Merge branch 'r0.10' of github.com:tensorflow/tensorflow into r0.10
This commit is contained in:
commit
67734a1df6
@ -441,7 +441,7 @@ static void TF_Run_Helper(
|
||||
const std::vector<tensorflow::string>& output_tensor_names,
|
||||
TF_Tensor** c_outputs,
|
||||
// Target nodes
|
||||
const std::vector<tensorflow::string>& target_node_names,
|
||||
const std::vector<tensorflow::string>& target_oper_names,
|
||||
TF_Buffer* run_metadata, TF_Status* status) {
|
||||
const int noutputs = output_tensor_names.size();
|
||||
std::vector<Tensor> outputs(noutputs);
|
||||
@ -464,7 +464,7 @@ static void TF_Run_Helper(
|
||||
|
||||
RunMetadata run_metadata_proto;
|
||||
result = session->Run(run_options_proto, input_pairs, output_tensor_names,
|
||||
target_node_names, &outputs, &run_metadata_proto);
|
||||
target_oper_names, &outputs, &run_metadata_proto);
|
||||
|
||||
// Serialize back to upstream client, who now owns the new buffer
|
||||
if (run_metadata != nullptr) {
|
||||
@ -512,10 +512,9 @@ void TF_Run(TF_Session* s, const TF_Buffer* run_options,
|
||||
// Input tensors
|
||||
const char** c_input_names, TF_Tensor** c_inputs, int ninputs,
|
||||
// Output tensors
|
||||
const char** c_output_tensor_names, TF_Tensor** c_outputs,
|
||||
int noutputs,
|
||||
const char** c_output_names, TF_Tensor** c_outputs, int noutputs,
|
||||
// Target nodes
|
||||
const char** c_target_node_names, int ntargets,
|
||||
const char** c_target_oper_names, int ntargets,
|
||||
TF_Buffer* run_metadata, TF_Status* status) {
|
||||
TF_Run_Setup(noutputs, c_outputs, status);
|
||||
std::vector<std::pair<tensorflow::string, Tensor>> input_pairs(ninputs);
|
||||
@ -523,45 +522,44 @@ void TF_Run(TF_Session* s, const TF_Buffer* run_options,
|
||||
for (int i = 0; i < ninputs; ++i) {
|
||||
input_pairs[i].first = c_input_names[i];
|
||||
}
|
||||
std::vector<tensorflow::string> output_tensor_names(noutputs);
|
||||
std::vector<tensorflow::string> output_names(noutputs);
|
||||
for (int i = 0; i < noutputs; ++i) {
|
||||
output_tensor_names[i] = c_output_tensor_names[i];
|
||||
output_names[i] = c_output_names[i];
|
||||
}
|
||||
std::vector<tensorflow::string> target_node_names(ntargets);
|
||||
std::vector<tensorflow::string> target_oper_names(ntargets);
|
||||
for (int i = 0; i < ntargets; ++i) {
|
||||
target_node_names[i] = c_target_node_names[i];
|
||||
target_oper_names[i] = c_target_oper_names[i];
|
||||
}
|
||||
TF_Run_Helper(s->session, nullptr, run_options, input_pairs,
|
||||
output_tensor_names, c_outputs, target_node_names, run_metadata,
|
||||
status);
|
||||
TF_Run_Helper(s->session, nullptr, run_options, input_pairs, output_names,
|
||||
c_outputs, target_oper_names, run_metadata, status);
|
||||
}
|
||||
|
||||
void TF_PRunSetup(TF_Session* s,
|
||||
// Input names
|
||||
const char** c_input_names, int ninputs,
|
||||
// Output names
|
||||
const char** c_output_tensor_names, int noutputs,
|
||||
const char** c_output_names, int noutputs,
|
||||
// Target nodes
|
||||
const char** c_target_node_names, int ntargets,
|
||||
const char** c_target_oper_names, int ntargets,
|
||||
const char** handle, TF_Status* status) {
|
||||
status->status = Status::OK();
|
||||
|
||||
std::vector<tensorflow::string> input_names(ninputs);
|
||||
std::vector<tensorflow::string> output_tensor_names(noutputs);
|
||||
std::vector<tensorflow::string> target_node_names(ntargets);
|
||||
std::vector<tensorflow::string> output_names(noutputs);
|
||||
std::vector<tensorflow::string> target_oper_names(ntargets);
|
||||
for (int i = 0; i < ninputs; ++i) {
|
||||
input_names[i] = c_input_names[i];
|
||||
}
|
||||
for (int i = 0; i < noutputs; ++i) {
|
||||
output_tensor_names[i] = c_output_tensor_names[i];
|
||||
output_names[i] = c_output_names[i];
|
||||
}
|
||||
for (int i = 0; i < ntargets; ++i) {
|
||||
target_node_names[i] = c_target_node_names[i];
|
||||
target_oper_names[i] = c_target_oper_names[i];
|
||||
}
|
||||
tensorflow::string new_handle;
|
||||
Status result;
|
||||
result = s->session->PRunSetup(input_names, output_tensor_names,
|
||||
target_node_names, &new_handle);
|
||||
result = s->session->PRunSetup(input_names, output_names, target_oper_names,
|
||||
&new_handle);
|
||||
if (result.ok()) {
|
||||
char* buf = new char[new_handle.size() + 1];
|
||||
memcpy(buf, new_handle.c_str(), new_handle.size() + 1);
|
||||
@ -575,10 +573,9 @@ void TF_PRun(TF_Session* s, const char* handle,
|
||||
// Input tensors
|
||||
const char** c_input_names, TF_Tensor** c_inputs, int ninputs,
|
||||
// Output tensors
|
||||
const char** c_output_tensor_names, TF_Tensor** c_outputs,
|
||||
int noutputs,
|
||||
const char** c_output_names, TF_Tensor** c_outputs, int noutputs,
|
||||
// Target nodes
|
||||
const char** c_target_node_names, int ntargets,
|
||||
const char** c_target_oper_names, int ntargets,
|
||||
TF_Status* status) {
|
||||
TF_Run_Setup(noutputs, c_outputs, status);
|
||||
std::vector<std::pair<tensorflow::string, Tensor>> input_pairs(ninputs);
|
||||
@ -587,16 +584,16 @@ void TF_PRun(TF_Session* s, const char* handle,
|
||||
input_pairs[i].first = c_input_names[i];
|
||||
}
|
||||
|
||||
std::vector<tensorflow::string> output_tensor_names(noutputs);
|
||||
std::vector<tensorflow::string> output_names(noutputs);
|
||||
for (int i = 0; i < noutputs; ++i) {
|
||||
output_tensor_names[i] = c_output_tensor_names[i];
|
||||
output_names[i] = c_output_names[i];
|
||||
}
|
||||
std::vector<tensorflow::string> target_node_names(ntargets);
|
||||
std::vector<tensorflow::string> target_oper_names(ntargets);
|
||||
for (int i = 0; i < ntargets; ++i) {
|
||||
target_node_names[i] = c_target_node_names[i];
|
||||
target_oper_names[i] = c_target_oper_names[i];
|
||||
}
|
||||
TF_Run_Helper(s->session, handle, nullptr, input_pairs, output_tensor_names,
|
||||
c_outputs, target_node_names, nullptr, status);
|
||||
TF_Run_Helper(s->session, handle, nullptr, input_pairs, output_names,
|
||||
c_outputs, target_oper_names, nullptr, status);
|
||||
}
|
||||
|
||||
struct TF_Library {
|
||||
@ -643,15 +640,16 @@ struct TF_Graph {
|
||||
bool delete_requested; // set true by TF_DeleteGraph
|
||||
};
|
||||
|
||||
struct TF_NodeDescription {
|
||||
TF_NodeDescription(TF_Graph* g, const char* op_type, const char* node_name)
|
||||
struct TF_OperationDescription {
|
||||
TF_OperationDescription(TF_Graph* g, const char* op_type,
|
||||
const char* node_name)
|
||||
: node_builder(node_name, op_type, g->graph.op_registry()), graph(g) {}
|
||||
|
||||
NodeBuilder node_builder;
|
||||
TF_Graph* graph;
|
||||
};
|
||||
|
||||
struct TF_Node {
|
||||
struct TF_Operation {
|
||||
Node node;
|
||||
};
|
||||
|
||||
@ -670,55 +668,56 @@ struct TF_SessionWithGraph {
|
||||
|
||||
namespace {
|
||||
|
||||
TF_Node* ToNode(Node* node) {
|
||||
return static_cast<TF_Node*>(static_cast<void*>(node));
|
||||
TF_Operation* ToOperation(Node* node) {
|
||||
return static_cast<TF_Operation*>(static_cast<void*>(node));
|
||||
}
|
||||
|
||||
tensorflow::string PortName(const TF_Port& port) {
|
||||
return tensorflow::strings::StrCat(port.node->node.name(), ":", port.index);
|
||||
return tensorflow::strings::StrCat(port.oper->node.name(), ":", port.index);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// TF_NodeDescription functions -----------------------------------------------
|
||||
// TF_OperationDescription functions
|
||||
// -----------------------------------------------
|
||||
|
||||
extern "C" {
|
||||
|
||||
TF_NodeDescription* TF_NewNode(TF_Graph* graph, const char* op_type,
|
||||
const char* node_name) {
|
||||
TF_OperationDescription* TF_NewOperation(TF_Graph* graph, const char* op_type,
|
||||
const char* oper_name) {
|
||||
mutex_lock l(graph->mu);
|
||||
return new TF_NodeDescription(graph, op_type, node_name);
|
||||
return new TF_OperationDescription(graph, op_type, oper_name);
|
||||
}
|
||||
|
||||
void TF_SetDevice(TF_NodeDescription* desc, const char* device) {
|
||||
void TF_SetDevice(TF_OperationDescription* desc, const char* device) {
|
||||
desc->node_builder.Device(device);
|
||||
}
|
||||
|
||||
void TF_AddInput(TF_NodeDescription* desc, TF_Port input) {
|
||||
desc->node_builder.Input(&input.node->node, input.index);
|
||||
void TF_AddInput(TF_OperationDescription* desc, TF_Port input) {
|
||||
desc->node_builder.Input(&input.oper->node, input.index);
|
||||
}
|
||||
|
||||
void TF_AddInputList(TF_NodeDescription* desc, const TF_Port* inputs,
|
||||
void TF_AddInputList(TF_OperationDescription* desc, const TF_Port* inputs,
|
||||
int num_inputs) {
|
||||
std::vector<NodeBuilder::NodeOut> input_list;
|
||||
input_list.reserve(num_inputs);
|
||||
for (int i = 0; i < num_inputs; ++i) {
|
||||
input_list.emplace_back(&inputs[i].node->node, inputs[i].index);
|
||||
input_list.emplace_back(&inputs[i].oper->node, inputs[i].index);
|
||||
}
|
||||
desc->node_builder.Input(input_list);
|
||||
}
|
||||
|
||||
void TF_AddControlInput(TF_NodeDescription* desc, TF_Node* input) {
|
||||
void TF_AddControlInput(TF_OperationDescription* desc, TF_Operation* input) {
|
||||
desc->node_builder.ControlInput(&input->node);
|
||||
}
|
||||
|
||||
void TF_SetAttrString(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrString(TF_OperationDescription* desc, const char* attr_name,
|
||||
const void* value, int length) {
|
||||
tensorflow::StringPiece s(static_cast<const char*>(value), length);
|
||||
desc->node_builder.Attr(attr_name, s);
|
||||
}
|
||||
|
||||
void TF_SetAttrStringList(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrStringList(TF_OperationDescription* desc, const char* attr_name,
|
||||
const void* const* values, const int* lengths,
|
||||
int num_values) {
|
||||
std::vector<tensorflow::StringPiece> v;
|
||||
@ -729,14 +728,14 @@ void TF_SetAttrStringList(TF_NodeDescription* desc, const char* attr_name,
|
||||
desc->node_builder.Attr(attr_name, v);
|
||||
}
|
||||
|
||||
void TF_SetAttrInt(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrInt(TF_OperationDescription* desc, const char* attr_name,
|
||||
int64_t value) {
|
||||
static_assert(sizeof(int64_t) == sizeof(tensorflow::int64),
|
||||
"64-bit int types should match in size");
|
||||
desc->node_builder.Attr(attr_name, static_cast<tensorflow::int64>(value));
|
||||
}
|
||||
|
||||
void TF_SetAttrIntList(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrIntList(TF_OperationDescription* desc, const char* attr_name,
|
||||
const int64_t* values, int num_values) {
|
||||
static_assert(sizeof(int64_t) == sizeof(tensorflow::int64),
|
||||
"64-bit int types should match in size");
|
||||
@ -746,23 +745,23 @@ void TF_SetAttrIntList(TF_NodeDescription* desc, const char* attr_name,
|
||||
reinterpret_cast<const tensorflow::int64*>(values), num_values));
|
||||
}
|
||||
|
||||
void TF_SetAttrFloat(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrFloat(TF_OperationDescription* desc, const char* attr_name,
|
||||
float value) {
|
||||
desc->node_builder.Attr(attr_name, value);
|
||||
}
|
||||
|
||||
void TF_SetAttrFloatList(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrFloatList(TF_OperationDescription* desc, const char* attr_name,
|
||||
const float* values, int num_values) {
|
||||
desc->node_builder.Attr(attr_name,
|
||||
ArraySlice<const float>(values, num_values));
|
||||
}
|
||||
|
||||
void TF_SetAttrBool(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrBool(TF_OperationDescription* desc, const char* attr_name,
|
||||
unsigned char value) {
|
||||
desc->node_builder.Attr(attr_name, static_cast<bool>(value));
|
||||
}
|
||||
|
||||
void TF_SetAttrBoolList(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrBoolList(TF_OperationDescription* desc, const char* attr_name,
|
||||
const unsigned char* values, int num_values) {
|
||||
bool* b = new bool[num_values];
|
||||
for (int i = 0; i < num_values; ++i) {
|
||||
@ -771,19 +770,19 @@ void TF_SetAttrBoolList(TF_NodeDescription* desc, const char* attr_name,
|
||||
desc->node_builder.Attr(attr_name, ArraySlice<const bool>(b, num_values));
|
||||
}
|
||||
|
||||
void TF_SetAttrType(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrType(TF_OperationDescription* desc, const char* attr_name,
|
||||
TF_DataType value) {
|
||||
desc->node_builder.Attr(attr_name, static_cast<DataType>(value));
|
||||
}
|
||||
|
||||
void TF_SetAttrTypeList(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrTypeList(TF_OperationDescription* desc, const char* attr_name,
|
||||
const TF_DataType* values, int num_values) {
|
||||
desc->node_builder.Attr(
|
||||
attr_name, ArraySlice<const DataType>(
|
||||
reinterpret_cast<const DataType*>(values), num_values));
|
||||
}
|
||||
|
||||
void TF_SetAttrShape(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrShape(TF_OperationDescription* desc, const char* attr_name,
|
||||
const int64_t* dims, int num_dims) {
|
||||
PartialTensorShape shape;
|
||||
if (num_dims >= 0) {
|
||||
@ -795,7 +794,7 @@ void TF_SetAttrShape(TF_NodeDescription* desc, const char* attr_name,
|
||||
desc->node_builder.Attr(attr_name, shape);
|
||||
}
|
||||
|
||||
void TF_SetAttrShapeList(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrShapeList(TF_OperationDescription* desc, const char* attr_name,
|
||||
const int64_t* const* dims, const int* num_dims,
|
||||
int num_shapes) {
|
||||
std::vector<PartialTensorShape> shapes;
|
||||
@ -813,8 +812,9 @@ void TF_SetAttrShapeList(TF_NodeDescription* desc, const char* attr_name,
|
||||
desc->node_builder.Attr(attr_name, shapes);
|
||||
}
|
||||
|
||||
void TF_SetAttrTensorShapeProto(TF_NodeDescription* desc, const char* attr_name,
|
||||
void* proto, int proto_len, TF_Status* status) {
|
||||
void TF_SetAttrTensorShapeProto(TF_OperationDescription* desc,
|
||||
const char* attr_name, void* proto,
|
||||
int proto_len, TF_Status* status) {
|
||||
TensorShapeProto shape;
|
||||
if (shape.ParseFromArray(proto, proto_len)) {
|
||||
desc->node_builder.Attr(attr_name, shape);
|
||||
@ -825,7 +825,7 @@ void TF_SetAttrTensorShapeProto(TF_NodeDescription* desc, const char* attr_name,
|
||||
}
|
||||
}
|
||||
|
||||
void TF_SetAttrTensorShapeProtoList(TF_NodeDescription* desc,
|
||||
void TF_SetAttrTensorShapeProtoList(TF_OperationDescription* desc,
|
||||
const char* attr_name,
|
||||
const void* const* protos,
|
||||
const int* proto_lens, int num_shapes,
|
||||
@ -843,7 +843,7 @@ void TF_SetAttrTensorShapeProtoList(TF_NodeDescription* desc,
|
||||
status->status = Status::OK();
|
||||
}
|
||||
|
||||
void TF_SetAttrTensor(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrTensor(TF_OperationDescription* desc, const char* attr_name,
|
||||
TF_Tensor* value, TF_Status* status) {
|
||||
status->status = Status::OK();
|
||||
Tensor t;
|
||||
@ -862,7 +862,7 @@ void TF_SetAttrTensor(TF_NodeDescription* desc, const char* attr_name,
|
||||
if (ok) desc->node_builder.Attr(attr_name, t);
|
||||
}
|
||||
|
||||
void TF_SetAttrTensorList(TF_NodeDescription* desc, const char* attr_name,
|
||||
void TF_SetAttrTensorList(TF_OperationDescription* desc, const char* attr_name,
|
||||
TF_Tensor* const* values, int num_values,
|
||||
TF_Status* status) {
|
||||
status->status = Status::OK();
|
||||
@ -890,9 +890,9 @@ void TF_SetAttrTensorList(TF_NodeDescription* desc, const char* attr_name,
|
||||
if (ok) desc->node_builder.Attr(attr_name, t);
|
||||
}
|
||||
|
||||
void TF_SetAttrToAttrValueProto(TF_NodeDescription* desc, const char* attr_name,
|
||||
const void* proto, size_t proto_len,
|
||||
TF_Status* status) {
|
||||
void TF_SetAttrToAttrValueProto(TF_OperationDescription* desc,
|
||||
const char* attr_name, const void* proto,
|
||||
size_t proto_len, TF_Status* status) {
|
||||
tensorflow::AttrValue attr_value;
|
||||
if (attr_value.ParseFromArray(proto, proto_len)) {
|
||||
desc->node_builder.Attr(attr_name, attr_value);
|
||||
@ -903,7 +903,8 @@ void TF_SetAttrToAttrValueProto(TF_NodeDescription* desc, const char* attr_name,
|
||||
}
|
||||
}
|
||||
|
||||
TF_Node* TF_FinishNode(TF_NodeDescription* desc, TF_Status* status) {
|
||||
TF_Operation* TF_FinishOperation(TF_OperationDescription* desc,
|
||||
TF_Status* status) {
|
||||
Node* ret = nullptr;
|
||||
mutex_lock l(desc->graph->mu);
|
||||
|
||||
@ -919,32 +920,37 @@ TF_Node* TF_FinishNode(TF_NodeDescription* desc, TF_Status* status) {
|
||||
|
||||
delete desc;
|
||||
|
||||
return ToNode(ret);
|
||||
return ToOperation(ret);
|
||||
}
|
||||
|
||||
// TF_Node functions ----------------------------------------------------------
|
||||
// TF_Operation functions
|
||||
// ----------------------------------------------------------
|
||||
|
||||
const char* TF_NodeName(TF_Node* node) { return node->node.name().c_str(); }
|
||||
|
||||
const char* TF_NodeOpType(TF_Node* node) {
|
||||
return node->node.type_string().c_str();
|
||||
const char* TF_OperationName(TF_Operation* oper) {
|
||||
return oper->node.name().c_str();
|
||||
}
|
||||
|
||||
const char* TF_NodeDevice(TF_Node* node) {
|
||||
return node->node.def().device().c_str();
|
||||
const char* TF_OperationOpType(TF_Operation* oper) {
|
||||
return oper->node.type_string().c_str();
