Move CTC out of contrib and document.

Change: 125022295
This commit is contained in:
Eugene Brevdo 2016-06-15 19:15:44 -08:00 committed by TensorFlower Gardener
parent 19376f7010
commit 67d3c915a8
18 changed files with 382 additions and 124 deletions

View File

@ -1,6 +1,8 @@
# Changes Since Last Release
## Features & Improvements
* Connectionist Temporal Classification ops are now "official" (see, e.g.,
`tf.nn.ctc_loss`)
* The RNN api is finally "official" (see, e.g., `tf.nn.dynamic_rnn`,
`tf.nn.rnn`, and the classes in `tf.nn.rnn_cell`).
* TensorBoard now has an Audio Dashboard, with associated audio summaries.

View File

@ -66,7 +66,6 @@ filegroup(
"//tensorflow/cc:all_files",
"//tensorflow/contrib:all_files",
"//tensorflow/contrib/copy_graph:all_files",
"//tensorflow/contrib/ctc:all_files",
"//tensorflow/contrib/distributions:all_files",
"//tensorflow/contrib/ffmpeg:all_files",
"//tensorflow/contrib/ffmpeg/default:all_files",

View File

@ -15,7 +15,6 @@ py_library(
deps = [
"//tensorflow/contrib/bayesflow:bayesflow_py",
"//tensorflow/contrib/copy_graph:copy_graph_py",
"//tensorflow/contrib/ctc:ctc_py",
"//tensorflow/contrib/distributions:distributions_py",
"//tensorflow/contrib/ffmpeg:ffmpeg_ops_py",
"//tensorflow/contrib/framework:framework_py",

View File

@ -21,7 +21,6 @@ from __future__ import print_function
# Add projects here, they will show up under tf.contrib.
from tensorflow.contrib import bayesflow
from tensorflow.contrib import copy_graph
from tensorflow.contrib import ctc
from tensorflow.contrib import distributions
from tensorflow.contrib import framework
from tensorflow.contrib import grid_rnn

View File

@ -1,55 +0,0 @@
# Description:
# contains parts of TensorFlow that are experimental or unstable and which are not supported.
licenses(["notice"]) # Apache 2.0
exports_files(["LICENSE"])
package(default_visibility = ["//tensorflow:__subpackages__"])
load("//tensorflow:tensorflow.bzl", "cuda_py_tests")
py_library(
name = "ctc_py",
srcs = [
"__init__.py",
"ctc_ops.py",
],
srcs_version = "PY2AND3",
)
cuda_py_tests(
name = "ctc_decoder_ops_test",
size = "small",
srcs = ["ctc_decoder_ops_test.py"],
additional_deps = [
":ctc_py",
"//tensorflow/python:framework_test_lib",
"//tensorflow/python:platform_test",
],
)
py_test(
name = "ctc_loss_op_test",
size = "small",
srcs = ["ctc_loss_op_test.py"],
srcs_version = "PY2AND3",
deps = [
":ctc_py",
"//tensorflow:tensorflow_py",
"//tensorflow/python:framework_test_lib",
"//tensorflow/python:platform_test",
],
)
filegroup(
name = "all_files",
srcs = glob(
["**/*"],
exclude = [
"**/METADATA",
"**/OWNERS",
],
),
visibility = ["//tensorflow:__subpackages__"],
)

View File

@ -1,29 +0,0 @@
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Ops for CTC (Connectionist Temporal Classification).
@@ctc_loss
@@ctc_greedy_decoder
@@ctc_beam_search_decoder
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# pylint: disable=unused-import,wildcard-import
from tensorflow.contrib.ctc.ctc_ops import *

