Replace calls to export_savedmodel with export_saved_model, and remove strip_default_attr argument.
PiperOrigin-RevId: 218921778
This commit is contained in:
parent
6448bb3248
commit
68cec2589b
@ -126,8 +126,8 @@ class DNNLinearCombinedClassifierIntegrationTest(test.TestCase,
|
||||
feature_spec = feature_column.make_parse_example_spec(feature_columns)
|
||||
serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn(
|
||||
feature_spec)
|
||||
export_dir = estimator.export_savedmodel(tempfile.mkdtemp(),
|
||||
serving_input_receiver_fn)
|
||||
export_dir = estimator.export_saved_model(tempfile.mkdtemp(),
|
||||
serving_input_receiver_fn)
|
||||
self.assertTrue(gfile.Exists(export_dir))
|
||||
|
||||
def tearDown(self):
|
||||
|
@ -173,7 +173,7 @@ def main(_):
|
||||
input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
|
||||
"image": inputs
|
||||
})
|
||||
revnet_estimator.export_savedmodel(FLAGS.model_dir, input_fn)
|
||||
revnet_estimator.export_saved_model(FLAGS.model_dir, input_fn)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -307,7 +307,7 @@ def main(_):
|
||||
# The guide to serve an exported TensorFlow model is at:
|
||||
# https://www.tensorflow.org/serving/serving_basic
|
||||
tf.logging.info("Starting to export model.")
|
||||
revnet_classifier.export_savedmodel(
|
||||
revnet_classifier.export_saved_model(
|
||||
export_dir_base=FLAGS.export_dir,
|
||||
serving_input_receiver_fn=imagenet_input.image_serving_input_fn)
|
||||
|
||||
|
@ -436,7 +436,7 @@ class FreezeSavedModelTestTrainGraph(test_util.TensorFlowTestCase):
|
||||
|
||||
# Export SavedModel
|
||||
saved_model_dir = os.path.join(self.get_temp_dir(), "mnist_savedmodel")
|
||||
classifier.export_savedmodel(saved_model_dir, pred_input_fn)
|
||||
classifier.export_saved_model(saved_model_dir, pred_input_fn)
|
||||
|
||||
# Convert to tflite and test output
|
||||
saved_model_name = os.listdir(saved_model_dir)[0]
|
||||
|
@ -254,8 +254,8 @@ def train_and_predict(
|
||||
if export_directory is None:
|
||||
export_directory = tempfile.mkdtemp()
|
||||
input_receiver_fn = estimator.build_raw_serving_input_receiver_fn()
|
||||
export_location = estimator.export_savedmodel(
|
||||
export_directory, input_receiver_fn)
|
||||
export_location = estimator.export_saved_model(export_directory,
|
||||
input_receiver_fn)
|
||||
# Warm up and predict using the SavedModel
|
||||
with tf.Graph().as_default():
|
||||
with tf.Session() as session:
|
||||
|
@ -66,8 +66,8 @@ def multivariate_train_and_sample(
|
||||
if export_directory is None:
|
||||
export_directory = tempfile.mkdtemp()
|
||||
input_receiver_fn = estimator.build_raw_serving_input_receiver_fn()
|
||||
export_location = estimator.export_savedmodel(
|
||||
export_directory, input_receiver_fn)
|
||||
export_location = estimator.export_saved_model(export_directory,
|
||||
input_receiver_fn)
|
||||
with tf.Graph().as_default():
|
||||
numpy.random.seed(1) # Make the example a bit more deterministic
|
||||
with tf.Session() as session:
|
||||
|
@ -98,8 +98,8 @@ class TimeSeriesRegressorTest(test.TestCase):
|
||||
) = list(second_estimator.predict(input_fn=predict_input_fn))
|
||||
self.assertAllEqual([10, 1], estimator_predictions["mean"].shape)
|
||||
input_receiver_fn = first_estimator.build_raw_serving_input_receiver_fn()
|
||||
export_location = first_estimator.export_savedmodel(self.get_temp_dir(),
|
||||
input_receiver_fn)
|
||||
export_location = first_estimator.export_saved_model(
|
||||
self.get_temp_dir(), input_receiver_fn)
|
||||
with ops.Graph().as_default():
|
||||
with session.Session() as sess:
|
||||
signatures = loader.load(sess, [tag_constants.SERVING], export_location)
|
||||
|
@ -402,8 +402,8 @@ class OneShotTests(parameterized.TestCase):
|
||||
self.assertIn("average_loss", result)
|
||||
self.assertNotIn(feature_keys.State.STATE_TUPLE, result)
|
||||
input_receiver_fn = estimator.build_raw_serving_input_receiver_fn()
|
||||
export_location = estimator.export_savedmodel(_new_temp_dir(),
|
||||
input_receiver_fn)
|
||||
export_location = estimator.export_saved_model(_new_temp_dir(),
|
||||
input_receiver_fn)
|
||||
graph = ops.Graph()
|
||||
with graph.as_default():
|
||||
with session_lib.Session() as session:
|
||||
@ -438,7 +438,7 @@ class OneShotTests(parameterized.TestCase):
|
||||
output = session.run(fetches, feed_dict=feeds)
|
||||
self.assertEqual((2, 15, 5), output["mean"].shape)
|
||||
# Build a parsing input function, then make a tf.Example for it to parse.
|
||||
export_location = estimator.export_savedmodel(
|
||||
export_location = estimator.export_saved_model(
|
||||
_new_temp_dir(),
|
||||
estimator.build_one_shot_parsing_serving_input_receiver_fn(
|
||||
filtering_length=20, prediction_length=15))
|
||||
|
@ -185,9 +185,8 @@ class StateSpaceEquivalenceTests(test.TestCase):
|
||||
"exogenous": [-1., -2., -3., -4.]
|
||||
}))
|
||||
estimator.train(combined_input_fn, steps=1)
|
||||
export_location = estimator.export_savedmodel(
|
||||
self.get_temp_dir(),
|
||||
estimator.build_raw_serving_input_receiver_fn())
|
||||
export_location = estimator.export_saved_model(
|
||||
self.get_temp_dir(), estimator.build_raw_serving_input_receiver_fn())
|
||||
with ops.Graph().as_default() as graph:
|
||||
random_model.initialize_graph()
|
||||
with self.session(graph=graph) as session:
|
||||
|
Loading…
Reference in New Issue
Block a user