|
||||
}
|
||||
|
||||
int TF_NodeNumOutputs(TF_Node* node) { return node->node.num_outputs(); }
|
||||
const char* TF_OperationDevice(TF_Operation* oper) {
|
||||
return oper->node.def().device().c_str();
|
||||
}
|
||||
|
||||
TF_DataType TF_NodeOutputType(TF_Port node_out) {
|
||||
int TF_OperationNumOutputs(TF_Operation* oper) {
|
||||
return oper->node.num_outputs();
|
||||
}
|
||||
|
||||
TF_DataType TF_OperationOutputType(TF_Port oper_out) {
|
||||
return static_cast<TF_DataType>(
|
||||
node_out.node->node.output_type(node_out.index));
|
||||
oper_out.oper->node.output_type(oper_out.index));
|
||||
}
|
||||
|
||||
int TF_NodeOutputListLength(TF_Node* node, const char* arg_name,
|
||||
int TF_OperationOutputListLength(TF_Operation* oper, const char* arg_name,
|
||||
TF_Status* status) {
|
||||
NameRangeMap name_ranges;
|
||||
status->status = NameRangesForNode(node->node.def(), node->node.op_def(),
|
||||
status->status = NameRangesForNode(oper->node.def(), oper->node.op_def(),
|
||||
nullptr, &name_ranges);
|
||||
if (!status->status.ok()) return -1;
|
||||
auto iter = name_ranges.find(arg_name);
|
||||
@ -956,16 +962,18 @@ int TF_NodeOutputListLength(TF_Node* node, const char* arg_name,
|
||||
return iter->second.second - iter->second.first;
|
||||
}
|
||||
|
||||
int TF_NodeNumInputs(TF_Node* node) { return node->node.num_inputs(); }
|
||||
|
||||
TF_DataType TF_NodeInputType(TF_Port node_in) {
|
||||
return static_cast<TF_DataType>(node_in.node->node.input_type(node_in.index));
|
||||
int TF_OperationNumInputs(TF_Operation* oper) {
|
||||
return oper->node.num_inputs();
|
||||
}
|
||||
|
||||
int TF_NodeInputListLength(TF_Node* node, const char* arg_name,
|
||||
TF_DataType TF_OperationInputType(TF_Port oper_in) {
|
||||
return static_cast<TF_DataType>(oper_in.oper->node.input_type(oper_in.index));
|
||||
}
|
||||
|
||||
int TF_OperationInputListLength(TF_Operation* oper, const char* arg_name,
|
||||
TF_Status* status) {
|
||||
NameRangeMap name_ranges;
|
||||
status->status = NameRangesForNode(node->node.def(), node->node.op_def(),
|
||||
status->status = NameRangesForNode(oper->node.def(), oper->node.op_def(),
|
||||
&name_ranges, nullptr);
|
||||
if (!status->status.ok()) return -1;
|
||||
auto iter = name_ranges.find(arg_name);
|
||||
@ -977,32 +985,32 @@ int TF_NodeInputListLength(TF_Node* node, const char* arg_name,
|
||||
return iter->second.second - iter->second.first;
|
||||
}
|
||||
|
||||
TF_Port TF_NodeInput(TF_Port node_in) {
|
||||
for (const auto* edge : node_in.node->node.in_edges()) {
|
||||
if (edge->dst_input() == node_in.index) {
|
||||
return {ToNode(edge->src()), edge->src_output()};
|
||||
TF_Port TF_OperationInput(TF_Port oper_in) {
|
||||
for (const auto* edge : oper_in.oper->node.in_edges()) {
|
||||
if (edge->dst_input() == oper_in.index) {
|
||||
return {ToOperation(edge->src()), edge->src_output()};
|
||||
}
|
||||
}
|
||||
return {nullptr, -1};
|
||||
}
|
||||
|
||||
int TF_NodeOutputNumConsumers(TF_Port node_out) {
|
||||
int TF_OperationOutputNumConsumers(TF_Port oper_out) {
|
||||
int count = 0;
|
||||
for (const auto* edge : node_out.node->node.out_edges()) {
|
||||
if (edge->src_output() == node_out.index) {
|
||||
for (const auto* edge : oper_out.oper->node.out_edges()) {
|
||||
if (edge->src_output() == oper_out.index) {
|
||||
++count;
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
int TF_NodeOutputConsumers(TF_Port node_out, TF_Port* consumers,
|
||||
int TF_OperationOutputConsumers(TF_Port oper_out, TF_Port* consumers,
|
||||
int max_consumers) {
|
||||
int count = 0;
|
||||
for (const auto* edge : node_out.node->node.out_edges()) {
|
||||
if (edge->src_output() == node_out.index) {
|
||||
for (const auto* edge : oper_out.oper->node.out_edges()) {
|
||||
if (edge->src_output() == oper_out.index) {
|
||||
if (count < max_consumers) {
|
||||
consumers[count] = {ToNode(edge->dst()), edge->dst_input()};
|
||||
consumers[count] = {ToOperation(edge->dst()), edge->dst_input()};
|
||||
}
|
||||
++count;
|
||||
}
|
||||
@ -1010,9 +1018,9 @@ int TF_NodeOutputConsumers(TF_Port node_out, TF_Port* consumers,
|
||||
return count;
|
||||
}
|
||||
|
||||
int TF_NodeNumControlInputs(TF_Node* node) {
|
||||
int TF_OperationNumControlInputs(TF_Operation* oper) {
|
||||
int count = 0;
|
||||
for (const auto* edge : node->node.in_edges()) {
|
||||
for (const auto* edge : oper->node.in_edges()) {
|
||||
if (edge->IsControlEdge()) {
|
||||
++count;
|
||||
}
|
||||
@ -1020,13 +1028,14 @@ int TF_NodeNumControlInputs(TF_Node* node) {
|
||||
return count;
|
||||
}
|
||||
|
||||
int TF_NodeGetControlInputs(TF_Node* node, TF_Node** control_inputs,
|
||||
int TF_OperationGetControlInputs(TF_Operation* oper,
|
||||
TF_Operation** control_inputs,
|
||||
int max_control_inputs) {
|
||||
int count = 0;
|
||||
for (const auto* edge : node->node.in_edges()) {
|
||||
for (const auto* edge : oper->node.in_edges()) {
|
||||
if (edge->IsControlEdge()) {
|
||||
if (count < max_control_inputs) {
|
||||
control_inputs[count] = ToNode(edge->src());
|
||||
control_inputs[count] = ToOperation(edge->src());
|
||||
}
|
||||
++count;
|
||||
}
|
||||
@ -1034,9 +1043,9 @@ int TF_NodeGetControlInputs(TF_Node* node, TF_Node** control_inputs,
|
||||
return count;
|
||||
}
|
||||
|
||||
int TF_NodeNumControlOutputs(TF_Node* node) {
|
||||
int TF_OperationNumControlOutputs(TF_Operation* oper) {
|
||||
int count = 0;
|
||||
for (const auto* edge : node->node.out_edges()) {
|
||||
for (const auto* edge : oper->node.out_edges()) {
|
||||
if (edge->IsControlEdge()) {
|
||||
++count;
|
||||
}
|
||||
@ -1044,13 +1053,14 @@ int TF_NodeNumControlOutputs(TF_Node* node) {
|
||||
return count;
|
||||
}
|
||||
|
||||
int TF_NodeGetControlOutputs(TF_Node* node, TF_Node** control_outputs,
|
||||
int TF_OperationGetControlOutputs(TF_Operation* oper,
|
||||
TF_Operation** control_outputs,
|
||||
int max_control_outputs) {
|
||||
int count = 0;
|
||||
for (const auto* edge : node->node.out_edges()) {
|
||||
for (const auto* edge : oper->node.out_edges()) {
|
||||
if (edge->IsControlEdge()) {
|
||||
if (count < max_control_outputs) {
|
||||
control_outputs[count] = ToNode(edge->dst());
|
||||
control_outputs[count] = ToOperation(edge->dst());
|
||||
}
|
||||
++count;
|
||||
}
|
||||
@ -1058,19 +1068,20 @@ int TF_NodeGetControlOutputs(TF_Node* node, TF_Node** control_outputs,
|
||||
return count;
|
||||
}
|
||||
|
||||
void TF_NodeGetAttrValueProto(TF_Node* node, const char* attr_name,
|
||||
TF_Buffer* output_attr_value, TF_Status* status) {
|
||||
void TF_OperationGetAttrValueProto(TF_Operation* oper, const char* attr_name,
|
||||
TF_Buffer* output_attr_value,
|
||||
TF_Status* status) {
|
||||
if (output_attr_value->data != nullptr) {
|
||||
status->status = tensorflow::errors::InvalidArgument(
|
||||
"Passing non-empty output_attr_value is invalid.");
|
||||
return;
|
||||
}
|
||||
|
||||
const auto& attr_map = node->node.def().attr();
|
||||
const auto& attr_map = oper->node.def().attr();
|
||||
auto iter = attr_map.find(attr_name);
|
||||
if (iter == attr_map.end()) {
|
||||
status->status = tensorflow::errors::InvalidArgument(
|
||||
"Node has no attr named '", attr_name, "'.");
|
||||
"Operation has no attr named '", attr_name, "'.");
|
||||
return;
|
||||
}
|
||||
|
||||
@ -1086,7 +1097,7 @@ void TF_NodeGetAttrValueProto(TF_Node* node, const char* attr_name,
|
||||
status->status = Status::OK();
|
||||
}
|
||||
|
||||
void TF_NodeToNodeDef(TF_Node* node, TF_Buffer* output_node_def,
|
||||
void TF_OperationToNodeDef(TF_Operation* oper, TF_Buffer* output_node_def,
|
||||
TF_Status* status) {
|
||||
if (output_node_def->data != nullptr) {
|
||||
status->status = tensorflow::errors::InvalidArgument(
|
||||
@ -1094,7 +1105,7 @@ void TF_NodeToNodeDef(TF_Node* node, TF_Buffer* output_node_def,
|
||||
return;
|
||||
}
|
||||
|
||||
const NodeDef& def = node->node.def();
|
||||
const NodeDef& def = oper->node.def();
|
||||
const auto proto_size = def.ByteSize();
|
||||
void* str_buf = malloc(proto_size);
|
||||
def.SerializeToArray(str_buf, proto_size);
|
||||
@ -1118,17 +1129,17 @@ void TF_DeleteGraph(TF_Graph* g) {
|
||||
if (del) delete g;
|
||||
}
|
||||
|
||||
TF_Node* TF_GraphNodeByName(TF_Graph* graph, const char* node_name) {
|
||||
TF_Operation* TF_GraphOperationByName(TF_Graph* graph, const char* oper_name) {
|
||||
mutex_lock l(graph->mu);
|
||||
auto iter = graph->name_map.find(node_name);
|
||||
auto iter = graph->name_map.find(oper_name);
|
||||
if (iter == graph->name_map.end()) {
|
||||
return nullptr;
|
||||
} else {
|
||||
return ToNode(iter->second);
|
||||
return ToOperation(iter->second);
|
||||
}
|
||||
}
|
||||
|
||||
TF_Node* TF_GraphNextNode(TF_Graph* graph, size_t* pos) {
|
||||
TF_Operation* TF_GraphNextOperation(TF_Graph* graph, size_t* pos) {
|
||||
if (*pos == 0) {
|
||||
// Advance past the first sentinal nodes in every graph (the source & sink).
|
||||
*pos += 2;
|
||||
@ -1143,7 +1154,7 @@ TF_Node* TF_GraphNextNode(TF_Graph* graph, size_t* pos) {
|
||||
// FindNodeId() returns nullptr for nodes that have been deleted.
|
||||
// We aren't currently allowing nodes to be deleted, but it is safer
|
||||
// to still check.
|
||||
if (node != nullptr) return reinterpret_cast<TF_Node*>(node);
|
||||
if (node != nullptr) return ToOperation(node);
|
||||
*pos += 1;
|
||||
}
|
||||
|
||||
@ -1257,7 +1268,7 @@ void TF_SessionRun(TF_SessionWithGraph* session, const TF_Buffer* run_options,
|
||||
const TF_Port* inputs, TF_Tensor* const* input_values,
|
||||
int ninputs, const TF_Port* outputs,
|
||||
TF_Tensor** output_values, int noutputs,
|
||||
const TF_Node* const* target_nodes, int ntargets,
|
||||
const TF_Operation* const* target_opers, int ntargets,
|
||||
TF_Buffer* run_metadata, TF_Status* status) {
|
||||
// TODO(josh11b,mrry): Change Session to be able to use a Graph*
|
||||
// directly, instead of requiring us to serialize to a GraphDef and
|
||||
@ -1284,10 +1295,10 @@ void TF_SessionRun(TF_SessionWithGraph* session, const TF_Buffer* run_options,
|
||||
output_names[i] = PortName(outputs[i]);
|
||||
}
|
||||
|
||||
// Convert from TF_Node* to string names.
|
||||
// Convert from TF_Operation* to string names.
|
||||
std::vector<tensorflow::string> target_names(ntargets);
|
||||
for (int i = 0; i < ntargets; ++i) {
|
||||
target_names[i] = target_nodes[i]->node.name();
|
||||
target_names[i] = target_opers[i]->node.name();
|
||||
}
|
||||
|
||||
// Actually run.
|
||||
@ -1298,7 +1309,7 @@ void TF_SessionRun(TF_SessionWithGraph* session, const TF_Buffer* run_options,
|
||||
|
||||
void TF_SessionPRunSetup(TF_SessionWithGraph* session, const TF_Port* inputs,
|
||||
int ninputs, const TF_Port* outputs, int noutputs,
|
||||
const TF_Node* const* target_nodes, int ntargets,
|
||||
const TF_Operation* const* target_opers, int ntargets,
|
||||
const char** handle, TF_Status* status) {
|
||||
if (!ExtendSessionGraphHelper(session, status)) {
|
||||
return;
|
||||
@ -1316,7 +1327,7 @@ void TF_SessionPRunSetup(TF_SessionWithGraph* session, const TF_Port* inputs,
|
||||
|
||||
std::vector<tensorflow::string> target_names(ntargets);
|
||||
for (int i = 0; i < ntargets; ++i) {
|
||||
target_names[i] = target_nodes[i]->node.name();
|
||||
target_names[i] = target_opers[i]->node.name();
|
||||
}
|
||||
|
||||
tensorflow::string new_handle;
|
||||
@ -1333,7 +1344,7 @@ void TF_SessionPRun(TF_SessionWithGraph* session, const char* handle,
|
||||
const TF_Port* inputs, TF_Tensor* const* input_values,
|
||||
int ninputs, const TF_Port* outputs,
|
||||
TF_Tensor** output_values, int noutputs,
|
||||
const TF_Node* const* target_nodes, int ntargets,
|
||||
const TF_Operation* const* target_opers, int ntargets,
|
||||
TF_Status* status) {
|
||||
// TODO(josh11b,mrry): Change Session to be able to use a Graph*
|
||||
// directly, instead of requiring us to serialize to a GraphDef and
|
||||
@ -1360,10 +1371,10 @@ void TF_SessionPRun(TF_SessionWithGraph* session, const char* handle,
|
||||
output_names[i] = PortName(outputs[i]);
|
||||
}
|
||||
|
||||
// Convert from TF_Node* to string names.
|
||||
// Convert from TF_Operation* to string names.
|
||||
std::vector<tensorflow::string> target_names(ntargets);
|
||||
for (int i = 0; i < ntargets; ++i) {
|
||||
target_names[i] = target_nodes[i]->node.name();
|
||||
target_names[i] = target_opers[i]->node.name();
|
||||
}
|
||||
|
||||
TF_Run_Helper(session->session, handle, nullptr, input_pairs, output_names,
|
||||
|
@ -247,29 +247,31 @@ extern TF_Graph* TF_NewGraph();
|
||||
// TFSessionWithGraph's are referencing it.
|
||||
extern void TF_DeleteGraph(TF_Graph*);
|
||||
|
||||
// Node being built. The underlying graph must outlive this.
|
||||
typedef struct TF_NodeDescription TF_NodeDescription;
|
||||
// Operation being built. The underlying graph must outlive this.
|
||||
typedef struct TF_OperationDescription TF_OperationDescription;
|
||||
|
||||
// Node that has been added to the graph. Valid until the graph is
|
||||
// deleted -- in particular adding a new node to the graph does not
|
||||
// invalidate old TF_Node* pointers.
|
||||
typedef struct TF_Node TF_Node;
|
||||
// Operation that has been added to the graph. Valid until the graph is
|
||||
// deleted -- in particular adding a new operation to the graph does not
|
||||
// invalidate old TF_Operation* pointers.
|
||||
typedef struct TF_Operation TF_Operation;
|
||||
|
||||
// Represents a specific input or output of a node, e.g. to specify the
|
||||
// specific output to pass as an input to an op.
|
||||
// Represents a specific input or output of an operation, e.g. to
|
||||
// specify the specific output to pass as an input to a new op.
|
||||
typedef struct TF_Port {
|
||||
TF_Node* node;
|
||||
int index; // Specifies the index of the input or output within node.
|
||||
TF_Operation* oper;
|
||||
int index; // Specifies the index of the input or output within oper.
|
||||
} TF_Port;
|
||||
|
||||
// Node will only be added to *graph when TF_FinishNode() is called
|
||||
// (assuming TF_FinishNode() does not return an error). *graph must
|
||||
// not be deleted until after TF_FinishNode() is called.
|
||||
extern TF_NodeDescription* TF_NewNode(TF_Graph* graph, const char* op_type,
|
||||
const char* node_name);
|
||||
// Operation will only be added to *graph when TF_FinishOperation() is
|
||||
// called (assuming TF_FinishOperation() does not return an error).
|
||||
// *graph must not be deleted until after TF_FinishOperation() is
|
||||
// called.
|
||||
extern TF_OperationDescription* TF_NewOperation(TF_Graph* graph,
|
||||
const char* op_type,
|
||||
const char* oper_name);
|
||||
|
||||
// Specify the device for `desc`. Defaults to empty, meaning unconstrained.
|
||||
extern void TF_SetDevice(TF_NodeDescription* desc, const char* device);
|
||||
extern void TF_SetDevice(TF_OperationDescription* desc, const char* device);
|
||||
|
||||
// The calls to TF_AddInput and TF_AddInputList must match (in number,
|
||||
// order, and type) the op declaration. For example, the "Concat" op
|
||||
@ -285,74 +287,82 @@ extern void TF_SetDevice(TF_NodeDescription* desc, const char* device);
|
||||
// single tensor), and TF_AddInputList() for the second input (since
|
||||
// it takes a list, even if you were to pass a list with a single
|
||||
// tensor), as in:
|
||||
// TF_NodeDescription* desc = TF_NewNode(graph, "Concat", "c");
|
||||
// TF_OperationDescription* desc = TF_NewOperation(graph, "Concat", "c");
|
||||
// TF_Port concat_dim_input = {...};
|
||||
// TF_AddInput(desc, concat_dim_input);
|
||||
// TF_Port values_inputs[5] = {{...}, ..., {...}};
|
||||
// TF_AddInputList(desc, 5, values_inputs);
|
||||
|
||||
// For inputs that take a single tensor.
|
||||
extern void TF_AddInput(TF_NodeDescription* desc, TF_Port input);
|
||||
extern void TF_AddInput(TF_OperationDescription* desc, TF_Port input);
|
||||
|
||||
// For inputs that take a list of tensors.
|
||||
// inputs must point to TF_Port[num_inputs].
|
||||
extern void TF_AddInputList(TF_NodeDescription* desc, const TF_Port* inputs,
|
||||
int num_inputs);
|
||||
extern void TF_AddInputList(TF_OperationDescription* desc,
|
||||
const TF_Port* inputs, int num_inputs);
|
||||
|
||||
// Call once per control input to `desc`.
|
||||
extern void TF_AddControlInput(TF_NodeDescription* desc, TF_Node* input);
|
||||
extern void TF_AddControlInput(TF_OperationDescription* desc,
|
||||
TF_Operation* input);
|
||||
|
||||
// Call some TF_SetAttr*() function for every attr that is not
|
||||
// inferred from an input and doesn't have a default value you wish to
|
||||
// keep.
|
||||
|
||||
// `value` must point to a string of length `length` bytes.
|
||||
extern void TF_SetAttrString(TF_NodeDescription* desc, const char* attr_name,
|
||||
const void* value, int length);
|
||||
extern void TF_SetAttrString(TF_OperationDescription* desc,
|
||||
const char* attr_name, const void* value,
|
||||
int length);
|
||||
// `values` and `lengths` both must have lengths `num_values`.
|
||||
// `values[i]` must point to a string of length `lengths[i]` bytes.