View File

@ -0,0 +1,71 @@
### `tf.nn.ctc_loss(inputs, labels, sequence_length, preprocess_collapse_repeated=False, ctc_merge_repeated=True)` {#ctc_loss}
Computes the CTC (Connectionist Temporal Classification) Loss.
See the article:
A. Graves, S. Fernandez, F. Gomez, J. Schmidhuber.
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks. ICML 2006, Pittsburgh, USA, pp. 369-376.
Input requirements:
```
sequence_length(b) <= time for all b
max(labels.indices(labels.indices[:, 1] == b, 2))
<= sequence_length(b) for all b.
```
Regarding the arguments `preprocess_collapse_repeated` and
`ctc_merge_repeated`:
If `ctc_merge_repeated` is set False, then deep within the CTC calculation,
repeated non-blank labels will not be merged and are interpreted
as individual labels. This is a simplified (non-standard) version of CTC.
Here is a table of the (roughly) expected first order behavior:
* `preprocess_collapse_repeated=False, ctc_merge_repeated=True`
Classical CTC behavior: Outputs true repeated classes with nulls in
between, and can also output repeated classes with no nulls in
between that need to be collapsed by the decoder.
* `preprocess_collapse_repeated=True, ctc_merge_repeated=False`
Never learns repeated class of the same class under any circumstances.
* `preprocess_collapse_repeated=False, ctc_merge_repeated=False`
Outputs repeated classes with nulls in between, but generally does not
require the decoder to collapse/merge repeated classes.
* `preprocess_collapse_repeated=True, ctc_merge_repeated=True`
Untested.
```
##### Args:
* <b>`inputs`</b>: 3-D `float` `Tensor` sized
`[max_time x batch_size x num_classes]`. The logits.
* <b>`labels`</b>: An `int32` `SparseTensor`.
`labels.indices[i, :] == [b, t]` means `labels.values[i]` stores
the id for (batch b, time t). See `core/ops/ctc_ops.cc` for more details.
* <b>`sequence_length`</b>: 1-D `int32` vector, size `[batch_size]`.
The sequence lengths.
* <b>`preprocess_collapse_repeated`</b>: Boolean. Default: False.
If True, repeated labels are collapsed prior to the CTC calculation.
* <b>`ctc_merge_repeated`</b>: Boolean. Default: True.
##### Returns:
A 1-D `float` `Tensor`, size `[batch]`, containing logits.
##### Raises:
* <b>`TypeError`</b>: if labels is not a `SparseTensor`.

View File

@ -0,0 +1,36 @@
### `tf.nn.ctc_beam_search_decoder(inputs, sequence_length, beam_width=100, top_paths=1, merge_repeated=True)` {#ctc_beam_search_decoder}
Performs beam search decoding on the logits given in input.
If `merge_repeated` is `True`, merge repeated classes in output.
This means that if consecutive entries in a beam are the same,
only the first of these is emitted. That is, when the top path
is `A B B B B`, `A B` is returned if `merge_repeated = True`
but `A B B B B` is returned if `merge_repeated = False`.
##### Args:
* <b>`inputs`</b>: 3-D `float` `Tensor`, size
`[max_time x batch_size x num_classes]`. The logits.
* <b>`sequence_length`</b>: 1-D `int32` vector containing sequence lengths,
having size `[batch_size]`.
* <b>`beam_width`</b>: An int scalar >= 0 (beam search beam width).
* <b>`top_paths`</b>: An int scalar >= 0, <= beam_width (controls output size).
* <b>`merge_repeated`</b>: Boolean. Default: True.
##### Returns:
A tuple `(decoded, log_probabilities)` where
* <b>`decoded`</b>: A list of length top_paths, where `decoded[j]`
is a `SparseTensor` containing the decoded outputs:
`decoded[j].indices`: Indices matrix `(total_decoded_outputs[j] x 2)`
The rows store: [batch, time].
`decoded[j].values`: Values vector, size `(total_decoded_outputs[j])`.
The vector stores the decoded classes for beam j.
`decoded[j].shape`: Shape vector, size `(2)`.
The shape values are: `[batch_size, max_decoded_length[j]]`.
* <b>`log_probability`</b>: A `float` matrix `(batch_size x top_paths)` containing
sequence log-probabilities.

