - low + 1) + low);
|
||||
});
|
||||
} else if (t->type == kTfLiteInt32) {
|
||||
// TODO(yunluli): This is currently only used for handling embedding input
|
||||
// for speech models. Generalize if necessary.
|
||||
t_data.bytes = sizeof(int32_t) * num_elements;
|
||||
t_data.data.raw = new char[t_data.bytes];
|
||||
int low = has_value_range ? low_range : 0;
|
||||
int high = has_value_range ? high_range : 99;
|
||||
FillRandomIntValues<int32_t>(t_data.data.i32, num_elements, low, high);
|
||||
t_data = InputTensorData::Create<int32_t>(num_elements, [=]() {
|
||||
return static_cast<int32_t>(rand() % (high - low + 1) + low);
|
||||
});
|
||||
} else if (t->type == kTfLiteInt16) {
|
||||
t_data.bytes = sizeof(int16_t) * num_elements;
|
||||
t_data.data.raw = new char[t_data.bytes];
|
||||
int low = has_value_range ? low_range : 0;
|
||||
int high = has_value_range ? high_range : 99;
|
||||
FillRandomIntValues<int16_t>(t_data.data.i16, num_elements, low, high);
|
||||
t_data = InputTensorData::Create<int16_t>(num_elements, [=]() {
|
||||
return static_cast<int16_t>(rand() % (high - low + 1) + low);
|
||||
});
|
||||
} else if (t->type == kTfLiteUInt8) {
|
||||
t_data.bytes = sizeof(uint8_t) * num_elements;
|
||||
t_data.data.raw = new char[t_data.bytes];
|
||||
int low = has_value_range ? low_range : 0;
|
||||
int high = has_value_range ? high_range : 254;
|
||||
FillRandomIntValues<uint8_t>(t_data.data.uint8, num_elements, low, high);
|
||||
t_data = InputTensorData::Create<uint8_t>(num_elements, [=]() {
|
||||
return static_cast<uint8_t>(rand() % (high - low + 1) + low);
|
||||
});
|
||||
} else if (t->type == kTfLiteInt8) {
|
||||
t_data.bytes = sizeof(int8_t) * num_elements;
|
||||
t_data.data.raw = new char[t_data.bytes];
|
||||
int low = has_value_range ? low_range : -127;
|
||||
int high = has_value_range ? high_range : 127;
|
||||
FillRandomIntValues<int8_t>(t_data.data.int8, num_elements, low, high);
|
||||
t_data = InputTensorData::Create<int8_t>(num_elements, [=]() {
|
||||
return static_cast<int8_t>(rand() % (high - low + 1) + low);
|
||||
});
|
||||
} else if (t->type == kTfLiteString) {
|
||||
// TODO(haoliang): No need to cache string tensors right now.
|
||||
} else {
|
||||
@ -491,7 +473,7 @@ TfLiteStatus BenchmarkTfLiteModel::PrepareInputData() {
|
||||
<< " of type " << t->type;
|
||||
return kTfLiteError;
|
||||
}
|
||||
inputs_data_.push_back(t_data);
|
||||
inputs_data_.push_back(std::move(t_data));
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
@ -510,7 +492,8 @@ TfLiteStatus BenchmarkTfLiteModel::ResetInputsAndOutputs() {
|
||||
});
|
||||
buffer.WriteToTensor(t, /*new_shape=*/nullptr);
|
||||
} else {
|
||||
std::memcpy(t->data.raw, inputs_data_[j].data.raw, inputs_data_[j].bytes);
|
||||
std::memcpy(t->data.raw, inputs_data_[j].data.get(),
|
||||
inputs_data_[j].bytes);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -16,6 +16,7 @@ limitations under the License.
|
||||
#ifndef TENSORFLOW_LITE_TOOLS_BENCHMARK_BENCHMARK_TFLITE_MODEL_H_
|
||||
#define TENSORFLOW_LITE_TOOLS_BENCHMARK_BENCHMARK_TFLITE_MODEL_H_
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
@ -77,10 +78,27 @@ class BenchmarkTfLiteModel : public BenchmarkModel {
|
||||
|
||||
private:
|
||||
struct InputTensorData {
|
||||
InputTensorData() : bytes(0) { data.raw = nullptr; }
|
||||
TfLitePtrUnion data;
|
||||
InputTensorData() : data(nullptr, nullptr) {}
|
||||
|
||||
template <typename T>
|
||||
static InputTensorData Create(int num_elements,
|
||||
const std::function<T()>& val_generator) {
|
||||
InputTensorData tmp;
|
||||
tmp.bytes = sizeof(T) * num_elements;
|
||||
T* raw = new T[num_elements];
|
||||
std::generate_n(raw, num_elements, val_generator);
|
||||
// Now initialize the type-erased unique_ptr (with custom deleter) from
|
||||
// 'raw'.
|
||||
tmp.data = std::unique_ptr<void, void (*)(void*)>(
|
||||
static_cast<void*>(raw),
|
||||
[](void* ptr) { delete[] static_cast<T*>(ptr); });
|
||||
return tmp;
|
||||
}
|
||||
|
||||
std::unique_ptr<void, void (*)(void*)> data;
|
||||
size_t bytes;
|
||||
};
|
||||
|
||||
std::vector<InputLayerInfo> inputs_;
|
||||
std::vector<InputTensorData> inputs_data_;
|
||||
std::unique_ptr<BenchmarkListener> profiling_listener_;
|
||||
|
Loading…
x
Reference in New Issue
Block a user