|
||||
extern void TF_SetAttrStringList(TF_NodeDescription* desc,
|
||||
extern void TF_SetAttrStringList(TF_OperationDescription* desc,
|
||||
const char* attr_name,
|
||||
const void* const* values, const int* lengths,
|
||||
int num_values);
|
||||
extern void TF_SetAttrInt(TF_NodeDescription* desc, const char* attr_name,
|
||||
extern void TF_SetAttrInt(TF_OperationDescription* desc, const char* attr_name,
|
||||
int64_t value);
|
||||
extern void TF_SetAttrIntList(TF_NodeDescription* desc, const char* attr_name,
|
||||
const int64_t* values, int num_values);
|
||||
extern void TF_SetAttrFloat(TF_NodeDescription* desc, const char* attr_name,
|
||||
float value);
|
||||
extern void TF_SetAttrFloatList(TF_NodeDescription* desc, const char* attr_name,
|
||||
const float* values, int num_values);
|
||||
extern void TF_SetAttrBool(TF_NodeDescription* desc, const char* attr_name,
|
||||
extern void TF_SetAttrIntList(TF_OperationDescription* desc,
|
||||
const char* attr_name, const int64_t* values,
|
||||
int num_values);
|
||||
extern void TF_SetAttrFloat(TF_OperationDescription* desc,
|
||||
const char* attr_name, float value);
|
||||
extern void TF_SetAttrFloatList(TF_OperationDescription* desc,
|
||||
const char* attr_name, const float* values,
|
||||
int num_values);
|
||||
extern void TF_SetAttrBool(TF_OperationDescription* desc, const char* attr_name,
|
||||
unsigned char value);
|
||||
extern void TF_SetAttrBoolList(TF_NodeDescription* desc, const char* attr_name,
|
||||
extern void TF_SetAttrBoolList(TF_OperationDescription* desc,
|
||||
const char* attr_name,
|
||||
const unsigned char* values, int num_values);
|
||||
extern void TF_SetAttrType(TF_NodeDescription* desc, const char* attr_name,
|
||||
extern void TF_SetAttrType(TF_OperationDescription* desc, const char* attr_name,
|
||||
TF_DataType value);
|
||||
extern void TF_SetAttrTypeList(TF_NodeDescription* desc, const char* attr_name,
|
||||
const TF_DataType* values, int num_values);
|
||||
extern void TF_SetAttrTypeList(TF_OperationDescription* desc,
|
||||
const char* attr_name, const TF_DataType* values,
|
||||
int num_values);
|
||||
|
||||
// Set `num_dims` to -1 to represent "unknown rank". Otherwise,
|
||||
// `dims` points to an array of length `num_dims`. `dims[i]` must be
|
||||
// >= -1, with -1 meaning "unknown dimension".
|
||||
extern void TF_SetAttrShape(TF_NodeDescription* desc, const char* attr_name,
|
||||
const int64_t* dims, int num_dims);
|
||||
extern void TF_SetAttrShape(TF_OperationDescription* desc,
|
||||
const char* attr_name, const int64_t* dims,
|
||||
int num_dims);
|
||||
// `dims` and `num_dims` must point to arrays of length `num_shapes`.
|
||||
// Set `num_dims[i]` to -1 to represent "unknown rank". Otherwise,
|
||||
// `dims[i]` points to an array of length `num_dims[i]`. `dims[i][j]`
|
||||
// must be >= -1, with -1 meaning "unknown dimension".
|
||||
extern void TF_SetAttrShapeList(TF_NodeDescription* desc, const char* attr_name,
|
||||
extern void TF_SetAttrShapeList(TF_OperationDescription* desc,
|
||||
const char* attr_name,
|
||||
const int64_t* const* dims, const int* num_dims,
|
||||
int num_shapes);
|
||||
// `proto` must point to an array of `proto_len` bytes representing a
|
||||
// binary-serialized TensorShapeProto.
|
||||
extern void TF_SetAttrTensorShapeProto(TF_NodeDescription* desc,
|
||||
extern void TF_SetAttrTensorShapeProto(TF_OperationDescription* desc,
|
||||
const char* attr_name, void* proto,
|
||||
int proto_len, TF_Status* status);
|
||||
// `protos` and `proto_lens` must point to arrays of length `num_shapes`.
|
||||
// `protos[i]` must point to an array of `proto_lens[i]` bytes
|
||||
// representing a binary-serialized TensorShapeProto.
|
||||
extern void TF_SetAttrTensorShapeProtoList(TF_NodeDescription* desc,
|
||||
extern void TF_SetAttrTensorShapeProtoList(TF_OperationDescription* desc,
|
||||
const char* attr_name,
|
||||
const void* const* protos,
|
||||
const int* proto_lens,
|
||||
@ -360,11 +370,12 @@ extern void TF_SetAttrTensorShapeProtoList(TF_NodeDescription* desc,
|
||||
|
||||
// This functions takes ownership of *value (the
|
||||
// implementation will eventually call TF_DeleteTensor).
|
||||
extern void TF_SetAttrTensor(TF_NodeDescription* desc, const char* attr_name,
|
||||
TF_Tensor* value, TF_Status* status);
|
||||
extern void TF_SetAttrTensor(TF_OperationDescription* desc,
|
||||
const char* attr_name, TF_Tensor* value,
|
||||
TF_Status* status);
|
||||
// This functions takes ownership of values[0]..values[num_values-1] (the
|
||||
// implementation will eventually call TF_DeleteTensor on each).
|
||||
extern void TF_SetAttrTensorList(TF_NodeDescription* desc,
|
||||
extern void TF_SetAttrTensorList(TF_OperationDescription* desc,
|
||||
const char* attr_name,
|
||||
TF_Tensor* const* values, int num_values,
|
||||
TF_Status* status);
|
||||
@ -372,100 +383,108 @@ extern void TF_SetAttrTensorList(TF_NodeDescription* desc,
|
||||
// `proto` should point to a sequence of bytes of length `proto_len`
|
||||
// representing a binary serialization of an AttrValue protocol
|
||||
// buffer.
|
||||
extern void TF_SetAttrToAttrValueProto(TF_NodeDescription* desc,
|
||||
extern void TF_SetAttrToAttrValueProto(TF_OperationDescription* desc,
|
||||
const char* attr_name, const void* proto,
|
||||
size_t proto_len, TF_Status* status);
|
||||
|
||||
// If this function succeeds:
|
||||
// * *status is set to an OK value,
|
||||
// * a TF_Node is added to the graph,
|
||||
// * a non-null value pointing to the added node is returned --
|
||||
// * a TF_Operation is added to the graph,
|
||||
// * a non-null value pointing to the added operation is returned --
|
||||
// this value is valid until the underlying graph is deleted.
|
||||
// Otherwise:
|
||||
// * *status is set to a non-OK value,
|
||||
// * the graph is not modified,
|
||||
// * a null value is returned.
|
||||
// In either case, it deletes `desc`.
|
||||
extern TF_Node* TF_FinishNode(TF_NodeDescription* desc, TF_Status* status);
|
||||
|
||||
// TF_Node functions. Nodes are immutable once created, so these are all
|
||||
// query functions.
|
||||
|
||||
extern const char* TF_NodeName(TF_Node* node);
|
||||
extern const char* TF_NodeOpType(TF_Node* node);
|
||||
extern const char* TF_NodeDevice(TF_Node* node);
|
||||
|
||||
extern int TF_NodeNumOutputs(TF_Node* node);
|
||||
extern TF_DataType TF_NodeOutputType(TF_Port node_out);
|
||||
extern int TF_NodeOutputListLength(TF_Node* node, const char* arg_name,
|
||||
extern TF_Operation* TF_FinishOperation(TF_OperationDescription* desc,
|
||||
TF_Status* status);
|
||||
|
||||
extern int TF_NodeNumInputs(TF_Node* node);
|
||||
extern TF_DataType TF_NodeInputType(TF_Port node_in);
|
||||
extern int TF_NodeInputListLength(TF_Node* node, const char* arg_name,
|
||||
// TF_Operation functions. Operations are immutable once created, so
|
||||
// these are all query functions.
|
||||
|
||||
extern const char* TF_OperationName(TF_Operation* oper);
|
||||
extern const char* TF_OperationOpType(TF_Operation* oper);
|
||||
extern const char* TF_OperationDevice(TF_Operation* oper);
|
||||
|
||||
extern int TF_OperationNumOutputs(TF_Operation* oper);
|
||||
extern TF_DataType TF_OperationOutputType(TF_Port oper_out);
|
||||
extern int TF_OperationOutputListLength(TF_Operation* oper,
|
||||
const char* arg_name,
|
||||
TF_Status* status);
|
||||
|
||||
extern int TF_OperationNumInputs(TF_Operation* oper);
|
||||
extern TF_DataType TF_OperationInputType(TF_Port oper_in);
|
||||
extern int TF_OperationInputListLength(TF_Operation* oper, const char* arg_name,
|
||||
TF_Status* status);
|
||||
|
||||
// In this code:
|
||||
// TF_Port producer = TF_NodeInput(consumer);
|
||||
// There is an edge from producer.node's output (given by
|
||||
// producer.index) to consumer.node's input (given by consumer.index).
|
||||
extern TF_Port TF_NodeInput(TF_Port node_in);
|
||||
// TF_Port producer = TF_OperationInput(consumer);
|
||||
// There is an edge from producer.oper's output (given by
|
||||
// producer.index) to consumer.oper's input (given by consumer.index).
|
||||
extern TF_Port TF_OperationInput(TF_Port oper_in);
|
||||
|
||||
// Get the number of current consumers of a node's output. Note that
|
||||
// this number can change when new nodes are added to the graph.
|
||||
extern int TF_NodeOutputNumConsumers(TF_Port node_out);
|
||||
// Get the number of current consumers of a specific output of an
|
||||
// operation. Note that this number can change when new operations
|
||||
// are added to the graph.
|
||||
extern int TF_OperationOutputNumConsumers(TF_Port oper_out);
|
||||
|
||||
// Get list of all current consumers of a node's output. consumers
|
||||
// must point to an array of length at least max_consumers (ideally
|
||||
// set to TF_NodeOutputNumConsumer(node_out)). Beware that a
|
||||
// concurrent modification of the graph can increase the number of
|
||||
// consumers of a node. Returns the number of output consumers
|
||||
// (should match TF_NodeOutputNumConsumers(node_out)).
|
||||
extern int TF_NodeOutputConsumers(TF_Port node_out, TF_Port* consumers,
|
||||
// Get list of all current consumers of a specific output of an
|
||||
// operation. `consumers` must point to an array of length at least
|
||||
// `max_consumers` (ideally set to
|
||||
// TF_OperationOutputNumConsumers(oper_out)). Beware that a concurrent
|
||||
// modification of the graph can increase the number of consumers of
|
||||
// an operation. Returns the number of output consumers (should match
|
||||
// TF_OperationOutputNumConsumers(oper_out)).
|
||||
extern int TF_OperationOutputConsumers(TF_Port oper_out, TF_Port* consumers,
|
||||
int max_consumers);
|
||||
|
||||
// Get the number of control inputs to a node.
|
||||
extern int TF_NodeNumControlInputs(TF_Node* node);
|
||||
// Get the number of control inputs to an operation.
|
||||
extern int TF_OperationNumControlInputs(TF_Operation* oper);
|
||||
|
||||
// Get list of all control inputs to a node. control_inputs must
|
||||
// point to an array of length max_control_inputs (ideally set to
|
||||
// TF_NodeNumControlInputs(node)). Returns the number of control
|
||||
// inputs (should match TF_NodeNumControlInputs(node)).
|
||||
extern int TF_NodeGetControlInputs(TF_Node* node, TF_Node** control_inputs,
|
||||
// Get list of all control inputs to an operation. `control_inputs` must
|
||||
// point to an array of length `max_control_inputs` (ideally set to
|
||||
// TF_OperationNumControlInputs(oper)). Returns the number of control
|
||||
// inputs (should match TF_OperationNumControlInputs(oper)).
|
||||
extern int TF_OperationGetControlInputs(TF_Operation* oper,
|
||||
TF_Operation** control_inputs,
|
||||
int max_control_inputs);
|
||||
|
||||
// Get the number of nodes that have *node as a control inputs.
|
||||
// Note that this number can change when new nodes are added to the
|
||||
// graph.
|
||||
extern int TF_NodeNumControlOutputs(TF_Node* node);
|
||||
// Get the number of operations that have `*oper` as a control input.
|
||||
// Note that this number can change when new operations are added to
|
||||
// the graph.
|
||||
extern int TF_OperationNumControlOutputs(TF_Operation* oper);
|
||||
|
||||
// Get the list of nodes that have *node as a control input.
|
||||
// control_outputs must point to an array of length at least
|
||||
// max_control_outputs (ideally set to
|
||||
// TF_NodeNumControlOutputs(node)). Beware that a concurrent
|
||||
// Get the list of operations that have `*oper` as a control input.
|
||||
// `control_outputs` must point to an array of length at least
|
||||
// `max_control_outputs` (ideally set to
|
||||
// TF_OperationNumControlOutputs(oper)). Beware that a concurrent
|
||||
// modification of the graph can increase the number of control
|
||||
// outputs. Returns the number of control outputs (should match
|
||||
// TF_NodeNumControlOutputs(node)).
|
||||
extern int TF_NodeGetControlOutputs(TF_Node* node, TF_Node** control_outputs,
|
||||
// TF_OperationNumControlOutputs(oper)).
|
||||
extern int TF_OperationGetControlOutputs(TF_Operation* oper,
|
||||
TF_Operation** control_outputs,
|
||||
int max_control_outputs);
|
||||
|
||||
// Sets `output_attr_value` to the binary-serialized AttrValue proto
|
||||
// representation of the value of the `attr_name` attr of `node`.
|
||||
extern void TF_NodeGetAttrValueProto(TF_Node* node, const char* attr_name,
|
||||
// representation of the value of the `attr_name` attr of `oper`.
|
||||
extern void TF_OperationGetAttrValueProto(TF_Operation* oper,
|
||||
const char* attr_name,
|
||||
TF_Buffer* output_attr_value,
|
||||
TF_Status* status);
|
||||
|
||||
// Returns the node in the graph with `node_name`. Returns nullptr if
|
||||
// no node found.
|
||||
extern TF_Node* TF_GraphNodeByName(TF_Graph* graph, const char* node_name);
|
||||
// Returns the operation in the graph with `oper_name`. Returns nullptr if
|
||||
// no operation found.
|
||||
extern TF_Operation* TF_GraphOperationByName(TF_Graph* graph,
|
||||
const char* oper_name);
|
||||
|
||||
// Iterate through the nodes of a graph. To use:
|
||||
// Iterate through the operations of a graph. To use:
|
||||
// size_t pos = 0;
|
||||
// TF_Node* node;
|
||||
// while ((node = TF_GraphNextNode(graph, &pos)) != nullptr) {
|
||||
// DoSomethingWithNode(node);
|
||||
// TF_Operation* oper;
|
||||
// while ((oper = TF_GraphNextOperation(graph, &pos)) != nullptr) {
|
||||
// DoSomethingWithOperation(oper);
|
||||
// }
|
||||
extern TF_Node* TF_GraphNextNode(TF_Graph* graph, size_t* pos);
|
||||
extern TF_Operation* TF_GraphNextOperation(TF_Graph* graph, size_t* pos);
|
||||
|
||||
// Note: The following two functions may fail on very large protos in the
|
||||
// future.
|
||||
@ -473,18 +492,19 @@ extern TF_Node* TF_GraphNextNode(TF_Graph* graph, size_t* pos);
|
||||
extern void TF_GraphToGraphDef(TF_Graph* graph, TF_Buffer* output_graph_def,
|
||||
TF_Status* status);
|
||||
|
||||
extern void TF_NodeToNodeDef(TF_Node* node, TF_Buffer* output_node_def,
|
||||
extern void TF_OperationToNodeDef(TF_Operation* oper,
|
||||
TF_Buffer* output_node_def,
|
||||
TF_Status* status);
|
||||
|
||||
// TODO(josh11b): Query attrs for a Node.
|
||||
// TODO(josh11b): Query attrs for an operation.
|
||||
|
||||
// TODO(cwhipkey): Query shape for node outputs.
|
||||
// TODO(cwhipkey): Query shape for operation outputs.
|
||||
|
||||
// TODO(josh11b,mrry): Import GraphDef into TF_Graph.
|
||||
|
||||
// TODO(andydavis): Function to add gradients to a graph.
|
||||
|
||||
// TODO(josh11b): Register OpDef, available to all nodes added
|
||||
// TODO(josh11b): Register OpDef, available to all operations added
|
||||
// to this graph.
|
||||
|
||||
// The following two may both benefit from a subgraph-definition API
|
||||
@ -530,8 +550,8 @@ extern void TF_SessionRun(TF_SessionWithGraph* session,
|
||||
// Output tensors
|
||||
const TF_Port* outputs, TF_Tensor** output_values,
|
||||
int noutputs,
|
||||
// Target nodes
|
||||
const TF_Node* const* target_nodes, int ntargets,
|
||||
// Target operations
|
||||
const TF_Operation* const* target_opers, int ntargets,
|
||||
// RunMetadata
|
||||
TF_Buffer* run_metadata,
|
||||
// Output status
|
||||
@ -543,8 +563,8 @@ extern void TF_SessionPRunSetup(TF_SessionWithGraph*,
|
||||
const TF_Port* inputs, int ninputs,
|
||||
// Output names
|
||||
const TF_Port* outputs, int noutputs,
|
||||
// Target nodes
|
||||
const TF_Node* const* target_nodes,
|
||||
// Target operations
|
||||
const TF_Operation* const* target_opers,
|
||||
int ntargets,
|
||||
// Output handle
|
||||
const char** handle,
|
||||
@ -559,8 +579,9 @@ extern void TF_SessionPRun(TF_SessionWithGraph*, const char* handle,
|
||||
// Output tensors
|
||||
const TF_Port* outputs, TF_Tensor** output_values,
|
||||
int noutputs,
|
||||
// Target nodes
|
||||
const TF_Node* const* target_nodes, int ntargets,
|
||||
// Target operations
|
||||
const TF_Operation* const* target_opers,
|
||||
int ntargets,
|
||||
// Output status
|
||||
TF_Status*);
|
||||
|
||||
@ -622,10 +643,9 @@ extern void TF_Run(TF_Session*,
|
||||
// Input tensors
|
||||
const char** input_names, TF_Tensor** inputs, int ninputs,
|
||||
// Output tensors
|
||||
const char** output_tensor_names, TF_Tensor** outputs,
|
||||
int noutputs,
|
||||
// Target nodes
|
||||
const char** target_node_names, int ntargets,
|
||||
const char** output_names, TF_Tensor** outputs, int noutputs,
|
||||
// Target operations
|
||||
const char** target_oper_names, int ntargets,
|
||||
// RunMetadata
|
||||
TF_Buffer* run_metadata,
|
||||
// Output status
|
||||
@ -643,9 +663,9 @@ extern void TF_PRunSetup(TF_Session*,
|
||||
// Input names
|
||||
const char** input_names, int ninputs,
|
||||
// Output names
|
||||
const char** output_tensor_names, int noutputs,
|
||||
// Target nodes
|
||||
const char** target_node_names, int ntargets,
|
||||
const char** output_names, int noutputs,
|
||||
// Target operations
|
||||
const char** target_oper_names, int ntargets,
|
||||
// Output handle
|
||||
const char** handle,
|
||||
// Output status
|
||||
@ -658,10 +678,10 @@ extern void TF_PRun(TF_Session*, const char* handle,
|
||||
// Input tensors
|
||||
const char** input_names, TF_Tensor** inputs, int ninputs,
|
||||
// Output tensors
|
||||
const char** output_tensor_names, TF_Tensor** outputs,
|
||||
const char** output_names, TF_Tensor** outputs,
|
||||
int noutputs,
|
||||
// Target nodes
|
||||
const char** target_node_names, int ntargets,
|
||||
// Target operations
|
||||
const char** target_oper_names, int ntargets,
|
||||
// Output status
|
||||
TF_Status*);
|
||||
|
||||
|
@ -202,32 +202,33 @@ static TF_Tensor* Int32Tensor(int32 v) {
|
||||
&Int32Deallocator, nullptr);
|
||||
}
|
||||
|
||||
TF_Node* Placeholder(TF_Graph* graph, TF_Status* s) {
|
||||
TF_NodeDescription* desc = TF_NewNode(graph, "Placeholder", "feed");
|
||||
TF_Operation* Placeholder(TF_Graph* graph, TF_Status* s) {
|
||||
TF_OperationDescription* desc = TF_NewOperation(graph, "Placeholder", "feed");
|
||||
TF_SetAttrType(desc, "dtype", TF_INT32);
|
||||
return TF_FinishNode(desc, s);
|
||||
return TF_FinishOperation(desc, s);
|
||||
}
|
||||
|
||||
TF_Node* ScalarConst(int32 v, TF_Graph* graph, TF_Status* s) {
|
||||
TF_NodeDescription* desc = TF_NewNode(graph, "Const", "scalar");
|
||||
TF_Operation* ScalarConst(int32 v, TF_Graph* graph, TF_Status* s) {
|
||||
TF_OperationDescription* desc = TF_NewOperation(graph, "Const", "scalar");
|
||||
TF_SetAttrTensor(desc, "value", Int32Tensor(v), s);
|
||||
if (TF_GetCode(s) != TF_OK) return nullptr;
|
||||
TF_SetAttrType(desc, "dtype", TF_INT32);
|
||||
return TF_FinishNode(desc, s);
|
||||
return TF_FinishOperation(desc, s);
|
||||
}
|
||||
|
||||
TF_Node* Add(TF_Node* l, TF_Node* r, TF_Graph* graph, TF_Status* s) {
|
||||
TF_NodeDescription* desc = TF_NewNode(graph, "AddN", "add");
|
||||
TF_Operation* Add(TF_Operation* l, TF_Operation* r, TF_Graph* graph,
|
||||
TF_Status* s) {
|
||||
TF_OperationDescription* desc = TF_NewOperation(graph, "AddN", "add");
|
||||
TF_Port add_inputs[2] = {{l, 0}, {r, 0}};
|
||||
TF_AddInputList(desc, add_inputs, 2);
|
||||
return TF_FinishNode(desc, s);
|
||||
return TF_FinishOperation(desc, s);
|
||||
}
|
||||
|
||||
TF_Node* Neg(TF_Node* n, TF_Graph* graph, TF_Status* s) {
|
||||
TF_NodeDescription* desc = TF_NewNode(graph, "Neg", "neg");
|
||||
TF_Operation* Neg(TF_Operation* n, TF_Graph* graph, TF_Status* s) {
|
||||
TF_OperationDescription* desc = TF_NewOperation(graph, "Neg", "neg");
|
||||
TF_Port neg_input = {n, 0};
|
||||
TF_AddInput(desc, neg_input);
|
||||
return TF_FinishNode(desc, s);
|
||||
return TF_FinishOperation(desc, s);
|
||||
}
|
||||
|
||||
bool IsPlaceholder(const NodeDef& node_def) {
|
||||
@ -318,10 +319,10 @@ bool GetGraphDef(TF_Graph* graph, GraphDef* graph_def) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool GetNodeDef(TF_Node* node, NodeDef* node_def) {
|
||||
bool GetNodeDef(TF_Operation* oper, NodeDef* node_def) {
|
||||
TF_Status* s = TF_NewStatus();
|
||||
TF_Buffer* buffer = TF_NewBuffer();
|
||||
TF_NodeToNodeDef(node, buffer, s);
|
||||
TF_OperationToNodeDef(oper, buffer, s);
|
||||
bool ret = TF_GetCode(s) == TF_OK;
|
||||
EXPECT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
if (ret) ret = node_def->ParseFromArray(buffer->data, buffer->length);
|
||||
@ -330,10 +331,10 @@ bool GetNodeDef(TF_Node* node, NodeDef* node_def) {
|
||||
return ret;
|
||||
}
|
||||
|
||||
bool GetAttrValue(TF_Node* node, const char* attr_name,
|
||||
bool GetAttrValue(TF_Operation* oper, const char* attr_name,
|
||||
tensorflow::AttrValue* attr_value, TF_Status* s) {
|
||||
TF_Buffer* buffer = TF_NewBuffer();
|
||||
TF_NodeGetAttrValueProto(node, attr_name, buffer, s);
|
||||
TF_OperationGetAttrValueProto(oper, attr_name, buffer, s);
|
||||
bool ret = TF_GetCode(s) == TF_OK;
|
||||
if (ret) ret = attr_value->ParseFromArray(buffer->data, buffer->length);
|
||||
TF_DeleteBuffer(buffer);
|
||||
@ -344,82 +345,83 @@ TEST(CAPI, Graph) {
|
||||
TF_Status* s = TF_NewStatus();
|
||||
TF_Graph* graph = TF_NewGraph();
|
||||
|
||||
// Make a placeholder node.