View File

@ -0,0 +1,38 @@
### `tf.nn.ctc_greedy_decoder(inputs, sequence_length, merge_repeated=True)` {#ctc_greedy_decoder}
Performs greedy decoding on the logits given in input (best path).
Note: Regardless of the value of merge_repeated, if the maximum index of a
given time and batch corresponds to the blank index `(num_classes - 1)`, no
new element is emitted.
If `merge_repeated` is `True`, merge repeated classes in output.
This means that if consecutive logits' maximum indices are the same,
only the first of these is emitted. Labeling the blank '*', the sequence
`A B B * B B` becomes `A B` if `merge_repeated = True` and `A B B B B`
if `merge_repeated = False`.
##### Args:
* <b>`inputs`</b>: 3-D `float` `Tensor` sized
`[max_time x batch_size x num_classes]`. The logits.
* <b>`sequence_length`</b>: 1-D `int32` vector containing sequence lengths,
having size `[batch_size]`.
* <b>`merge_repeated`</b>: Boolean. Default: True.
##### Returns:
A tuple `(decoded, log_probabilities)` where
* <b>`decoded`</b>: A single-element list. `decoded[0]`
is an `SparseTensor` containing the decoded outputs s.t.:
`decoded.indices`: Indices matrix `(total_decoded_outputs x 2)`.
The rows store: `[batch, time]`.
`decoded.values`: Values vector, size `(total_decoded_outputs)`.
The vector stores the decoded classes.
`decoded.shape`: Shape vector, size `(2)`.
The shape values are: `[batch_size, max_decoded_length]`
* <b>`log_probability`</b>: A `float` matrix `(batch_size x 1)` containing sequence
log-probabilities.

View File

@ -428,6 +428,9 @@
* [`conv2d`](../../api_docs/python/nn.md#conv2d)
* [`conv2d_transpose`](../../api_docs/python/nn.md#conv2d_transpose)
* [`conv3d`](../../api_docs/python/nn.md#conv3d)
* [`ctc_beam_search_decoder`](../../api_docs/python/nn.md#ctc_beam_search_decoder)
* [`ctc_greedy_decoder`](../../api_docs/python/nn.md#ctc_greedy_decoder)
* [`ctc_loss`](../../api_docs/python/nn.md#ctc_loss)
* [`depthwise_conv2d`](../../api_docs/python/nn.md#depthwise_conv2d)
* [`depthwise_conv2d_native`](../../api_docs/python/nn.md#depthwise_conv2d_native)
* [`dilation2d`](../../api_docs/python/nn.md#dilation2d)

View File

@ -1692,6 +1692,163 @@ length(s) of the sequence(s) or completely unrolled if length(s) is not given.
## Conectionist Temporal Classification (CTC)
- - -
### `tf.nn.ctc_loss(inputs, labels, sequence_length, preprocess_collapse_repeated=False, ctc_merge_repeated=True)` {#ctc_loss}
Computes the CTC (Connectionist Temporal Classification) Loss.
See the article:
A. Graves, S. Fernandez, F. Gomez, J. Schmidhuber.
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks. ICML 2006, Pittsburgh, USA, pp. 369-376.
Input requirements:
```
sequence_length(b) <= time for all b
max(labels.indices(labels.indices[:, 1] == b, 2))
<= sequence_length(b) for all b.
```
Regarding the arguments `preprocess_collapse_repeated` and
`ctc_merge_repeated`:
If `ctc_merge_repeated` is set False, then deep within the CTC calculation,
repeated non-blank labels will not be merged and are interpreted
as individual labels. This is a simplified (non-standard) version of CTC.
Here is a table of the (roughly) expected first order behavior:
* `preprocess_collapse_repeated=False, ctc_merge_repeated=True`
Classical CTC behavior: Outputs true repeated classes with nulls in
between, and can also output repeated classes with no nulls in
between that need to be collapsed by the decoder.
* `preprocess_collapse_repeated=True, ctc_merge_repeated=False`
Never learns repeated class of the same class under any circumstances.
* `preprocess_collapse_repeated=False, ctc_merge_repeated=False`
Outputs repeated classes with nulls in between, but generally does not
require the decoder to collapse/merge repeated classes.
* `preprocess_collapse_repeated=True, ctc_merge_repeated=True`
Untested.
```