|
||||
TF_Node* feed = Placeholder(graph, s);
|
||||
// Make a placeholder oper.
|
||||
TF_Operation* feed = Placeholder(graph, s);
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
|
||||
// Test TF_Node*() query functions.
|
||||
EXPECT_EQ(string("feed"), string(TF_NodeName(feed)));
|
||||
EXPECT_EQ(string("Placeholder"), string(TF_NodeOpType(feed)));
|
||||
EXPECT_EQ(string(""), string(TF_NodeDevice(feed)));
|
||||
EXPECT_EQ(1, TF_NodeNumOutputs(feed));
|
||||
EXPECT_EQ(TF_INT32, TF_NodeOutputType(TF_Port{feed, 0}));
|
||||
EXPECT_EQ(1, TF_NodeOutputListLength(feed, "output", s));
|
||||
// Test TF_Operation*() query functions.
|
||||
EXPECT_EQ(string("feed"), string(TF_OperationName(feed)));
|
||||
EXPECT_EQ(string("Placeholder"), string(TF_OperationOpType(feed)));
|
||||
EXPECT_EQ(string(""), string(TF_OperationDevice(feed)));
|
||||
EXPECT_EQ(1, TF_OperationNumOutputs(feed));
|
||||
EXPECT_EQ(TF_INT32, TF_OperationOutputType(TF_Port{feed, 0}));
|
||||
EXPECT_EQ(1, TF_OperationOutputListLength(feed, "output", s));
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
EXPECT_EQ(0, TF_NodeNumInputs(feed));
|
||||
EXPECT_EQ(0, TF_NodeOutputNumConsumers(TF_Port{feed, 0}));
|
||||
EXPECT_EQ(0, TF_NodeNumControlInputs(feed));
|
||||
EXPECT_EQ(0, TF_NodeNumControlOutputs(feed));
|
||||
EXPECT_EQ(0, TF_OperationNumInputs(feed));
|
||||
EXPECT_EQ(0, TF_OperationOutputNumConsumers(TF_Port{feed, 0}));
|
||||
EXPECT_EQ(0, TF_OperationNumControlInputs(feed));
|
||||
EXPECT_EQ(0, TF_OperationNumControlOutputs(feed));
|
||||
|
||||
tensorflow::AttrValue attr_value;
|
||||
ASSERT_TRUE(GetAttrValue(feed, "dtype", &attr_value, s)) << TF_Message(s);
|
||||
EXPECT_EQ(attr_value.type(), tensorflow::DT_INT32);
|
||||
|
||||
// Test not found errors in TF_Node*() query functions.
|
||||
EXPECT_EQ(-1, TF_NodeOutputListLength(feed, "bogus", s));
|
||||
// Test not found errors in TF_Operation*() query functions.
|
||||
EXPECT_EQ(-1, TF_OperationOutputListLength(feed, "bogus", s));
|
||||
EXPECT_EQ(TF_INVALID_ARGUMENT, TF_GetCode(s));
|
||||
|
||||
ASSERT_FALSE(GetAttrValue(feed, "missing", &attr_value, s));
|
||||
EXPECT_EQ(string("Node has no attr named 'missing'."), string(TF_Message(s)));
|
||||
EXPECT_EQ(string("Operation has no attr named 'missing'."),
|
||||
string(TF_Message(s)));
|
||||
|
||||
// Make a constant node with the scalar "3".
|
||||
TF_Node* three = ScalarConst(3, graph, s);
|
||||
// Make a constant oper with the scalar "3".
|
||||
TF_Operation* three = ScalarConst(3, graph, s);
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
|
||||
// Add node.
|
||||
TF_Node* add = Add(feed, three, graph, s);
|
||||
// Add oper.
|
||||
TF_Operation* add = Add(feed, three, graph, s);
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
|
||||
// Test TF_Node*() query functions.
|
||||
EXPECT_EQ(string("add"), string(TF_NodeName(add)));
|
||||
EXPECT_EQ(string("AddN"), string(TF_NodeOpType(add)));
|
||||
EXPECT_EQ(string(""), string(TF_NodeDevice(add)));
|
||||
EXPECT_EQ(1, TF_NodeNumOutputs(add));
|
||||
EXPECT_EQ(TF_INT32, TF_NodeOutputType(TF_Port{add, 0}));
|
||||
EXPECT_EQ(1, TF_NodeOutputListLength(add, "sum", s));
|
||||
// Test TF_Operation*() query functions.
|
||||
EXPECT_EQ(string("add"), string(TF_OperationName(add)));
|
||||
EXPECT_EQ(string("AddN"), string(TF_OperationOpType(add)));
|
||||
EXPECT_EQ(string(""), string(TF_OperationDevice(add)));
|
||||
EXPECT_EQ(1, TF_OperationNumOutputs(add));
|
||||
EXPECT_EQ(TF_INT32, TF_OperationOutputType(TF_Port{add, 0}));
|
||||
EXPECT_EQ(1, TF_OperationOutputListLength(add, "sum", s));
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
EXPECT_EQ(2, TF_NodeNumInputs(add));
|
||||
EXPECT_EQ(2, TF_NodeInputListLength(add, "inputs", s));
|
||||
EXPECT_EQ(2, TF_OperationNumInputs(add));
|
||||
EXPECT_EQ(2, TF_OperationInputListLength(add, "inputs", s));
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
EXPECT_EQ(TF_INT32, TF_NodeInputType(TF_Port{add, 0}));
|
||||
EXPECT_EQ(TF_INT32, TF_NodeInputType(TF_Port{add, 1}));
|
||||
TF_Port add_in_0 = TF_NodeInput(TF_Port{add, 0});
|
||||
EXPECT_EQ(feed, add_in_0.node);
|
||||
EXPECT_EQ(TF_INT32, TF_OperationInputType(TF_Port{add, 0}));
|
||||
EXPECT_EQ(TF_INT32, TF_OperationInputType(TF_Port{add, 1}));
|
||||
TF_Port add_in_0 = TF_OperationInput(TF_Port{add, 0});
|
||||
EXPECT_EQ(feed, add_in_0.oper);
|
||||
EXPECT_EQ(0, add_in_0.index);
|
||||
TF_Port add_in_1 = TF_NodeInput(TF_Port{add, 1});
|
||||
EXPECT_EQ(three, add_in_1.node);
|
||||
TF_Port add_in_1 = TF_OperationInput(TF_Port{add, 1});
|
||||
EXPECT_EQ(three, add_in_1.oper);
|
||||
EXPECT_EQ(0, add_in_1.index);
|
||||
EXPECT_EQ(0, TF_NodeOutputNumConsumers(TF_Port{add, 0}));
|
||||
EXPECT_EQ(0, TF_NodeNumControlInputs(add));
|
||||
EXPECT_EQ(0, TF_NodeNumControlOutputs(add));
|
||||
EXPECT_EQ(0, TF_OperationOutputNumConsumers(TF_Port{add, 0}));
|
||||
EXPECT_EQ(0, TF_OperationNumControlInputs(add));
|
||||
EXPECT_EQ(0, TF_OperationNumControlOutputs(add));
|
||||
|
||||
ASSERT_TRUE(GetAttrValue(add, "T", &attr_value, s)) << TF_Message(s);
|
||||
EXPECT_EQ(attr_value.type(), tensorflow::DT_INT32);
|
||||
ASSERT_TRUE(GetAttrValue(add, "N", &attr_value, s)) << TF_Message(s);
|
||||
EXPECT_EQ(attr_value.i(), 2);
|
||||
|
||||
// Placeholder node now has a consumer.
|
||||
ASSERT_EQ(1, TF_NodeOutputNumConsumers(TF_Port{feed, 0}));
|
||||
// Placeholder oper now has a consumer.
|
||||
ASSERT_EQ(1, TF_OperationOutputNumConsumers(TF_Port{feed, 0}));
|
||||
TF_Port feed_port;
|
||||
EXPECT_EQ(1, TF_NodeOutputConsumers(TF_Port{feed, 0}, &feed_port, 1));
|
||||
EXPECT_EQ(add, feed_port.node);
|
||||
EXPECT_EQ(1, TF_OperationOutputConsumers(TF_Port{feed, 0}, &feed_port, 1));
|
||||
EXPECT_EQ(add, feed_port.oper);
|
||||
EXPECT_EQ(0, feed_port.index);
|
||||
|
||||
// The scalar const node also has a consumer.
|
||||
ASSERT_EQ(1, TF_NodeOutputNumConsumers(TF_Port{three, 0}));
|
||||
// The scalar const oper also has a consumer.
|
||||
ASSERT_EQ(1, TF_OperationOutputNumConsumers(TF_Port{three, 0}));
|
||||
TF_Port three_port;
|
||||
EXPECT_EQ(1, TF_NodeOutputConsumers(TF_Port{three, 0}, &three_port, 1));
|
||||
EXPECT_EQ(add, three_port.node);
|
||||
EXPECT_EQ(1, TF_OperationOutputConsumers(TF_Port{three, 0}, &three_port, 1));
|
||||
EXPECT_EQ(add, three_port.oper);
|
||||
EXPECT_EQ(1, three_port.index);
|
||||
|
||||
// Serialize to GraphDef.
|
||||
@ -448,8 +450,8 @@ TEST(CAPI, Graph) {
|
||||
EXPECT_TRUE(found_scalar_const);
|
||||
EXPECT_TRUE(found_add);
|
||||
|
||||
// Add another node to the graph.
|
||||
TF_Node* neg = Neg(add, graph, s);
|
||||
// Add another oper to the graph.
|
||||
TF_Operation* neg = Neg(add, graph, s);
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
|
||||
// Serialize to NodeDef.
|
||||
@ -469,13 +471,13 @@ TEST(CAPI, Graph) {
|
||||
EXPECT_EQ(ProtoDebugString(graph_def), ProtoDebugString(graph_def2));
|
||||
|
||||
// Look up some nodes by name.
|
||||
TF_Node* neg2 = TF_GraphNodeByName(graph, "neg");
|
||||
TF_Operation* neg2 = TF_GraphOperationByName(graph, "neg");
|
||||
EXPECT_TRUE(neg == neg2);
|
||||
NodeDef node_def2;
|
||||
ASSERT_TRUE(GetNodeDef(neg2, &node_def2));
|
||||
EXPECT_EQ(ProtoDebugString(node_def), ProtoDebugString(node_def2));
|
||||
|
||||
TF_Node* feed2 = TF_GraphNodeByName(graph, "feed");
|
||||
TF_Operation* feed2 = TF_GraphOperationByName(graph, "feed");
|
||||
EXPECT_TRUE(feed == feed2);
|
||||
ASSERT_TRUE(GetNodeDef(feed, &node_def));
|
||||
ASSERT_TRUE(GetNodeDef(feed2, &node_def2));
|
||||
@ -487,22 +489,22 @@ TEST(CAPI, Graph) {
|
||||
found_add = false;
|
||||
bool found_neg = false;
|
||||
size_t pos = 0;
|
||||
TF_Node* node;
|
||||
while ((node = TF_GraphNextNode(graph, &pos)) != nullptr) {
|
||||
if (node == feed) {
|
||||
TF_Operation* oper;
|
||||
while ((oper = TF_GraphNextOperation(graph, &pos)) != nullptr) {
|
||||
if (oper == feed) {
|
||||
EXPECT_FALSE(found_placeholder);
|
||||
found_placeholder = true;
|
||||
} else if (node == three) {
|
||||
} else if (oper == three) {
|
||||
EXPECT_FALSE(found_scalar_const);
|
||||
found_scalar_const = true;
|
||||
} else if (node == add) {
|
||||
} else if (oper == add) {
|
||||
EXPECT_FALSE(found_add);
|
||||
found_add = true;
|
||||
} else if (node == neg) {
|
||||
} else if (oper == neg) {
|
||||
EXPECT_FALSE(found_neg);
|
||||
found_neg = true;
|
||||
} else {
|
||||
ASSERT_TRUE(GetNodeDef(node, &node_def));
|
||||
ASSERT_TRUE(GetNodeDef(oper, &node_def));
|
||||
ADD_FAILURE() << "Unexpected Node: " << ProtoDebugString(node_def);
|
||||
}
|
||||
}
|
||||
@ -532,7 +534,7 @@ class CSessionWithGraph {
|
||||
}
|
||||
|
||||
void SetInputs(
|
||||
std::initializer_list<std::pair<TF_Node*, TF_Tensor*>> inputs) {
|
||||
std::initializer_list<std::pair<TF_Operation*, TF_Tensor*>> inputs) {
|
||||
DeleteInputValues();
|
||||
inputs_.clear();
|
||||
for (const auto& p : inputs) {
|
||||
@ -541,17 +543,17 @@ class CSessionWithGraph {
|
||||
}
|
||||
}
|
||||
|
||||
void SetOutputs(std::initializer_list<TF_Node*> outputs) {
|
||||
void SetOutputs(std::initializer_list<TF_Operation*> outputs) {
|
||||
ResetOutputValues();
|
||||
outputs_.clear();
|
||||
for (TF_Node* o : outputs) {
|
||||
for (TF_Operation* o : outputs) {
|
||||
outputs_.emplace_back(TF_Port{o, 0});
|
||||
}
|
||||
}
|
||||
|
||||
void SetTargets(std::initializer_list<TF_Node*> targets) {
|
||||
void SetTargets(std::initializer_list<TF_Operation*> targets) {
|
||||
targets_.clear();
|
||||
for (TF_Node* t : targets) {
|
||||
for (TF_Operation* t : targets) {
|
||||
targets_.emplace_back(t);
|
||||
}
|
||||
}
|
||||
@ -572,7 +574,8 @@ class CSessionWithGraph {
|
||||
TF_Tensor** output_values_ptr =
|
||||
output_values_.empty() ? nullptr : &output_values_[0];
|
||||
|
||||
TF_Node* const* targets_ptr = targets_.empty() ? nullptr : &targets_[0];
|
||||
TF_Operation* const* targets_ptr =
|
||||
targets_.empty() ? nullptr : &targets_[0];
|
||||
|
||||
TF_SessionRun(session_, nullptr, inputs_ptr, input_values_ptr,
|
||||
inputs_.size(), outputs_ptr, output_values_ptr,
|
||||
@ -615,23 +618,23 @@ class CSessionWithGraph {
|
||||
std::vector<TF_Tensor*> input_values_;
|
||||
std::vector<TF_Port> outputs_;
|
||||
std::vector<TF_Tensor*> output_values_;
|
||||
std::vector<TF_Node*> targets_;
|
||||
std::vector<TF_Operation*> targets_;
|
||||
};
|
||||
|
||||
TEST(CAPI, SessionWithGraph) {
|
||||
TF_Status* s = TF_NewStatus();
|
||||
TF_Graph* graph = TF_NewGraph();
|
||||
|
||||
// Make a placeholder node.
|
||||
TF_Node* feed = Placeholder(graph, s);
|
||||
// Make a placeholder operation.
|
||||
TF_Operation* feed = Placeholder(graph, s);
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
|
||||
// Make a constant node with the scalar "2".
|
||||
TF_Node* two = ScalarConst(2, graph, s);
|
||||
// Make a constant operation with the scalar "2".
|
||||
TF_Operation* two = ScalarConst(2, graph, s);
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
|
||||
// Add node.
|
||||
TF_Node* add = Add(feed, two, graph, s);
|
||||
// Add operation.
|
||||
TF_Operation* add = Add(feed, two, graph, s);
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
|
||||
// Create a session for this graph.
|
||||
@ -652,11 +655,11 @@ TEST(CAPI, SessionWithGraph) {
|
||||
static_cast<tensorflow::int32*>(TF_TensorData(out));
|
||||
EXPECT_EQ(3 + 2, *output_contents);
|
||||
|
||||
// Add another node to the graph.
|
||||
TF_Node* neg = Neg(add, graph, s);
|
||||
// Add another operation to the graph.
|
||||
TF_Operation* neg = Neg(add, graph, s);
|
||||
ASSERT_EQ(TF_OK, TF_GetCode(s)) << TF_Message(s);
|
||||
|
||||
// Run up to the new node.
|
||||
// Run up to the new operation.
|
||||
csession.SetInputs({{feed, Int32Tensor(7)}});
|
||||
csession.SetOutputs({neg});
|
||||
csession.Run(s);
|
||||
|
@ -243,4 +243,4 @@ try:
|
||||
plot_with_labels(low_dim_embs, labels)
|
||||
|
||||
except ImportError:
|
||||
print("Please install sklearn and matplotlib to visualize embeddings.")
|
||||
print("Please install sklearn, matplotlib, and scipy to visualize embeddings.")
|
||||
|
@ -248,7 +248,7 @@ class Word2Vec(object):
|
||||
true_logits = tf.reduce_sum(tf.mul(example_emb, true_w), 1) + true_b
|
||||
|
||||
# Sampled logits: [batch_size, num_sampled]
|
||||
# We replicate sampled noise lables for all examples in the batch
|
||||
# We replicate sampled noise labels for all examples in the batch
|
||||
# using the matmul.
|
||||
sampled_b_vec = tf.reshape(sampled_b, [opts.num_samples])
|
||||
sampled_logits = tf.matmul(example_emb,
|
||||
|
@ -1 +1 @@
|
||||
23
|
||||
25
|
||||
|
@ -29,6 +29,7 @@ import imghdr
|
||||
import json
|
||||
import mimetypes
|
||||
import os
|
||||
import re
|
||||
|
||||
from six import BytesIO
|
||||
from six.moves import BaseHTTPServer
|
||||
@ -65,6 +66,11 @@ _IMGHDR_TO_MIMETYPE = {
|
||||
}
|
||||
_DEFAULT_IMAGE_MIMETYPE = 'application/octet-stream'
|
||||
|
||||
# Allows *, gzip or x-gzip, but forbid gzip;q=0
|
||||
# https://tools.ietf.org/html/rfc7231#section-5.3.4
|
||||
_ALLOWS_GZIP_PATTERN = re.compile(
|
||||
r'(?:^|,|\s)(?:(?:x-)?gzip|\*)(?!;q=0)(?:\s|,|$)')
|
||||
|
||||
|
||||
def _content_type_for_image(encoded_image_string):
|
||||
image_type = imghdr.what(None, encoded_image_string)
|
||||
@ -91,6 +97,10 @@ class TensorboardHandler(BaseHTTPServer.BaseHTTPRequestHandler):
|
||||
# How many samples to include in sampling API calls by default.
|
||||
DEFAULT_SAMPLE_COUNT = 10
|
||||
|
||||
# NOTE TO MAINTAINERS: An accurate Content-Length MUST be specified on all
|
||||
# responses using send_header.
|
||||
protocol_version = 'HTTP/1.1'
|
||||
|
||||
def __init__(self, multiplexer, *args):
|
||||
self._multiplexer = multiplexer
|
||||
BaseHTTPServer.BaseHTTPRequestHandler.__init__(self, *args)
|
||||
@ -162,25 +172,54 @@ class TensorboardHandler(BaseHTTPServer.BaseHTTPRequestHandler):
|
||||
prefix = os.path.commonprefix([base, absolute_path])
|
||||
return prefix == base
|
||||
|
||||
def _respond(self, content, content_type, code=200, encoding=None):
|
||||
"""Sends HTTP response.
|
||||
|
||||
All text responses are assumed to be utf-8 unless specified otherwise.
|
||||
|
||||
Args:
|
||||
content: The content to respond with, which is converted to bytes.
|
||||
content_type: The mime type of the content.
|
||||
code: The numeric HTTP status code to use.
|
||||
encoding: The encoding if any (not sanity checked.)
|
||||
"""
|
||||
content = compat.as_bytes(content)
|
||||
self.send_response(code)
|
||||
if content_type.startswith(('text/', 'application/json')):
|
||||
if 'charset=' not in content_type:
|
||||
content_type += '; charset=utf-8'
|
||||
self.send_header('Content-Type', content_type)
|
||||
self.send_header('Content-Length', len(content))
|
||||
if encoding:
|
||||
self.send_header('Content-Encoding', encoding)
|
||||
self.end_headers()
|
||||
self.wfile.write(content)
|
||||
|
||||
def _is_gzip_accepted(self):
|
||||
"""Returns true if Accept-Encoding contains gzip."""
|
||||
accept_encoding = self.headers.get('Accept-Encoding', '')
|
||||
return _ALLOWS_GZIP_PATTERN.search(accept_encoding) is not None
|
||||
|
||||
def _send_gzip_response(self, content, content_type, code=200):
|
||||
"""Writes the given content as gzip response using the given content type.
|
||||
|
||||
If the HTTP client does not accept gzip encoding, then the response will be
|
||||
sent uncompressed.
|
||||
|
||||
Args:
|
||||
content: The content to respond with.
|
||||
content_type: The mime type of the content.
|
||||
code: The numeric HTTP status code to use.
|
||||
"""
|
||||
encoding = None
|
||||
if self._is_gzip_accepted():
|
||||
out = BytesIO()
|
||||
f = gzip.GzipFile(fileobj=out, mode='wb')
|
||||
f = gzip.GzipFile(fileobj=out, mode='wb', compresslevel=3)
|
||||
f.write(compat.as_bytes(content))
|
||||
f.close()
|
||||
gzip_content = out.getvalue()
|
||||
self.send_response(code)
|
||||
self.send_header('Content-Type', content_type)
|
||||
self.send_header('Content-Length', len(gzip_content))
|
||||
self.send_header('Content-Encoding', 'gzip')
|
||||
self.end_headers()
|
||||
self.wfile.write(gzip_content)
|
||||
content = out.getvalue()
|
||||
encoding = 'gzip'
|
||||
self._respond(content, content_type, code, encoding)
|
||||
|
||||
def _send_json_response(self, obj, code=200):
|
||||
"""Writes out the given object as JSON using the given HTTP status code.
|
||||
@ -191,14 +230,8 @@ class TensorboardHandler(BaseHTTPServer.BaseHTTPRequestHandler):
|
||||
obj: The object to respond with.
|
||||
code: The numeric HTTP status code to use.
|
||||
"""
|
||||
|
||||
output = json.dumps(json_util.WrapSpecialFloats(obj))
|
||||
|
||||
self.send_response(code)
|
||||
self.send_header('Content-Type', 'application/json')
|
||||
self.send_header('Content-Length', len(output))
|
||||
self.end_headers()
|
||||
self.wfile.write(compat.as_bytes(output))
|
||||
content = json.dumps(json_util.WrapSpecialFloats(obj))
|
||||
self._respond(content, 'application/json', code)
|
||||
|
||||
def _send_csv_response(self, serialized_csv, code=200):
|
||||
"""Writes out the given string, which represents CSV data.
|
||||
@ -210,12 +243,7 @@ class TensorboardHandler(BaseHTTPServer.BaseHTTPRequestHandler):
|
||||
serialized_csv: A string containing some CSV data.
|
||||
code: The numeric HTTP status code to use.
|
||||
"""
|
||||
|
||||
self.send_response(code)
|
||||
self.send_header('Content-Type', 'text/csv')
|
||||
self.send_header('Content-Length', len(serialized_csv))
|
||||
self.end_headers()
|
||||
self.wfile.write(serialized_csv)
|
||||
self._respond(serialized_csv, 'text/csv', code)
|
||||
|
||||
def _serve_scalars(self, query_params):
|
||||
"""Given a tag and single run, return array of ScalarEvents.
|
||||
@ -372,12 +400,7 @@ class TensorboardHandler(BaseHTTPServer.BaseHTTPRequestHandler):
|
||||
image = self._multiplexer.Images(run, tag)[index]
|
||||
encoded_image_string = image.encoded_image_string
|
||||
content_type = _content_type_for_image(encoded_image_string)
|
||||
|
||||
self.send_response(200)
|
||||
self.send_header('Content-Type', content_type)
|
||||
self.send_header('Content-Length', len(encoded_image_string))
|
||||
self.end_headers()
|
||||
self.wfile.write(encoded_image_string)
|
||||
self._respond(encoded_image_string, content_type)
|
||||
|
||||
def _query_for_individual_image(self, run, tag, index):
|
||||
"""Builds a URL for accessing the specified image.
|
||||
@ -429,12 +452,7 @@ class TensorboardHandler(BaseHTTPServer.BaseHTTPRequestHandler):
|
||||
audio = self._multiplexer.Audio(run, tag)[index]
|
||||
encoded_audio_string = audio.encoded_audio_string
|
||||
content_type = audio.content_type
|
||||
|
||||
self.send_response(200)
|
||||
self.send_header('Content-Type', content_type)
|
||||
self.send_header('Content-Length', len(encoded_audio_string))
|
||||
self.end_headers()
|
||||
self.wfile.write(encoded_audio_string)
|
||||
self._respond(encoded_audio_string, content_type)
|
||||
|
||||
def _query_for_individual_audio(self, run, tag, index):
|
||||
"""Builds a URL for accessing the specified audio.
|
||||
@ -523,13 +541,9 @@ class TensorboardHandler(BaseHTTPServer.BaseHTTPRequestHandler):
|
||||
logging.info('path %s not found, sending 404', path)
|
||||
self.send_error(404)
|
||||
return
|
||||
|
||||
self.send_response(200)
|
||||
|
||||
mimetype = mimetypes.guess_type(path)[0] or 'application/octet-stream'
|
||||
self.send_header('Content-Type', mimetype)
|
||||
self.end_headers()
|
||||
self.wfile.write(contents)
|
||||
mimetype, encoding = mimetypes.guess_type(path)
|
||||
mimetype = mimetype or 'application/octet-stream'
|
||||
self._respond(contents, mimetype, encoding=encoding)
|
||||
|
||||
def do_GET(self): # pylint: disable=invalid-name
|
||||
"""Handler for all get requests."""
|
||||
|
@ -41,7 +41,7 @@ TENSORBOARD_SIZE_GUIDANCE = {
|
||||
event_accumulator.IMAGES: 4,
|
||||
event_accumulator.AUDIO: 4,
|
||||
event_accumulator.SCALARS: 1000,
|
||||
event_accumulator.HISTOGRAMS: 1,
|
||||
event_accumulator.HISTOGRAMS: 50,
|
||||
}
|
||||
|
||||
|
||||
@ -80,11 +80,8 @@ def ParseEventFilesSpec(logdir):
|
||||
else:
|
||||
run_name = None
|
||||
path = specification
|
||||
|
||||
if not os.path.isabs(path) and not gcs.IsGCSPath(path):
|
||||
# Create absolute path out of relative one.
|
||||
path = os.path.join(os.path.realpath('.'), path)
|
||||
|
||||
if not gcs.IsGCSPath(path):
|
||||
path = os.path.realpath(os.path.expanduser(path))
|
||||
files[path] = run_name
|
||||
return files
|
||||
|
||||
|
@ -64,9 +64,9 @@ class TensorboardServerTest(tf.test.TestCase):
|
||||
self._server.shutdown()
|
||||
self._server.server_close()
|
||||
|
||||
def _get(self, path):
|
||||
def _get(self, path, headers={}):
|
||||
"""Perform a GET request for the given path."""
|
||||
self._connection.request('GET', path)
|
||||
self._connection.request('GET', path, None, headers)
|
||||
return self._connection.getresponse()
|
||||
|
||||
def _getJson(self, path):
|
||||
@ -76,18 +76,6 @@ class TensorboardServerTest(tf.test.TestCase):
|
||||
self.assertEqual(response.status, 200)
|
||||
return json.loads(response.read().decode('utf-8'))
|
||||
|
||||
def _decodeResponse(self, response):
|
||||
"""Decompresses (if necessary) the response from the server."""
|
||||
encoding = response.getheader('Content-Encoding')
|
||||
content = response.read()
|
||||
if encoding in ('gzip', 'x-gzip', 'deflate'):
|
||||
if encoding == 'deflate':
|
||||
data = BytesIO(zlib.decompress(content))
|
||||
else:
|
||||
data = gzip.GzipFile('', 'rb', 9, BytesIO(content))
|
||||
content = data.read()
|
||||
return content
|
||||
|
||||
def testBasicStartup(self):
|
||||
"""Start the server up and then shut it down immediately."""
|
||||
pass
|
||||
@ -180,8 +168,7 @@ class TensorboardServerTest(tf.test.TestCase):
|
||||
response = self._get('/data/graph?run=run1&limit_attr_size=1024'
|
||||
'&large_attrs_key=_very_large_attrs')
|
||||
self.assertEqual(response.status, 200)
|
||||
# Decompress (unzip) the response, since graphs come gzipped.
|
||||
graph_pbtxt = self._decodeResponse(response)
|
||||
graph_pbtxt = response.read()
|
||||
# Parse the graph from pbtxt into a graph message.
|
||||
graph = tf.GraphDef()
|
||||
graph = text_format.Parse(graph_pbtxt, graph)
|
||||
@ -194,12 +181,40 @@ class TensorboardServerTest(tf.test.TestCase):
|
||||
self.assertEqual(graph.node[1].attr['_very_large_attrs'].list.s,
|
||||
[b'very_large_attr'])
|
||||
|
||||
def testAcceptGzip_compressesResponse(self):
|
||||
response = self._get('/data/graph?run=run1&limit_attr_size=1024'
|
||||
'&large_attrs_key=_very_large_attrs',
|
||||
{'Accept-Encoding': 'gzip'})
|
||||
self.assertEqual(response.status, 200)
|
||||
self.assertEqual(response.getheader('Content-Encoding'), 'gzip')
|
||||
pbtxt = gzip.GzipFile('', 'rb', 9, BytesIO(response.read())).read()
|
||||
graph = text_format.Parse(pbtxt, tf.GraphDef())
|
||||
self.assertEqual(len(graph.node), 2)
|
||||
|
||||
def testAcceptAnyEncoding_compressesResponse(self):
|
||||
response = self._get('/data/graph?run=run1&limit_attr_size=1024'
|
||||
'&large_attrs_key=_very_large_attrs',
|
||||
{'Accept-Encoding': '*'})
|
||||
self.assertEqual(response.status, 200)
|
||||
self.assertEqual(response.getheader('Content-Encoding'), 'gzip')
|
||||
pbtxt = gzip.GzipFile('', 'rb', 9, BytesIO(response.read())).read()
|
||||
graph = text_format.Parse(pbtxt, tf.GraphDef())
|
||||
self.assertEqual(len(graph.node), 2)
|
||||
|
||||
def testAcceptDoodleEncoding_doesNotCompressResponse(self):
|
||||
response = self._get('/data/graph?run=run1&limit_attr_size=1024'
|
||||
'&large_attrs_key=_very_large_attrs',
|
||||
{'Accept-Encoding': 'doodle'})
|
||||
self.assertEqual(response.status, 200)
|
||||
self.assertIsNone(response.getheader('Content-Encoding'))
|
||||
graph = text_format.Parse(response.read(), tf.GraphDef())
|
||||
self.assertEqual(len(graph.node), 2)
|
||||
|
||||
def testRunMetadata(self):
|
||||
"""Test retrieving the run metadata information."""
|
||||
response = self._get('/data/run_metadata?run=run1&tag=test%20run')
|
||||
self.assertEqual(response.status, 200)
|
||||
# Decompress (unzip) the response, since run outputs come gzipped.
|
||||
run_metadata_pbtxt = self._decodeResponse(response)
|
||||
run_metadata_pbtxt = response.read()
|
||||
# Parse from pbtxt into a message.
|
||||
run_metadata = tf.RunMetadata()
|
||||
text_format.Parse(run_metadata_pbtxt, run_metadata)
|
||||
@ -283,11 +298,46 @@ class TensorboardServerTest(tf.test.TestCase):
|
||||
|
||||
class ParseEventFilesSpecTest(tf.test.TestCase):
|
||||
|
||||
def testRunName(self):
|
||||
logdir_string = 'lol:/cat'
|
||||
expected = {'/cat': 'lol'}
|
||||
self.assertEqual(server.ParseEventFilesSpec(logdir_string), expected)
|
||||
|
||||
def testPathWithColonThatComesAfterASlash_isNotConsideredARunName(self):
|
||||
logdir_string = '/lol:/cat'
|
||||
expected = {'/lol:/cat': None}
|
||||
self.assertEqual(server.ParseEventFilesSpec(logdir_string), expected)
|
||||
|
||||
def testMultipleDirectories(self):
|
||||
logdir_string = '/a,/b'
|
||||
expected = {'/a': None, '/b': None}
|
||||
self.assertEqual(server.ParseEventFilesSpec(logdir_string), expected)
|
||||
|
||||
def testNormalizesPaths(self):
|
||||
logdir_string = '/lol/.//cat/../cat'
|
||||
expected = {'/lol/cat': None}
|
||||
self.assertEqual(server.ParseEventFilesSpec(logdir_string), expected)
|
||||
|
||||
def testAbsolutifies(self):
|
||||
logdir_string = 'lol/cat'
|
||||
expected = {os.path.realpath('lol/cat'): None}
|
||||
self.assertEqual(server.ParseEventFilesSpec(logdir_string), expected)
|
||||
|
||||
def testRespectsGCSPath(self):
|
||||
logdir_string = 'gs://foo/path'
|
||||
expected = {'gs://foo/path': None}
|
||||
self.assertEqual(server.ParseEventFilesSpec(logdir_string), expected)
|
||||
|
||||
def testDoesNotExpandUserInGCSPath(self):
|
||||
logdir_string = 'gs://~/foo/path'
|
||||
expected = {'gs://~/foo/path': None}
|
||||
self.assertEqual(server.ParseEventFilesSpec(logdir_string), expected)
|
||||
|
||||
def testDoesNotNormalizeGCSPath(self):
|
||||
logdir_string = 'gs://foo/./path//..'
|
||||
expected = {'gs://foo/./path//..': None}
|
||||
self.assertEqual(server.ParseEventFilesSpec(logdir_string), expected)
|
||||
|
||||
|
||||
class TensorBoardAssetsTest(tf.test.TestCase):
|
||||
|
||||
|
@ -10,7 +10,6 @@
|
||||
"iron-flex-layout",
|
||||
"iron-form-element-behavior",
|
||||
"iron-icon",
|
||||
"iron-icons",
|
||||
"iron-iconset-svg",
|
||||
"iron-input",
|
||||
"iron-menu-behavior",
|
||||
@ -40,8 +39,8 @@
|
||||
"iron-a11y-announcer": "PolymerElements/iron-a11y-announcer#1.0.4",
|
||||
"iron-a11y-keys-behavior": "PolymerElements/iron-a11y-keys-behavior#1.1.2",
|
||||
"iron-ajax": "PolymerElements/iron-ajax#1.2.0",
|
||||
"iron-autogrow-textarea": "PolymerElements/iron-autogrow-textarea#1.0.11",
|
||||
"iron-behaviors": "PolymerElements/iron-behaviors#1.0.16",
|
||||
"iron-autogrow-textarea": "PolymerElements/iron-autogrow-textarea#1.0.12",
|
||||
"iron-behaviors": "PolymerElements/iron-behaviors#1.0.17",
|
||||
"iron-checked-element-behavior": "PolymerElements/iron-checked-element-behavior#1.0.4",
|
||||
"iron-collapse": "PolymerElements/iron-collapse#1.0.8",
|
||||
"iron-dropdown": "PolymerElements/iron-dropdown#1.4.0",
|
||||
@ -49,16 +48,15 @@
|
||||
"iron-flex-layout": "PolymerElements/iron-flex-layout#1.3.0",
|
||||
"iron-form-element-behavior": "PolymerElements/iron-form-element-behavior#1.0.6",
|
||||
"iron-icon": "PolymerElements/iron-icon#1.0.8",
|
||||
"iron-icons": "PolymerElements/iron-icons#1.1.3",
|
||||
"iron-iconset-svg": "PolymerElements/iron-iconset-svg#1.0.9",
|
||||
"iron-input": "PolymerElements/iron-input#1.0.7",
|
||||
"iron-input": "PolymerElements/iron-input#1.0.10",
|
||||
"iron-list": "PolymerElements/iron-list#1.1.7",
|
||||
"iron-menu-behavior": "PolymerElements/iron-menu-behavior#1.1.8",
|
||||
"iron-meta": "PolymerElements/iron-meta#1.1.1",
|
||||
"iron-overlay-behavior": "PolymerElements/iron-overlay-behavior#1.7.6",
|
||||
"iron-range-behavior": "PolymerElements/iron-range-behavior#1.0.4",
|
||||
"iron-resizable-behavior": "PolymerElements/iron-resizable-behavior#1.0.3",
|
||||
"iron-selector": "PolymerElements/iron-selector#1.2.4",
|
||||
"iron-selector": "PolymerElements/iron-selector#1.5.2",
|
||||
"iron-validatable-behavior": "PolymerElements/iron-validatable-behavior#1.1.1",
|
||||
"lodash": "3.8.0",
|
||||
"neon-animation": "PolymerElements/neon-animation#1.2.2",
|
||||
@ -67,14 +65,14 @@
|
||||
"paper-checkbox": "PolymerElements/paper-checkbox#1.1.3",
|
||||
"paper-dialog": "PolymerElements/paper-dialog#1.0.4",
|
||||
"paper-dialog-behavior": "PolymerElements/paper-dialog-behavior#1.2.5",
|
||||
"paper-dropdown-menu": "PolymerElements/paper-dropdown-menu#1.1.3",
|
||||
"paper-dropdown-menu": "PolymerElements/paper-dropdown-menu#1.3.2",
|
||||
"paper-header-panel": "PolymerElements/paper-header-panel#1.1.4",
|
||||
"paper-icon-button": "PolymerElements/paper-icon-button#1.1.1",
|
||||
"paper-input": "PolymerElements/paper-input#1.1.5",
|
||||
"paper-input": "PolymerElements/paper-input#1.1.14",
|
||||
"paper-item": "PolymerElements/paper-item#1.1.4",
|
||||
"paper-material": "PolymerElements/paper-material#1.0.6",
|
||||
"paper-menu": "PolymerElements/paper-menu#1.2.2",
|
||||
"paper-menu-button": "PolymerElements/paper-menu-button#1.2.0",
|
||||
"paper-menu-button": "PolymerElements/paper-menu-button#1.5.0",
|
||||
"paper-progress": "PolymerElements/paper-progress#1.0.9",
|
||||
"paper-radio-button": "PolymerElements/paper-radio-button#1.1.2",
|
||||
"paper-radio-group": "PolymerElements/paper-radio-group#1.0.9",
|
||||
@ -116,8 +114,8 @@
|
||||
"iron-a11y-announcer": "1.0.4",
|
||||
"iron-a11y-keys-behavior": "1.1.2",
|
||||
"iron-ajax": "1.2.0",
|
||||
"iron-autogrow-textarea": "1.0.11",
|
||||
"iron-behaviors": "1.0.16",
|
||||
"iron-autogrow-textarea": "1.0.12",
|
||||
"iron-behaviors": "1.0.17",
|
||||
"iron-checked-element-behavior": "1.0.4",
|
||||
"iron-collapse": "1.0.8",
|
||||
"iron-dropdown": "1.4.0",
|
||||
@ -127,14 +125,14 @@
|
||||
"iron-icon": "1.0.8",
|
||||
"iron-icons": "1.1.3",
|
||||
"iron-iconset-svg": "1.0.9",
|
||||
"iron-input": "1.0.7",
|
||||
"iron-input": "1.0.10",
|
||||
"iron-list": "1.1.7",
|
||||
"iron-menu-behavior": "1.1.8",
|
||||
"iron-meta": "1.1.1",
|
||||
"iron-overlay-behavior": "1.7.6",
|
||||
"iron-range-behavior": "1.0.4",
|
||||
"iron-resizable-behavior": "1.0.3",
|
||||
"iron-selector": "1.2.4",
|
||||
"iron-selector": "1.5.2",
|
||||
"iron-validatable-behavior": "1.1.1",
|
||||
"lodash": "3.8.0",
|
||||
"neon-animation": "1.2.2",
|
||||
@ -143,14 +141,14 @@
|
||||
"paper-checkbox": "1.1.3",
|
||||
"paper-dialog": "1.0.4",
|
||||
"paper-dialog-behavior": "1.2.5",
|
||||
"paper-dropdown-menu": "1.1.3",
|
||||
"paper-dropdown-menu": "1.3.2",
|
||||
"paper-header-panel": "1.1.4",
|
||||
"paper-icon-button": "1.1.1",
|
||||
"paper-input": "1.1.5",
|
||||
"paper-input": "1.1.14",
|
||||
"paper-item": "1.1.4",
|
||||
"paper-material": "1.0.6",
|
||||
"paper-menu": "1.2.2",
|
||||
"paper-menu-button": "1.2.0",
|
||||
"paper-menu-button": "1.5.0",
|
||||
"paper-progress": "1.0.9",
|
||||
"paper-radio-button": "1.1.2",
|
||||
"paper-radio-group": "1.0.9",
|
||||
|
@ -22,7 +22,6 @@ filegroup(
|
||||
"@iron_flex_layout//:iron_flex_layout",
|
||||
"@iron_form_element_behavior//:iron_form_element_behavior",
|
||||
"@iron_icon//:iron_icon",
|
||||
"@iron_icons//:iron_icons",
|
||||
"@iron_iconset_svg//:iron_iconset_svg",
|
||||
"@iron_input//:iron_input",
|
||||
"@iron_list//:iron_list",
|
||||
|
@ -7,7 +7,10 @@ exports_files(["LICENSE"])
|
||||
filegroup(
|
||||
name = "all_files",
|
||||
srcs = glob(
|
||||
["tf-*/**/*", "vz-*/**/*"],
|
||||
[
|
||||
"tf-*/**/*",
|
||||
"vz-*/**/*",
|
||||
],
|
||||
exclude = [
|
||||
"**/tf_model_zoo/*",
|
||||
"**/METADATA",
|
||||
|
@ -182,11 +182,16 @@ module TF.Backend {
|
||||
let url = this.router.histograms(tag, run);
|
||||
p = this.requestManager.request(url);
|
||||
return p.then(map(detupler(createHistogram))).then(function(histos) {
|
||||
// Get the minimum and maximum values across all histograms so that the
|
||||
// visualization is aligned for all timesteps.