##### Args:
* <b>`inputs`</b>: 3-D `float` `Tensor` sized
`[max_time x batch_size x num_classes]`. The logits.
* <b>`labels`</b>: An `int32` `SparseTensor`.
`labels.indices[i, :] == [b, t]` means `labels.values[i]` stores
the id for (batch b, time t). See `core/ops/ctc_ops.cc` for more details.
* <b>`sequence_length`</b>: 1-D `int32` vector, size `[batch_size]`.
The sequence lengths.
* <b>`preprocess_collapse_repeated`</b>: Boolean. Default: False.
If True, repeated labels are collapsed prior to the CTC calculation.
* <b>`ctc_merge_repeated`</b>: Boolean. Default: True.
##### Returns:
A 1-D `float` `Tensor`, size `[batch]`, containing logits.
##### Raises:
* <b>`TypeError`</b>: if labels is not a `SparseTensor`.
- - -
### `tf.nn.ctc_greedy_decoder(inputs, sequence_length, merge_repeated=True)` {#ctc_greedy_decoder}
Performs greedy decoding on the logits given in input (best path).
Note: Regardless of the value of merge_repeated, if the maximum index of a
given time and batch corresponds to the blank index `(num_classes - 1)`, no
new element is emitted.
If `merge_repeated` is `True`, merge repeated classes in output.
This means that if consecutive logits' maximum indices are the same,
only the first of these is emitted. Labeling the blank '*', the sequence
`A B B * B B` becomes `A B` if `merge_repeated = True` and `A B B B B`
if `merge_repeated = False`.
##### Args:
* <b>`inputs`</b>: 3-D `float` `Tensor` sized
`[max_time x batch_size x num_classes]`. The logits.
* <b>`sequence_length`</b>: 1-D `int32` vector containing sequence lengths,
having size `[batch_size]`.
* <b>`merge_repeated`</b>: Boolean. Default: True.
##### Returns:
A tuple `(decoded, log_probabilities)` where
* <b>`decoded`</b>: A single-element list. `decoded[0]`
is an `SparseTensor` containing the decoded outputs s.t.:
`decoded.indices`: Indices matrix `(total_decoded_outputs x 2)`.
The rows store: `[batch, time]`.
`decoded.values`: Values vector, size `(total_decoded_outputs)`.
The vector stores the decoded classes.
`decoded.shape`: Shape vector, size `(2)`.
The shape values are: `[batch_size, max_decoded_length]`
* <b>`log_probability`</b>: A `float` matrix `(batch_size x 1)` containing sequence
log-probabilities.
- - -
### `tf.nn.ctc_beam_search_decoder(inputs, sequence_length, beam_width=100, top_paths=1, merge_repeated=True)` {#ctc_beam_search_decoder}
Performs beam search decoding on the logits given in input.
If `merge_repeated` is `True`, merge repeated classes in output.
This means that if consecutive entries in a beam are the same,
only the first of these is emitted. That is, when the top path
is `A B B B B`, `A B` is returned if `merge_repeated = True`
but `A B B B B` is returned if `merge_repeated = False`.
##### Args:
* <b>`inputs`</b>: 3-D `float` `Tensor`, size
`[max_time x batch_size x num_classes]`. The logits.
* <b>`sequence_length`</b>: 1-D `int32` vector containing sequence lengths,
having size `[batch_size]`.
* <b>`beam_width`</b>: An int scalar >= 0 (beam search beam width).
* <b>`top_paths`</b>: An int scalar >= 0, <= beam_width (controls output size).
* <b>`merge_repeated`</b>: Boolean. Default: True.
##### Returns:
A tuple `(decoded, log_probabilities)` where
* <b>`decoded`</b>: A list of length top_paths, where `decoded[j]`
is a `SparseTensor` containing the decoded outputs:
`decoded[j].indices`: Indices matrix `(total_decoded_outputs[j] x 2)`
The rows store: [batch, time].
`decoded[j].values`: Values vector, size `(total_decoded_outputs[j])`.
The vector stores the decoded classes for beam j.
`decoded[j].shape`: Shape vector, size `(2)`.
The shape values are: `[batch_size, max_decoded_length[j]]`.
* <b>`log_probability`</b>: A `float` matrix `(batch_size x top_paths)` containing
sequence log-probabilities.
## Evaluation
The evaluation ops are useful for measuring the performance of a network.

View File

@ -776,6 +776,7 @@ py_library(
"ops/clip_ops.py",
"ops/control_flow_grad.py",
"ops/control_flow_ops.py",
"ops/ctc_ops.py",
"ops/data_flow_grad.py",
"ops/data_flow_ops.py",
"ops/embedding_ops.py",

View File

@ -140,9 +140,7 @@ def all_libraries(module_to_name, members, documented):
"softsign_grad", "xw_plus_b", "relu_layer",
"lrn", "batch_norm_with_global_normalization",
"batch_norm_with_global_normalization_grad",
"all_candidate_sampler", "rnn",
"state_saving_rnn", "bidirectional_rnn",
"dynamic_rnn", "seq2seq", "rnn_cell"],
"all_candidate_sampler", "seq2seq"],
prefix=PREFIX_TEXT),
library("rnn_cell", "Neural Network RNN Cells", tf.nn.rnn_cell),
library("client", "Running Graphs", client_lib),

View File

@ -29,6 +29,8 @@ py_tests(
"candidate_sampler_ops_test.py",
"cholesky_op_test.py",
"clip_ops_test.py",
"ctc_decoder_ops_test.py",
"ctc_loss_op_test.py",
"decode_csv_op_test.py",
"decode_png_op_test.py",
"decode_raw_op_test.py",

View File

@ -143,7 +143,7 @@ class CTCGreedyDecoderTest(tf.test.TestCase):
]
self._testCTCDecoder(
tf.contrib.ctc.ctc_greedy_decoder,
tf.nn.ctc_greedy_decoder,
inputs, seq_lens, log_prob_truth, decode_truth)
def testCTCDecoderBeamSearch(self):
@ -191,7 +191,7 @@ class CTCGreedyDecoderTest(tf.test.TestCase):
]
self._testCTCDecoder(
tf.contrib.ctc.ctc_beam_search_decoder,
tf.nn.ctc_beam_search_decoder,
inputs, seq_lens, log_prob_truth,
decode_truth,
beam_width=2,

View File

@ -54,9 +54,9 @@ class CTCLossTest(tf.test.TestCase):
inputs_t = tf.constant(inputs)
with self.test_session(use_gpu=False) as sess:
loss = tf.contrib.ctc.ctc_loss(inputs=inputs_t,
labels=labels,
sequence_length=seq_lens)
loss = tf.nn.ctc_loss(inputs=inputs_t,
labels=labels,
sequence_length=seq_lens)
grad = tf.gradients(loss, [inputs_t])[0]
self.assertShapeEqual(loss_truth, loss)