|
||||
let min = d3.min(histos, d => d.min);
|
||||
let max = d3.max(histos, d => d.max);
|
||||
|
||||
return histos.map(function(histo, i) {
|
||||
return {
|
||||
wall_time: histo.wall_time,
|
||||
step: histo.step,
|
||||
bins: convertBins(histo)
|
||||
bins: convertBins(histo, min, max)
|
||||
};
|
||||
});
|
||||
});
|
||||
@ -254,11 +259,65 @@ module TF.Backend {
|
||||
}
|
||||
|
||||
/** Given a RunToTag, return sorted array of all runs */
|
||||
export function getRuns(r: RunToTag): string[] { return _.keys(r).sort(); }
|
||||
export function getRuns(r: RunToTag): string[] {
|
||||
return _.keys(r).sort(compareTagNames);
|
||||
}
|
||||
|
||||
/** Given a RunToTag, return array of all tags (sorted + dedup'd) */
|
||||
export function getTags(r: RunToTag): string[] {
|
||||
return _.union.apply(null, _.values(r)).sort();
|
||||
return _.union.apply(null, _.values(r)).sort(compareTagNames);
|
||||
}
|
||||
|
||||
/** Compares tag names asciinumerically broken into components. */
|
||||
export function compareTagNames(a, b: string): number {
|
||||
let ai = 0;
|
||||
let bi = 0;
|
||||
while (true) {
|
||||
if (ai === a.length) return bi === b.length ? 0 : -1;
|
||||
if (bi === b.length) return 1;
|
||||
if (isDigit(a[ai]) && isDigit(b[bi])) {
|
||||
let ais = ai;
|
||||
let bis = bi;
|
||||
ai = consumeNumber(a, ai + 1);
|
||||
bi = consumeNumber(b, bi + 1);
|
||||
let an = parseFloat(a.slice(ais, ai));
|
||||
let bn = parseFloat(b.slice(bis, bi));
|
||||
if (an < bn) return -1;
|
||||
if (an > bn) return 1;
|
||||
continue;
|
||||
}
|
||||
if (isBreak(a[ai])) {
|
||||
if (!isBreak(b[bi])) return -1;
|
||||
} else if (isBreak(b[bi])) {
|
||||
return 1;
|
||||
} else if (a[ai] < b[bi]) {
|
||||
return -1;
|
||||
} else if (a[ai] > b[bi]) {
|
||||
return 1;
|
||||
}
|
||||
ai++;
|
||||
bi++;
|
||||
}
|
||||
}
|
||||
|
||||
function consumeNumber(s: string, i: number): number {
|
||||
let decimal = false;
|
||||
for (; i < s.length; i++) {
|
||||
if (isDigit(s[i])) continue;
|
||||
if (!decimal && s[i] === '.') {
|
||||
decimal = true;
|
||||
continue;
|
||||
}
|
||||
break;
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
function isDigit(c: string): boolean { return '0' <= c && c <= '9'; }
|
||||
|
||||
function isBreak(c: string): boolean {
|
||||
// TODO(jart): Remove underscore when people stop using it like a slash.
|
||||
return c === '/' || c === '_' || isDigit(c);
|
||||
}
|
||||
|
||||
/**
|
||||
@ -313,34 +372,59 @@ module TF.Backend {
|
||||
* Takes histogram data as stored by tensorboard backend and converts it to
|
||||
* the standard d3 histogram data format to make it more compatible and easier
|
||||
* to visualize. When visualizing histograms, having the left edge and width
|
||||
* makes things quite a bit easier.
|
||||
* makes things quite a bit easier. The bins are also converted to have an
|
||||
* uniform width, what makes the visualization easier to understand.
|
||||
*
|
||||
* @param histogram A histogram from tensorboard backend.
|
||||
* @param min The leftmost edge. The binning will start on it.
|
||||
* @param max The rightmost edge. The binning will end on it.
|
||||
* @param numBins The number of bins of the converted data. The default of 30
|
||||
* is a sensible default, using more starts to get artifacts because the event
|
||||
* data is stored in buckets, and you start being able to see the aliased
|
||||
* borders between each bucket.
|
||||
* @return A histogram bin. Each bin has an x (left edge), a dx (width),
|
||||
* and a y (count).
|
||||
*
|
||||
* If given rightedges are inclusive, then these left edges (x) are exclusive.
|
||||
*/
|
||||
export function convertBins(histogram: Histogram) {
|
||||
export function convertBins(
|
||||
histogram: Histogram, min: number, max: number, numBins = 30) {
|
||||
if (histogram.bucketRightEdges.length !== histogram.bucketCounts.length) {
|
||||
throw(new Error('Edges and counts are of different lengths.'));
|
||||
}
|
||||
|
||||
var previousRightEdge = histogram.min;
|
||||
return histogram.bucketRightEdges.map(function(
|
||||
rightEdge: number, i: number) {
|
||||
let binWidth = (max - min) / numBins;
|
||||
let bucketLeft = min; // Use the min as the starting point for the bins.
|
||||
let bucketPos = 0;
|
||||
return d3.range(min, max, binWidth).map(function(binLeft) {
|
||||
let binRight = binLeft + binWidth;
|
||||
|
||||
// Use the previous bin's rightEdge as the new leftEdge
|
||||
var left = previousRightEdge;
|
||||
// Take the count of each existing bucket, multiply it by the proportion
|
||||
// of overlap with the new bin, then sum and store as the count for the
|
||||
// new bin. If no overlap, will add to zero, if 100% overlap, will include
|
||||
// the full count into new bin.
|
||||
let binY = 0;
|
||||
while (bucketPos < histogram.bucketRightEdges.length) {
|
||||
// Clip the right edge because right-most edge can be infinite-sized.
|
||||
let bucketRight = Math.min(max, histogram.bucketRightEdges[bucketPos]);
|
||||
|
||||
// We need to clip the rightEdge because right-most edge can be
|
||||
// infinite-sized
|
||||
var right = Math.min(histogram.max, rightEdge);
|
||||
let intersect =
|
||||
Math.min(bucketRight, binRight) - Math.max(bucketLeft, binLeft);
|
||||
let count = (intersect / (bucketRight - bucketLeft)) *
|
||||
histogram.bucketCounts[bucketPos];
|
||||
|
||||
// Store rightEdgeValue for next iteration
|
||||
previousRightEdge = rightEdge;
|
||||
binY += intersect > 0 ? count : 0;
|
||||
|
||||
return {x: left, dx: right - left, y: histogram.bucketCounts[i]};
|
||||
// If bucketRight is bigger than binRight, than this bin is finished and
|
||||
// there is data for the next bin, so don't increment bucketPos.
|
||||
if (bucketRight > binRight) {
|
||||
break;
|
||||
}
|
||||
bucketLeft = Math.max(min, bucketRight);
|
||||
bucketPos++;
|
||||
};
|
||||
|
||||
return {x: binLeft, dx: binWidth, y: binY};
|
||||
});
|
||||
}
|
||||
|
||||
|
@ -191,13 +191,16 @@ module TF.Backend {
|
||||
it('Throws and error if the inputs are of different lengths', function() {
|
||||
assert.throws(function() {
|
||||
convertBins(
|
||||
{bucketRightEdges: [0], bucketCounts: [1, 2], min: 1, max: 2});
|
||||
{bucketRightEdges: [0], bucketCounts: [1, 2], min: 1, max: 2}, 1, 2,
|
||||
2);
|
||||
}, 'Edges and counts are of different lengths.');
|
||||
});
|
||||
|
||||
it('Handles data with no bins', function() {
|
||||
assert.deepEqual(
|
||||
convertBins({bucketRightEdges: [], bucketCounts: [], min: 0, max: 0}),
|
||||
convertBins(
|
||||
{bucketRightEdges: [], bucketCounts: [], min: 0, max: 0}, 0, 0,
|
||||
0),
|
||||
[]);
|
||||
});
|
||||
|
||||
@ -205,12 +208,14 @@ module TF.Backend {
|
||||
let counts = [1];
|
||||
let rightEdges = [1.21e-12];
|
||||
let histogram = [{x: 1.1e-12, dx: 1.21e-12 - 1.1e-12, y: 1}];
|
||||
let newHistogram = convertBins({
|
||||
let newHistogram = convertBins(
|
||||
{
|
||||
bucketRightEdges: rightEdges,
|
||||
bucketCounts: counts,
|
||||
min: 1.1e-12,
|
||||
max: 1.21e-12
|
||||
});
|
||||
},
|
||||
1.1e-12, 1.21e-12, 1);
|
||||
assertHistogramEquality(newHistogram, histogram);
|
||||
});
|
||||
|
||||
@ -218,15 +223,17 @@ module TF.Backend {
|
||||
let counts = [1, 2];
|
||||
let rightEdges = [1.1e-12, 1.21e-12];
|
||||
let histogram = [
|
||||
{x: 1.0e-12, dx: 1.1e-12 - 1.0e-12, y: 1},
|
||||
{x: 1.1e-12, dx: 1.21e-12 - 1.1e-12, y: 2}
|
||||
{x: 1.0e-12, dx: 1.05e-13, y: 1.09090909090909},
|
||||
{x: 1.105e-12, dx: 1.05e-13, y: 1.9090909090909}
|
||||
];
|
||||
let newHistogram = convertBins({
|
||||
let newHistogram = convertBins(
|
||||
{
|
||||
bucketRightEdges: rightEdges,
|
||||
bucketCounts: counts,
|
||||
min: 1.0e-12,
|
||||
max: 1.21e-12
|
||||
});
|
||||
},
|
||||
1.0e-12, 1.21e-12, 2);
|
||||
assertHistogramEquality(newHistogram, histogram);
|
||||
});
|
||||
|
||||
@ -236,15 +243,17 @@ module TF.Backend {
|
||||
let counts = [1, 2];
|
||||
let rightEdges = [-1.0e-12, 1.0e-12];
|
||||
let histogram = [
|
||||
{x: -1.1e-12, dx: 1.1e-12 - 1.0e-12, y: 1},
|
||||
{x: -1.0e-12, dx: 2.0e-12, y: 2}
|
||||
{x: -1.1e-12, dx: 1.05e-12, y: 1.95},
|
||||
{x: -0.5e-13, dx: 1.05e-12, y: 1.05}
|
||||
];
|
||||
let newHistogram = convertBins({
|
||||
let newHistogram = convertBins(
|
||||
{
|
||||
bucketRightEdges: rightEdges,
|
||||
bucketCounts: counts,
|
||||
min: -1.1e-12,
|
||||
max: 1.0e-12
|
||||
});
|
||||
},
|
||||
-1.1e-12, 1.0e-12, 2);
|
||||
assertHistogramEquality(newHistogram, histogram);
|
||||
});
|
||||
|
||||
@ -253,16 +262,71 @@ module TF.Backend {
|
||||
let counts = [1, 2, 3];
|
||||
let rightEdges = [0, 1.0e-12, 1.0e14];
|
||||
let histogram = [
|
||||
{x: -1.0e-12, dx: 1.0e-12, y: 1}, {x: 0, dx: 1.0e-12, y: 2},
|
||||
{x: 1.0e-12, dx: 1.1e-12 - 1.0e-12, y: 3}
|
||||
{x: -1.0e-12, dx: 0.7e-12, y: 0.7},
|
||||
{x: -0.3e-12, dx: 0.7e-12, y: 1.1},
|
||||
{x: 0.4e-12, dx: 0.7e-12, y: 4.2}
|
||||
];
|
||||
let newHistogram = convertBins({
|
||||
let newHistogram = convertBins(
|
||||
{
|
||||
bucketRightEdges: rightEdges,
|
||||
bucketCounts: counts,
|
||||
min: -1.0e-12,
|
||||
max: 1.1e-12
|
||||
});
|
||||
},
|
||||
-1.0e-12, 1.1e-12, 3);
|
||||
assertHistogramEquality(newHistogram, histogram);
|
||||
});
|
||||
});
|
||||
|
||||
describe('sortTagNames', () => {
|
||||
|
||||
let sortTagNames = (a) => a.sort(compareTagNames);
|
||||
|
||||
it('is asciibetical', () => {
|
||||
assert.deepEqual(sortTagNames(['a', 'b']), ['a', 'b']);
|
||||
assert.deepEqual(sortTagNames(['a', 'B']), ['B', 'a']);
|
||||
});
|
||||
|
||||
it('sorts integer portions', () => {
|
||||
assert.deepEqual(['03', '1'].sort(), ['03', '1']);
|
||||
assert.deepEqual(sortTagNames(['03', '1']), ['1', '03']);
|
||||
assert.deepEqual(sortTagNames(['a03', 'a1']), ['a1', 'a03']);
|
||||
assert.deepEqual(sortTagNames(['a03', 'b1']), ['a03', 'b1']);
|
||||
assert.deepEqual(sortTagNames(['x0a03', 'x0a1']), ['x0a1', 'x0a03']);
|
||||
assert.deepEqual(sortTagNames(['a/b/03', 'a/b/1']), ['a/b/1', 'a/b/03']);
|
||||
});
|
||||
|
||||
it('sorts floating point portions', () => {
|
||||
assert.deepEqual(sortTagNames(['a0.1', 'a0.01']), ['a0.01', 'a0.1']);
|
||||
});
|
||||
|
||||
it('is componentized by slash', () => {
|
||||
assert.deepEqual(['a+/a', 'a/a', 'ab/a'].sort(), ['a+/a', 'a/a', 'ab/a']);
|
||||
assert.deepEqual(
|
||||
sortTagNames(['a+/a', 'a/a', 'ab/a']), ['a/a', 'a+/a', 'ab/a']);
|
||||
});
|
||||
|
||||
it('is componentized by underscore', () => {
|
||||
assert.deepEqual(
|
||||
sortTagNames(['a+_a', 'a_a', 'ab_a']), ['a_a', 'a+_a', 'ab_a']);
|
||||
assert.deepEqual(
|
||||
sortTagNames(['a+/a', 'a_a', 'ab_a']), ['a_a', 'a+/a', 'ab_a']);
|
||||
});
|
||||
|
||||
it('is componentized by number boundaries', () => {
|
||||
assert.deepEqual(
|
||||
sortTagNames(['a+0a', 'a0a', 'ab0a']), ['a0a', 'a+0a', 'ab0a']);
|
||||
});
|
||||
|
||||
it('empty comes first', () => {
|
||||
assert.deepEqual(
|
||||
sortTagNames(['a', '//', '/', '']), ['', '/', '//', 'a']);
|
||||
});
|
||||
|
||||
it('decimal parsed correctly', () => {
|
||||
assert.deepEqual(sortTagNames(['0.2', '0.03']), ['0.03', '0.2']);
|
||||
assert.deepEqual(sortTagNames(['0..2', '0..03']), ['0..2', '0..03']);
|
||||
assert.deepEqual(sortTagNames(['.2', '.03']), ['.2', '.03']);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
@ -19,6 +19,7 @@ limitations under the License.
|
||||
<script src="../../webcomponentsjs/webcomponents-lite.min.js"></script>
|
||||
<script src="../../web-component-tester/browser.js"></script>
|
||||
<link rel="import" href="../../polymer/polymer.html">
|
||||
<link rel="import" href="../../tf-imports/d3.html">
|
||||
</head>
|
||||
<body>
|
||||
<test-fixture id="testElementFixture">
|
||||
|
@ -1,5 +1,6 @@
|
||||
<link rel="import" href="../polymer/polymer.html">
|
||||
<link rel="import" href="../tf-imports/lodash.html">
|
||||
<link rel="import" href="../tf-imports/d3.html">
|
||||
|
||||
<script src="requestManager.js"></script>
|
||||
<script src="urlPathHelpers.js"></script>
|
||||
|
@ -16,19 +16,23 @@
|
||||
position: relative;
|
||||
}
|
||||
|
||||
.card .card-title {
|
||||
.card .card-title, .card .card-subtitle {
|
||||
flex-grow: 0;
|
||||
flex-shrink: 0;
|
||||
margin-bottom: 10px;
|
||||
font-size: 14px;
|
||||
text-overflow: ellipsis;
|
||||
overflow: hidden;
|
||||
}
|
||||
|
||||
.card .card-subtitle {
|
||||
font-size: 12px;
|
||||
}
|
||||
|
||||
.card .card-content {
|
||||
flex-grow: 1;
|
||||
flex-shrink: 1;
|
||||
display: flex;
|
||||
margin-top: 10px;
|
||||
}
|
||||
.card .card-bottom-row {
|
||||
position: absolute;
|
||||
|
@ -36,10 +36,11 @@
|
||||
selectedRuns: Array,
|
||||
xType: String,
|
||||
dataProvider: Function,
|
||||
_initialized: Boolean,
|
||||
_attached: Boolean,
|
||||
_makeChartAsyncCallbackId: { type: Number, value: null }
|
||||
},
|
||||
observers: [
|
||||
"_makeChart(tag, dataProvider, xType, colorScale, _initialized)",
|
||||
"_makeChart(tag, dataProvider, xType, colorScale, _attached)",
|
||||
"_changeRuns(_chart, selectedRuns.*)"
|
||||
],
|
||||
_changeRuns: function(chart) {
|
||||
@ -55,23 +56,26 @@
|
||||
reload: function() {
|
||||
this._chart.reload();
|
||||
},
|
||||
_makeChart: function(tag, dataProvider, xType, colorScale, _initialized) {
|
||||
if (!_initialized) {
|
||||
return;
|
||||
_makeChart: function(tag, dataProvider, xType, colorScale, _attached) {
|
||||
if (this._makeChartAsyncCallbackId === null) {
|
||||
this.cancelAsync(this._makeChartAsyncCallbackId);
|
||||
}
|
||||
|
||||
this._makeChartAsyncCallbackId = this.async(function() {
|
||||
this._makeChartAsyncCallbackId = null;
|
||||
if (!_attached) return;
|
||||
if (this._chart) this._chart.destroy();
|
||||
var chart = new TF.DistributionChart(tag, dataProvider, xType, colorScale);
|
||||
var svg = d3.select(this.$.chartsvg);
|
||||
this.async(function() {
|
||||
chart.renderTo(svg);
|
||||
this._chart = chart;
|
||||
}, 350);
|
||||
},
|
||||
attached: function() {
|
||||
this._initialized = true;
|
||||
this._attached = true;
|
||||
},
|
||||
detached: function() {
|
||||
this._initialized = false;
|
||||
this._attached = false;
|
||||
}
|
||||
});
|
||||
</script>
|
||||
|
@ -1,6 +1,6 @@
|
||||
<link rel="import" href="../polymer/polymer.html">
|
||||
<link rel="import" href="../tf-event-dashboard/tf-run-selector.html">
|
||||
<link rel="import" href="../tf-event-dashboard/tf-x-type-selector.html">
|
||||
<link rel="import" href="../tf-option-selector/tf-option-selector.html">
|
||||
<link rel="import" href="../tf-color-scale/tf-color-scale.html">
|
||||
<link rel="import" href="../tf-dashboard-common/tf-dashboard.html">
|
||||
<link rel="import" href="../tf-categorizer/tf-categorizer.html">
|
||||
@ -47,10 +47,15 @@ tf-collapsable-panes.
|
||||
></tf-categorizer>
|
||||
</div>
|
||||
<div class="sidebar-section">
|
||||
<tf-x-type-selector
|
||||
<tf-option-selector
|
||||
id="xTypeSelector"
|
||||
out-x-type="{{xType}}"
|
||||
></tf-x-type-selector>
|
||||
name="Horizontal Axis"
|
||||
selected-id="{{_xType}}"
|
||||
>
|
||||
<paper-button id="step">step</paper-button>
|
||||
<paper-button id="relative">relative</paper-button>
|
||||
<paper-button id="wall_time">wall</paper-button>
|
||||
</tf-option-selector>
|
||||
</div>
|
||||
<div class="sidebar-section">
|
||||
<tf-run-selector
|
||||
@ -80,7 +85,7 @@ tf-collapsable-panes.
|
||||
tag="[[tag]]"
|
||||
id="chart"
|
||||
selected-runs="[[_array(run)]]"
|
||||
x-type="[[xType]]"
|
||||
x-type="[[_xType]]"
|
||||
data-provider="[[dataProvider]]"
|
||||
color-scale="[[colorScale]]"
|
||||
on-keyup="toggleSelected"
|
||||
@ -117,6 +122,10 @@ tf-collapsable-panes.
|
||||
type: Array,
|
||||
computed: "_getVisibleTags(selectedRuns.*, run2tag.*)"
|
||||
},
|
||||
_xType: {
|
||||
type: String,
|
||||
value: "step"
|
||||
},
|
||||
dataType: {value: "compressedHistogram"},
|
||||
},
|
||||
_exists: function(run, tag) {
|
||||
|
@ -1,7 +1,7 @@
|
||||
<link rel="import" href="../polymer/polymer.html">
|
||||
<link rel="import" href="tf-run-selector.html">
|
||||
<link rel="import" href="tf-smoothing-input.html">
|
||||
<link rel="import" href="tf-x-type-selector.html">
|
||||
<link rel="import" href="../tf-option-selector/tf-option-selector.html">
|
||||
<link rel="import" href="../tf-color-scale/tf-color-scale.html">
|
||||
<link rel="import" href="../tf-categorizer/tf-categorizer.html">
|
||||
<link rel="import" href="../tf-chart-scaffold/tf-chart-scaffold.html">
|
||||
@ -59,10 +59,15 @@ The #center div contains tf-line-charts embedded inside tf-collapsable-panes.
|
||||
></tf-smoothing-input>
|
||||
</div>
|
||||
<div class="sidebar-section">
|
||||
<tf-x-type-selector
|
||||
<tf-option-selector
|
||||
id="xTypeSelector"
|
||||
out-x-type="{{xType}}"
|
||||
></tf-x-type-selector>
|
||||
name="Horizontal Axis"
|
||||
selected-id="{{_xType}}"
|
||||
>
|
||||
<paper-button id="step">step</paper-button>
|
||||
<paper-button id="relative">relative</paper-button>
|
||||
<paper-button id="wall_time">wall</paper-button>
|
||||
</tf-option-selector>
|
||||
</div>
|
||||
<div class="sidebar-section">
|
||||
<tf-run-selector
|
||||
@ -92,7 +97,7 @@ The #center div contains tf-line-charts embedded inside tf-collapsable-panes.
|
||||
>
|
||||
<vz-line-chart
|
||||
id="chart"
|
||||
x-type="[[xType]]"
|
||||
x-type="[[_xType]]"
|
||||
color-scale="[[colorScale]]"
|
||||
smoothing-decay="[[_smoothingDecay]]"
|
||||
smoothing-enabled="[[_smoothingEnabled]]"
|
||||
@ -160,6 +165,10 @@ The #center div contains tf-line-charts embedded inside tf-collapsable-panes.
|
||||
type: Object,
|
||||
notify: true,
|
||||
},
|
||||
_xType: {
|
||||
type: String,
|
||||
value: "step"
|
||||
}
|
||||
},
|
||||
attached: function() {
|
||||
this.async(function() {
|
||||
|
@ -16,7 +16,8 @@ limitations under the License.
|
||||
/* tslint:disable:no-namespace */
|
||||
module TF.Globals {
|
||||
// The names of TensorBoard tabs.
|
||||
export var TABS = ['events', 'images', 'audio', 'graphs', 'distributions'];
|
||||
export var TABS =
|
||||
['events', 'images', 'audio', 'graphs', 'distributions', 'histograms'];
|
||||
|
||||
// If true, TensorBoard stores its hash in the URI state.
|
||||
// If false, tab switching in TensorBoard will not update location hash,
|
||||
|
@ -0,0 +1,90 @@
|
||||
node {
|
||||
name: "life"
|
||||
op: "Const"
|
||||
attr {
|
||||
key: "dtype"
|
||||
value {
|
||||
type: DT_INT32
|
||||
}
|
||||
}
|
||||
attr {
|
||||
key: "value"
|
||||
value {
|
||||
tensor {
|
||||
dtype: DT_INT32
|
||||
tensor_shape {
|
||||
}
|
||||
int_val: 2
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
node {
|
||||
name: "universe"
|
||||
op: "Const"
|
||||
attr {
|
||||
key: "dtype"
|
||||
value {
|
||||
type: DT_INT32
|
||||
}
|
||||
}
|
||||
attr {
|
||||
key: "value"
|
||||
value {
|
||||
tensor {
|
||||
dtype: DT_INT32
|
||||
tensor_shape {
|
||||
}
|
||||
int_val: 40
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
node {
|
||||
name: "everything"
|
||||
op: "Const"
|
||||
attr {
|
||||
key: "dtype"
|
||||
value {
|
||||
type: DT_INT32
|
||||
}
|
||||
}
|
||||
attr {
|
||||
key: "value"
|
||||
value {
|
||||
tensor {
|
||||
dtype: DT_INT32
|
||||
tensor_shape {
|
||||
}
|
||||
int_val: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
node {
|
||||
name: "Add"
|
||||
op: "Add"
|
||||
input: "life"
|
||||
input: "universe"
|
||||
attr {
|
||||
key: "T"
|
||||
value {
|
||||
type: DT_INT32
|
||||
}
|
||||
}
|
||||
}
|
||||
node {
|
||||
name: "answer"
|
||||
op: "Add"
|
||||
input: "Add"
|
||||
input: "everything"
|
||||
attr {
|
||||
key: "T"
|
||||
value {
|
||||
type: DT_INT32
|
||||
}
|
||||
}
|
||||
}
|
||||
versions {
|
||||
producer: 10
|
||||
}
|
@ -0,0 +1,28 @@
|
||||
<!DOCTYPE html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<link rel="import" href="../tf-graph-app.html">
|
||||
<link rel="import" href="../../iron-demo-helpers/demo-snippet.html">
|
||||
<style>
|
||||
body {
|
||||
margin: 0;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<h3>Answer to the Ultimate Question of Life, the Universe, and Everything</h3>
|
||||
<demo-snippet>
|
||||
<template>
|
||||
<tf-graph-app id="tfgraph"></tf-graph-app>
|
||||
<script>
|
||||
let g = document.querySelector("#tfgraph");
|
||||
fetch("graph.pbtxt").then(r => r.text()).then(pbtxt => {
|
||||
g.pbtxt = pbtxt;
|
||||
});
|
||||
</script>
|
||||
</template>
|
||||
</demo-snippet>
|
||||
</body>
|
||||
</html>
|
14
tensorflow/tensorboard/components/tf-graph-app/index.html
Normal file
14
tensorflow/tensorboard/components/tf-graph-app/index.html
Normal file
@ -0,0 +1,14 @@
|
||||
<!doctype html>
|
||||
|
||||
<html>
|
||||
<head>
|
||||
<title>vz-vega</title>
|
||||
<meta charset="utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<script src="../webcomponentsjs/webcomponents-lite.js"></script>
|
||||
<link rel="import" href="../iron-component-page/iron-component-page.html">
|
||||
</head>
|
||||
<body>
|
||||
<iron-component-page src="tf-graph-app.html"></iron-component-page>
|
||||
</body>
|
||||
</html>
|
@ -2,12 +2,22 @@
|
||||
<link rel="import" href="../tf-graph-board/tf-graph-board.html">
|
||||
<link rel="import" href="../tf-graph-loader/tf-graph-loader.html">
|
||||
<link rel="import" href="../tf-graph/tf-graph-controls.html">
|
||||
<!-- Stand alone element of tf-graph for embedding.
|
||||
<!--
|
||||
Stand alone element of tf-graph for embedding.
|
||||
|
||||
Example
|
||||
The pbtxt format is the stringified version of the graphdef.
|
||||
|
||||
<tf-graph-app pbtxt="[[pbtxt]]"></tf-graph-app>
|
||||
|
||||
import tensorflow as tf
|
||||
life = tf.constant(2, name='life')
|
||||
universe = tf.constant(40, name='universe')
|
||||
everything = tf.constant(0, name='everything')
|
||||
lifeuniverse = tf.add(life, universe)
|
||||
answer = tf.add(lifeuniverse, everything, name='answer')
|
||||
open("graph.pbtxt", "w").write(str(tf.get_default_graph().as_graph_def()))
|
||||
|
||||
@demo
|
||||
-->
|
||||
|
||||
<dom-module id="tf-graph-app">
|
||||
|
@ -442,7 +442,7 @@
|
||||
_getHasDisplayableNodeStats: function(stats) {
|
||||
return tf.graph.util.hasDisplayableNodeStats(stats);
|
||||
},
|
||||
_getNodeStatsFormattedBytes(stats) {
|
||||
_getNodeStatsFormattedBytes: function(stats) {
|
||||
if (!stats || !stats.totalBytes) {
|
||||
return;
|
||||
}
|
||||
@ -450,7 +450,7 @@
|
||||
return tf.graph.util.convertUnitsToHumanReadable(
|
||||
stats.totalBytes, tf.graph.util.MEMORY_UNITS);
|
||||
},
|
||||
_getNodeStatsFormattedComputeTime(stats) {
|
||||
_getNodeStatsFormattedComputeTime: function(stats) {
|
||||
if (!stats || !stats.totalMicros) {
|
||||
return;
|
||||
}
|
||||
@ -458,7 +458,7 @@
|
||||
return tf.graph.util.convertUnitsToHumanReadable(
|
||||
stats.totalMicros, tf.graph.util.TIME_UNITS);
|
||||
},
|
||||
_getNodeStatsFormattedOutputSizes(stats) {
|
||||
_getNodeStatsFormattedOutputSizes: function(stats) {
|
||||
if (!stats || !stats.outputSize || !stats.outputSize.length) {
|
||||
return;
|
||||
}
|
||||
|
@ -0,0 +1,202 @@
|
||||
<link rel="import" href="../polymer/polymer.html">
|
||||
<link rel="import" href="../tf-chart-scaffold/tf-chart-scaffold.html">
|
||||
<link rel="import" href="../tf-event-dashboard/tf-run-selector.html">
|
||||
<link rel="import" href="../tf-color-scale/tf-color-scale.html">
|
||||
<link rel="import" href="../tf-dashboard-common/tf-dashboard.html">
|
||||
<link rel="import" href="../tf-categorizer/tf-categorizer.html">
|
||||
<link rel="import" href="../tf-option-selector/tf-option-selector.html">
|
||||
<link rel="import" href="../tf-collapsable-pane/tf-collapsable-pane.html">
|
||||
<link rel="import" href="../vz-histogram-timeseries/vz-histogram-timeseries.html">
|
||||
<link rel="import" href="../iron-collapse/iron-collapse.html">
|
||||
<link rel="import" href="../paper-icon-button/paper-icon-button.html">
|
||||
<link rel="import" href="../tf-imports/lodash.html">
|
||||
<link rel="import" href="../tf-backend/tf-backend.html">
|
||||
|
||||
<!--
|
||||
tf-histogram-dashboard is a complete frontend that loads runs from a backend,
|
||||
and creates chart panes that display data for those runs.
|
||||
|
||||
It provides a categorizer, run selector, and x type selector, by which the user
|
||||
can customize how data is organized and displayed.
|
||||
|
||||
Each chart has a button that can toggle whether it is "selected"; selectedRuns
|
||||
charts are larger.
|
||||
|
||||
Organizationally, the #plumbing div contains components that have no concrete
|
||||
manifestation and just effect data bindings or data loading. The #sidebar contains
|
||||
shared controls like the tf-categorizer, tf-run-selector, and tf-x-type-selector.
|
||||
The #center div contains vz-histogram-timeseries embedded inside
|
||||
tf-collapsable-panes.
|
||||
-->
|
||||
<dom-module id="tf-histogram-dashboard">
|
||||
<template>
|
||||
<div id="plumbing">
|
||||
<tf-color-scale
|
||||
id="colorScale"
|
||||
runs="[[runs]]"
|
||||
out-color-scale="{{colorScale}}"
|
||||
></tf-color-scale>
|
||||
</div>
|
||||
|
||||
<tf-dashboard-layout>
|
||||
<div class="sidebar">
|
||||
<div class="sidebar-section">
|
||||
<tf-categorizer
|
||||
id="categorizer"
|
||||
tags="[[_visibleTags]]"
|
||||
categories="{{categories}}"
|
||||
></tf-categorizer>
|
||||
</div>
|
||||
<div class="sidebar-section">
|
||||
<tf-option-selector
|
||||
id="histogramModeSelector"
|
||||
name="Histogram Mode"
|
||||
selected-id="{{_histogramMode}}"
|
||||
>
|
||||
<paper-button id="overlay">overlay</paper-button>
|
||||
<paper-button id="offset">offset</paper-button>
|
||||
</tf-option-selector>
|
||||
</div>
|
||||
<div class="sidebar-section">
|
||||
<tf-option-selector
|
||||
id="timePropertySelector"
|
||||
name="Offset Time Axis"
|
||||
selected-id="{{_timeProperty}}"
|
||||
>
|
||||
<paper-button id="step">step</paper-button>
|
||||
<paper-button id="relative">relative</paper-button>
|
||||
<paper-button id="wall_time">wall</paper-button>
|
||||
</tf-option-selector>
|
||||
</div>
|
||||
<div class="sidebar-section">
|
||||
<tf-run-selector
|
||||
id="runSelector"
|
||||
runs="[[runs]]"
|
||||
color-scale="[[colorScale]]"
|
||||
out-selected="{{selectedRuns}}"
|
||||
></tf-run-selector>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="center">
|
||||
<tf-no-data-warning
|
||||
data-type="histogram"
|
||||
show-warning="[[dataNotFound]]"
|
||||
></tf-no-data-warning>
|
||||
<template is="dom-repeat" items="[[categories]]">
|
||||
<tf-collapsable-pane name="[[item.name]]" count="[[_count(item.tags, selectedRuns.*, runToCompressedHistograms.*)]]">
|
||||
<div class="layout horizontal wrap">
|
||||
<template is="dom-repeat" items="[[item.tags]]" as="tag">
|
||||
<template is="dom-repeat" items="[[selectedRuns]]" as="run">
|
||||
<template is="dom-if" if="[[_exists(run, tag, run2tag.*)]]">
|
||||
<div class="card">
|
||||
<span class="card-title">[[tag]]</span>
|
||||
<span class="card-subtitle">[[run]]</span>
|
||||
<div class="card-content">
|
||||
<tf-chart-scaffold
|
||||
tag="[[tag]]"
|
||||
visible-series="[[_array(run)]]"
|
||||
data-provider="[[dataProvider]]"
|
||||
>
|
||||
<vz-histogram-timeseries
|
||||
id="chart"
|
||||
time-property="[[_timeProperty]]"
|
||||
mode="[[_histogramMode]]"
|
||||
color-scale="[[_colorScaleFunction]]"
|
||||
on-keyup="toggleSelected"
|
||||
tabindex="2"
|
||||
></vz-histogram-timeseries>
|
||||
</tf-chart-scaffold>
|
||||
<paper-icon-button
|
||||
class="expand-button"
|
||||
icon="fullscreen"
|
||||
on-tap="toggleSelected"
|
||||
></paper-icon-button>
|
||||
</div>
|
||||
</div>
|
||||
</template>
|
||||
</template>
|
||||
</template>
|
||||
</div>
|
||||
</tf-collapsable-pane>
|
||||
</template>
|
||||
</div>
|
||||
</tf-dashboard-layout>
|
||||
|
||||
<style include="dashboard-style"></style>
|
||||
</template>
|
||||
|
||||
<script>
|
||||
Polymer({
|
||||
is: "tf-histogram-dashboard",
|
||||
behaviors: [
|
||||
TF.Dashboard.ReloadBehavior("tf-chart-scaffold"),
|
||||
TF.Backend.Behavior,
|
||||
],
|
||||
properties: {
|
||||
_histogramMode: {
|
||||
type: String,
|
||||
value: "offset"
|
||||
},
|
||||
_timeProperty: {
|
||||
type: String,
|
||||
value: "step"
|
||||
},
|
||||
_visibleTags: {
|
||||
type: Array,
|
||||
computed: "_getVisibleTags(selectedRuns.*, run2tag.*)"
|
||||
},
|
||||
_colorScaleFunction: {
|
||||
type: Function,
|
||||
computed: "_getColorScaleFunction(colorScale)"
|
||||
},
|
||||
colorScale: Object,
|
||||
dataType: {value: "histogram"},
|
||||
},
|
||||
_exists: function(run, tag) {
|
||||
return this.run2tag[run].indexOf(tag) !== -1;
|
||||
},
|
||||
attached: function() {
|
||||
this.async(function() {
|
||||
this.fire("rendered");
|
||||
});
|
||||
},
|
||||
_array: function(x) {
|
||||
return [x];
|
||||
},
|
||||
_count: function(tags) {
|
||||
var targetTags = {};
|
||||
tags.forEach(function(t) {
|
||||
targetTags[t] = true;
|
||||
});
|
||||
var count = 0;
|
||||
var _this = this;
|
||||
this.selectedRuns.forEach(function(r) {
|
||||
_this.run2tag[r].forEach(function(t) {
|
||||
if (targetTags[t]) {
|
||||
count++;
|
||||
}
|
||||
});
|
||||
});
|
||||
return count;
|
||||
},
|
||||
_getVisibleTags: function() {
|
||||
var keys = this.selectedRuns;
|
||||
var dict = this.run2tag;
|
||||
return _.union.apply(null, keys.map(function(k) {return dict[k]}));
|
||||
},
|
||||
_getColorScaleFunction: function() {
|
||||
return this.colorScale.scale.bind(this.colorScale);
|
||||
},
|
||||
toggleSelected: function(e) {
|
||||
var currentTarget = Polymer.dom(e.currentTarget);
|
||||
var parentDiv = currentTarget.parentNode.parentNode;
|
||||
parentDiv.classList.toggle("selected");
|
||||
var chartScaffold = currentTarget.previousElementSibling;
|
||||
if (chartScaffold) {
|
||||
chartScaffold.chart().redraw();
|
||||
}
|
||||
},
|
||||
});
|
||||
</script>
|
||||
</dom-module>
|
@ -0,0 +1,77 @@
|
||||
<link rel="import" href="../polymer/polymer.html">
|
||||
<link rel="import" href="../tf-dashboard-common/tensorboard-color.html">
|
||||
|
||||
<!--
|
||||
tf-option-selector is a simple component that has buttons as content and
|
||||
provides a "selectedId" property that is one of the IDs of the buttons inside it.