View File

@ -13,42 +13,74 @@
# limitations under the License.
# ==============================================================================
# pylint: disable=unused-import
"""CTC (Connectionist Temporal Classification) Operations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
from tensorflow.core.framework import types_pb2
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import tensor_util
from tensorflow.python.ops import gen_ctc_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.nn_grad import _BroadcastMul
# NOTE(ebrevdo): We redefine CTCLoss from gen_ctc_ops to only return
# the first output. The second output is only used for the gradient.
# pylint: disable=protected-access, invalid-name
def ctc_loss(inputs, labels, sequence_length,
preprocess_collapse_repeated=False, ctc_merge_repeated=True):
"""Computes the CTC (Connectionist Temporal Classification) Loss.
Requires:
```sequence_length(b) <= time for all b
This op implements the CTC loss as presented in the article:
max(labels.indices(labels.indices[:, 1] == b, 2))
<= sequence_length(b) for all b.```
A. Graves, S. Fernandez, F. Gomez, J. Schmidhuber.
Connectionist Temporal Classification: Labelling Unsegmented Sequence Data
with Recurrent Neural Networks. ICML 2006, Pittsburgh, USA, pp. 369-376.
If ctc_merge_repeated is set False, then *during* CTC calculation
http://www.cs.toronto.edu/~graves/icml_2006.pdf
Input requirements:
```
sequence_length(b) <= time for all b
max(labels.indices(labels.indices[:, 1] == b, 2))
<= sequence_length(b) for all b.
```
Regarding the arguments `preprocess_collapse_repeated` and
`ctc_merge_repeated`:
If `preprocess_collapse_repeated` is True, then a preprocessing step runs
before loss calculation, wherein repeated labels passed to the loss
are merged into single labels. This is useful if the training labels come
from, e.g., forced alignments and therefore have unnecessary repetitions.
If `ctc_merge_repeated` is set False, then deep within the CTC calculation,
repeated non-blank labels will not be merged and are interpreted
as individual labels. This is a simplified version of CTC.
as individual labels. This is a simplified (non-standard) version of CTC.
Here is a table of the (roughly) expected first order behavior:
* `preprocess_collapse_repeated=False`, `ctc_merge_repeated=True`
Classical CTC behavior: Outputs true repeated classes with blanks in
between, and can also output repeated classes with no blanks in
between that need to be collapsed by the decoder.
* `preprocess_collapse_repeated=True`, `ctc_merge_repeated=False`
Never learns to output repeated classes, as they are collapsed
in the input labels before training.
* `preprocess_collapse_repeated=False`, `ctc_merge_repeated=False`
Outputs repeated classes with blanks in between, but generally does not
require the decoder to collapse/merge repeated classes.
* `preprocess_collapse_repeated=True`, `ctc_merge_repeated=True`
Untested. Very likely will not learn to output repeated classes.
Args:
inputs: 3-D `float` `Tensor` sized
@ -62,11 +94,9 @@ def ctc_loss(inputs, labels, sequence_length,
If True, repeated labels are collapsed prior to the CTC calculation.
ctc_merge_repeated: Boolean. Default: True.
Returns:
A 1-D `float` `Tensor`, size `[batch]`, containing logits.
Raises:
TypeError: if labels is not a `SparseTensor`.
"""
@ -129,12 +159,13 @@ def ctc_greedy_decoder(inputs, sequence_length, merge_repeated=True):
given time and batch corresponds to the blank index `(num_classes - 1)`, no
new element is emitted.
If merge_repeated is `True`, merge repeated classes in output.
If `merge_repeated` is `True`, merge repeated classes in output.
This means that if consecutive logits' maximum indices are the same,
only the first of these is emitted. Labeling the blank '*', the sequence
"A B B * B B" becomes "A B" if `merge_repeated = True` and "A B B B B"
if `merge_repeated = False`.
only the first of these is emitted. The sequence `A B B * B * B` (where '*'
is the blank label) becomes
* `A B` if `merge_repeated=True`.
* `A B B B B B` if `merge_repeated=False`.
Args:
inputs: 3-D `float` `Tensor` sized
@ -143,7 +174,6 @@ def ctc_greedy_decoder(inputs, sequence_length, merge_repeated=True):
having size `[batch_size]`.
merge_repeated: Boolean. Default: True.
Returns:
A tuple `(decoded, log_probabilities)` where
decoded: A single-element list. `decoded[0]`
@ -184,12 +214,17 @@ def ctc_beam_search_decoder(inputs, sequence_length, beam_width=100,
top_paths=1, merge_repeated=True):
"""Performs beam search decoding on the logits given in input.
If merge_repeated is `True`, merge repeated classes in output.
**Note** The `ctc_greedy_decoder` is a special case of the
`ctc_beam_search_decoder` with `top_paths=1` (but that decoder is faster
for this special case).
If `merge_repeated` is `True`, merge repeated classes in the output beams.
This means that if consecutive entries in a beam are the same,
only the first of these is emitted. That is, when the top path
is "A B B B B", "A B" is returned if `merge_repeated = True`
but "A B B B B" is returned if `merge_repeated = False`.
is `A B B B B`, the return value is:
* `A B` if `merge_repeated = True`.
* `A B B B B` if `merge_repeated = False`.
Args:
inputs: 3-D `float` `Tensor`, size
@ -200,7 +235,6 @@ def ctc_beam_search_decoder(inputs, sequence_length, beam_width=100,
top_paths: An int scalar >= 0, <= beam_width (controls output size).
merge_repeated: Boolean. Default: True.
Returns:
A tuple `(decoded, log_probabilities)` where
decoded: A list of length top_paths, where `decoded[j]`

View File

@ -220,6 +220,12 @@ Neural Networks. Most accept an `RNNCell`-subclassed object
@@state_saving_rnn
@@bidirectional_rnn
## Conectionist Temporal Classification (CTC)
@@ctc_loss
@@ctc_greedy_decoder
@@ctc_beam_search_decoder
## Evaluation
The evaluation ops are useful for measuring the performance of a network.
@ -294,6 +300,7 @@ from tensorflow.python.util.all_util import make_all
# Bring more nn-associated functionality into this package.
# go/tf-wildcard-import
# pylint: disable=wildcard-import
from tensorflow.python.ops.ctc_ops import *
from tensorflow.python.ops.nn_ops import *
from tensorflow.python.ops.candidate_sampling_ops import *
from tensorflow.python.ops.embedding_ops import *
@ -1186,14 +1193,10 @@ __all__.extend([
"all_candidate_sampler",
"batch_norm_with_global_normalization",
"batch_normalization",
"bidirectional_rnn",
"conv2d_backprop_filter",
"conv2d_backprop_input",
"depthwise_conv2d_native",
"dynamic_rnn",
"lrn",
"relu_layer",
"rnn",
"state_saving_rnn",
"xw_plus_b",
])