|
||||
-->
|
||||
<dom-module id="tf-option-selector">
|
||||
<template>
|
||||
<div id="wrap">
|
||||
<h3>[[name]]</h3>
|
||||
<div class="content-wrapper"><content></content></div>
|
||||
</div>
|
||||
<style>
|
||||
.content-wrapper ::content > * {
|
||||
width: 30%;
|
||||
font-size: 13px;
|
||||
background: none;
|
||||
margin-top: 10px;
|
||||
color: var(--tb-ui-dark-accent);
|
||||
}
|
||||
|
||||
.content-wrapper ::content :first-of-type {
|
||||
margin-left: 0;
|
||||
}
|
||||
|
||||
.content-wrapper ::content .selected {
|
||||
background-color: var(--tb-ui-dark-accent);
|
||||
color: white!important;
|
||||
}
|
||||
|
||||
h3 {
|
||||
color: var(--paper-grey-800);
|
||||
margin: 0;
|
||||
font-weight: normal;
|
||||
font-size: 14px;
|
||||
margin-bottom: 5px;
|
||||
display: block;
|
||||
pointer-events: none;
|
||||
}
|
||||
</style>
|
||||
</template>
|
||||
<script>
|
||||
Polymer({
|
||||
is: "tf-option-selector",
|
||||
properties: {
|
||||
name: String,
|
||||
selectedId: {
|
||||
type: String,
|
||||
notify: true,
|
||||
observer: '_selectedIdChanged'
|
||||
}
|
||||
},
|
||||
attached: function() {
|
||||
this.async(function() {
|
||||
this.getEffectiveChildren().forEach(function(node) {
|
||||
this.listen(node, 'tap', '_selectTarget');
|
||||
}.bind(this));
|
||||
});
|
||||
},
|
||||
_selectTarget: function(e) {
|
||||
this.selectedId = e.currentTarget.id;
|
||||
},
|
||||
_selectedIdChanged: function() {
|
||||
var selected = this.queryEffectiveChildren('#' + this.selectedId);
|
||||
if (!selected) {
|
||||
return;
|
||||
}
|
||||
|
||||
this.getEffectiveChildren().forEach(function(node) {
|
||||
node.classList.remove("selected");
|
||||
});
|
||||
selected.classList.add("selected");
|
||||
}
|
||||
});
|
||||
</script>
|
||||
</dom-module>
|
@ -8,6 +8,7 @@
|
||||
<link rel="import" href="../tf-globals/tf-globals.html">
|
||||
<link rel="import" href="../tf-event-dashboard/tf-event-dashboard.html">
|
||||
<link rel="import" href="../tf-distribution-dashboard/tf-distribution-dashboard.html">
|
||||
<link rel="import" href="../tf-histogram-dashboard/tf-histogram-dashboard.html">
|
||||
<link rel="import" href="../tf-image-dashboard/tf-image-dashboard.html">
|
||||
<link rel="import" href="../tf-audio-dashboard/tf-audio-dashboard.html">
|
||||
<link rel="import" href="../tf-graph-dashboard/tf-graph-dashboard.html">
|
||||
@ -96,6 +97,13 @@ allows the user to toggle between various dashboards.
|
||||
backend="[[_backend]]"
|
||||
></tf-distribution-dashboard>
|
||||
</template>
|
||||
|
||||
<template is="dom-if" if="[[_modeIsHistograms(mode)]]">
|
||||
<tf-histogram-dashboard
|
||||
id="histograms"
|
||||
backend="[[_backend]]"
|
||||
></tf-histogram-dashboard>
|
||||
</template>
|
||||
</div>
|
||||
</paper-header-panel>
|
||||
|
||||
@ -230,6 +238,9 @@ allows the user to toggle between various dashboards.
|
||||
_modeIsDistributions: function(mode) {
|
||||
return mode === "distributions";
|
||||
},
|
||||
_modeIsHistograms: function(mode) {
|
||||
return mode === "histograms";
|
||||
},
|
||||
selectedDashboard: function() {
|
||||
var dashboard = this.$$("#" + this.mode);
|
||||
if (dashboard == null) {
|
||||
|
File diff suppressed because one or more lines are too long
@ -0,0 +1,14 @@
|
||||
<!doctype html>
|
||||
|
||||
<html>
|
||||
<head>
|
||||
<title>vz-histogram-timeseries</title>
|
||||
<meta charset="utf-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<script src="../webcomponentsjs/webcomponents-lite.js"></script>
|
||||
<link rel="import" href="../iron-component-page/iron-component-page.html">
|
||||
</head>
|
||||
<body>
|
||||
<iron-component-page src="vz-histogram-timeseries.html"></iron-component-page>
|
||||
</body>
|
||||
</html>
|
@ -1,15 +1,45 @@
|
||||
<link rel="import" href="../polymer/polymer.html">
|
||||
<link rel="import" href="../tf-imports/d3.html">
|
||||
|
||||
<!--
|
||||
vz-histogram-timeseries creates an element that draws beautiful histograms for
|
||||
displaying how data is distributed over time.
|
||||
|
||||
This histogram supports changing the time axis type and different modes of
|
||||
visualization.
|
||||
|
||||
@demo
|
||||
-->
|
||||
<dom-module id="vz-histogram-timeseries">
|
||||
|
||||
<template>
|
||||
<svg id="svg">
|
||||
<g>
|
||||
<g class="axis x"></g>
|
||||
<g class="axis y"></g>
|
||||
<g class="axis y slice"></g>
|
||||
<g class="stage">
|
||||
<rect class="background"></rect>
|
||||
</g>
|
||||
<g class="x-axis-hover"></g>
|
||||
</g>
|
||||
</svg>
|
||||
|
||||
<style>
|
||||
:host {
|
||||
display: block;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
flex-grow: 1;
|
||||
flex-shrink: 1;
|
||||
position: relative;
|
||||
}
|
||||
|
||||
svg {
|
||||
font-family: roboto, sans-serif;
|
||||
overflow: visible;
|
||||
display: block;
|
||||
width: 100%;
|
||||
flex-grow: 1;
|
||||
flex-shrink: 1;
|
||||
}
|
||||
|
||||
.background {
|
||||
@ -100,52 +130,144 @@
|
||||
.large .axis .tick:nth-child(2n + 1) text { display: block; }
|
||||
|
||||
</style>
|
||||
<svg id="svg">
|
||||
<g>
|
||||
<g class="axis x"></g>
|
||||
<g class="axis y"></g>
|
||||
<g class="axis y slice"></g>
|
||||
<g class="stage">
|
||||
<rect class="background"></rect>
|
||||
</g>
|
||||
<g class="x-axis-hover"></g>
|
||||
</g>
|
||||
</svg>
|
||||
|
||||
</template>
|
||||
|
||||
<script>
|
||||
"use strict";
|
||||
Polymer({
|
||||
is: "vz-histogram-timeseries",
|
||||
properties: {
|
||||
mode: { type: String, value: "offset" }, //offset | overlay
|
||||
width: { type: Number, value: 500 },
|
||||
height: { type: Number, value: 500 },
|
||||
timeProperty: { type: String, value: "step" },
|
||||
bins: { type: String, value: "bins" },
|
||||
x: { type: String, value: "x" },
|
||||
dx: { type: String, value: "dx" },
|
||||
y: { type: String, value: "y" },
|
||||
data: { type: Array, value: function(){ return [{ step: 0, bins: [{ x: 0, dx: 1, y: 0 }] }, { step: 1, bins: [{ x: 0, dx: 1, y: 0 }] }];}}
|
||||
// type: HistogramSeriesDatum[] as described in vz-histogram-timeseries.d.ts
|
||||
/**
|
||||
* Defines which view mode is being used by the chart. Supported values
|
||||
* are:
|
||||
* - "offset" - Offset view of the data showing all timesteps.
|
||||
* - "overlay" - Overlays all timesteps into one 2D view, with the
|
||||
* brighter lines representing the newer timesteps.
|
||||
*/
|
||||
mode: {
|
||||
type: String,
|
||||
value: "offset"
|
||||
},
|
||||
|
||||
/*
|
||||
* The name of the datum's property that contains the time values.
|
||||
* Allows:
|
||||
* - "step" - Linear scale using the "step" property of the datum.
|
||||
* - "wall_time" - Temporal scale using the "wall_time" property of the
|
||||
* datum.
|
||||
* - "relative" - Temporal scale starting at 0 created by using
|
||||
* the "wall_time" property of the datum.
|
||||
*/
|
||||
timeProperty: {
|
||||
type: String,
|
||||
value: "step"
|
||||
},
|
||||
|
||||
/**
|
||||
* The name of the data's property that contains the bins.
|
||||
*/
|
||||
bins: {
|
||||
type: String,
|
||||
value: "bins"
|
||||
},
|
||||
|
||||
/**
|
||||
* The name of the datum's property that contains the x values.
|
||||
*/
|
||||
x: {
|
||||
type: String,
|
||||
value: "x"
|
||||
},
|
||||
|
||||
/**
|
||||
* The name of the datum's property that contains the bin width values.
|
||||
*/
|
||||
dx: {
|
||||
type: String,
|
||||
value: "dx"
|
||||
},
|
||||
|
||||
/**
|
||||
* The name of the datum's property that contains the bin height.
|
||||
*/
|
||||
y: {
|
||||
type: String,
|
||||
value: "y"
|
||||
},
|
||||
|
||||
/**
|
||||
* Scale that maps series names to colors. The default colors are from
|
||||
* d3.scale.category10() scale. Use this property to replace the default
|
||||
* line colors with colors of your own choice.
|
||||
*/
|
||||
colorScale: {
|
||||
type: Object,
|
||||
value: function() {
|
||||
return d3.scale.category10();
|
||||
}
|
||||
},
|
||||
|
||||
/**
|
||||
* Duration of the transition between histogram modes.
|
||||
*/
|
||||
modeTransitionDuration: {
|
||||
type: Number,
|
||||
value: 500
|
||||
},
|
||||
|
||||
_attached: Boolean,
|
||||
_name: { type: String, value: null },
|
||||
_data: { type: Array, value: null },
|
||||
},
|
||||
observers: [
|
||||
'redraw(timeProperty, _attached)',
|
||||
'_modeRedraw(mode)'
|
||||
],
|
||||
ready: function() {
|
||||
// Polymer's way of scoping styles on nodes that d3 created
|
||||
this.scopeSubtree(this.$["svg"], true);
|
||||
this.scopeSubtree(this.$.svg, true);
|
||||
},
|
||||
draw: function(duration) {
|
||||
attached: function() {
|
||||
this._attached = true;
|
||||
},
|
||||
detached: function() {
|
||||
this._attached = false;
|
||||
},
|
||||
setVisibleSeries: function(names) {
|
||||
// Do nothing.
|
||||
},
|
||||
setSeriesData: function(name, data) {
|
||||
this._name = name;
|
||||
this._data = data;
|
||||
this.redraw();
|
||||
},
|
||||
|
||||
/**
|
||||
* Redraws the chart. This is only called if the chart is attached to the
|
||||
* screen and if the chart has data.
|
||||
*/
|
||||
redraw: function() {
|
||||
this._draw(0);
|
||||
},
|
||||
|
||||
_modeRedraw: function() {
|
||||
this._draw(this.modeTransitionDuration);
|
||||
},
|
||||
|
||||
_draw: function(duration) {
|
||||
if (!this._attached || !this._data) {
|
||||
return;
|
||||
}
|
||||
|
||||
//
|
||||
// Data verification
|
||||
//
|
||||
if (!(this.data.length > 0)) throw(new Error("Not enough steps in the data"));
|
||||
if (!this.data[0].hasOwnProperty(this.timeProperty)) throw(new Error("No time property of '" + this.timeProperty + "' in data"));
|
||||
if (!this.data[0].hasOwnProperty(this.bins)) throw(new Error("No bins property of '" + this.bins + "' in data"));
|
||||
if (!(this.data[0][this.bins].length > 0)) throw(new Error("Must have at least one bin in bins in data"));
|
||||
if (!this.data[0][this.bins][0].hasOwnProperty(this.x)) throw(new Error("No x property '" + this.x + "' on bins data"));
|
||||
if (!this.data[0][this.bins][0].hasOwnProperty(this.dx)) throw(new Error("No dx property '" + this.dx + "' on bins data"));
|
||||
if (!this.data[0][this.bins][0].hasOwnProperty(this.y)) throw(new Error("No y property '" + this.y + "' on bins data"));
|
||||
if (duration === undefined) throw(new Error("vz-histogram-timeseries _draw needs duration"));
|
||||
if (this._data.length <= 0) throw(new Error("Not enough steps in the data"));
|
||||
if (!this._data[0].hasOwnProperty(this.bins)) throw(new Error("No bins property of '" + this.bins + "' in data"));
|
||||
if (this._data[0][this.bins].length <= 0) throw(new Error("Must have at least one bin in bins in data"));
|
||||
if (!this._data[0][this.bins][0].hasOwnProperty(this.x)) throw(new Error("No x property '" + this.x + "' on bins data"));
|
||||
if (!this._data[0][this.bins][0].hasOwnProperty(this.dx)) throw(new Error("No dx property '" + this.dx + "' on bins data"));
|
||||
if (!this._data[0][this.bins][0].hasOwnProperty(this.y)) throw(new Error("No y property '" + this.y + "' on bins data"));
|
||||
|
||||
//
|
||||
// Initialization
|
||||
@ -156,18 +278,24 @@
|
||||
var dxProp = this.dx;
|
||||
var yProp = this.y;
|
||||
|
||||
var xAccessor = (d) => d[xProp];
|
||||
var yAccessor = (d) => d[yProp];
|
||||
var dxAccessor = (d) => d[dxProp];
|
||||
var xRightAccessor = (d) => d[xProp] + d[dxProp];
|
||||
var timeAccessor = (d) => d[timeProp];
|
||||
|
||||
var duration = duration | 0;
|
||||
var data = this.data;
|
||||
var data = this._data;
|
||||
var name = this._name;
|
||||
var mode = this.mode;
|
||||
var color = d3.hcl(this.colorScale(name));
|
||||
|
||||
var outerWidth = this.width,
|
||||
outerHeight = this.height;
|
||||
var xAccessor = function(d) { return d[xProp] };
|
||||
var yAccessor = function(d) { return d[yProp] };
|
||||
var dxAccessor = function(d) { return d[dxProp] };
|
||||
var xRightAccessor = function(d) { return d[xProp] + d[dxProp] };
|
||||
var timeAccessor = function(d) { return d[timeProp] };
|
||||
|
||||
if (timeProp === "relative") {
|
||||
timeAccessor = function(d) { return d.wall_time - data[0].wall_time };
|
||||
}
|
||||
|
||||
var brect = this.$.svg.getBoundingClientRect();
|
||||
var outerWidth = brect.width,
|
||||
outerHeight = brect.height;
|
||||
|
||||
var sliceHeight,
|
||||
margin = {top: 5, right: 60, bottom: 20, left: 24};
|
||||
@ -188,8 +316,16 @@
|
||||
//
|
||||
// Text formatters
|
||||
//
|
||||
var formatTime = d3.time.format("%x"),
|
||||
format = d3.format(".3n");
|
||||
var format = d3.format(".3n");
|
||||
var yAxisFormat = d3.format(".0f");
|
||||
|
||||
if (timeProp === "wall_time") {
|
||||
yAxisFormat = d3.time.format("%X");
|
||||
} else if (timeProp === "relative") {
|
||||
yAxisFormat = function(d) {
|
||||
return d3.format(".1r")(d / 3.6e6); // Convert to hours.
|
||||
};
|
||||
}
|
||||
|
||||
//
|
||||
// Calculate the extents
|
||||
@ -209,8 +345,10 @@
|
||||
//
|
||||
var outlineCanvasSize = 500;
|
||||
|
||||
var yScale = (timeProp === "step" ? d3.scale.linear() : d3.time.scale())
|
||||
.domain(d3.extent(data, timeAccessor))
|
||||
var extent = d3.extent(data, timeAccessor);
|
||||
|
||||
var yScale = (timeProp === "wall_time" ? d3.time.scale() : d3.scale.linear())
|
||||
.domain(extent)
|
||||
.range([0, (mode === "offset" ? height : 0)]);
|
||||
|
||||
var ySliceScale = d3.scale.linear()
|
||||
@ -235,7 +373,7 @@
|
||||
|
||||
var outlineColor = d3.scale.linear()
|
||||
.domain(d3.extent(data, timeAccessor))
|
||||
.range(["#FFA726", "#BF360C"])
|
||||
.range([color.darker(), color.brighter()])
|
||||
.interpolate(d3.interpolateHcl);
|
||||
|
||||
var xAxis = d3.svg.axis()
|
||||
@ -245,20 +383,31 @@
|
||||
|
||||
var yAxis = d3.svg.axis()
|
||||
.scale(yScale)
|
||||
.ticks(Math.max(2, width / 20))
|
||||
.ticks(Math.max(2, height / 15))
|
||||
.tickFormat(yAxisFormat)
|
||||
.orient("right");
|
||||
|
||||
var ySliceAxis = d3.svg.axis()
|
||||
.scale(ySliceScale)
|
||||
.ticks(Math.max(2, width / 20))
|
||||
.ticks(Math.max(2, height / 15))
|
||||
.tickSize(width + 5)
|
||||
.orient("right");
|
||||
|
||||
var path = d3.svg.area()
|
||||
var xBinCentroid = function(d) {
|
||||
return d[xProp] + d[dxProp] / 2;
|
||||
};
|
||||
|
||||
var linePath = d3.svg.line()
|
||||
.interpolate("linear")
|
||||
.x(function(d) { return xLineScale(d[xProp] + d[dxProp] / 2); })
|
||||
.y0(function(d) { return yLineScale(0); })
|
||||
.y1(function(d) { return yLineScale(d[yProp]); });
|
||||
.x(function(d) { return xLineScale(xBinCentroid(d)); })
|
||||
.y(function(d) { return yLineScale(d[yProp]); });
|
||||
|
||||
var path = function(d) {
|
||||
// Draw a line from 0 to the first point and from the last point to 0.
|
||||
return 'M' + xLineScale(xBinCentroid(d[0])) + ',' + yLineScale(0) +
|
||||
'L' + linePath(d).slice(1) +
|
||||
"L" + xLineScale(xBinCentroid(d[d.length - 1])) + "," + yLineScale(0);
|
||||
};
|
||||
|
||||
//
|
||||
// Render
|
||||
@ -318,14 +467,14 @@
|
||||
.attr("width", outerWidth)
|
||||
.attr("height", outerHeight);
|
||||
|
||||
var histogram = stage.selectAll(".histogram").data(data, function(d) { return d[timeProp]; }),
|
||||
var histogram = stage.selectAll(".histogram").data(data),
|
||||
histogramExit = histogram.exit().remove(),
|
||||
histogramEnter = histogram.enter().append("g").attr("class", "histogram"),
|
||||
histogramUpdate = histogram
|
||||
.sort(function(a, b) { return a[timeProp] - b[timeProp]; }),
|
||||
.sort(function(a, b) { return timeAccessor(a) - timeAccessor(b); }),
|
||||
histogramTransition = gTransition.selectAll(".histogram")
|
||||
.attr("transform", function(d) {
|
||||
return "translate(0, " + (mode === "offset" ? (yScale(d[timeProp]) - sliceHeight) : 0) + ")";
|
||||
return "translate(0, " + (mode === "offset" ? (yScale(timeAccessor(d)) - sliceHeight) : 0) + ")";
|
||||
});
|
||||
|
||||
var baselineEnter = histogramEnter.append("line").attr("class", "baseline"),
|
||||
@ -342,14 +491,14 @@
|
||||
.style("stroke-width", 1),
|
||||
outlineTransition = histogramTransition.select(".outline")
|
||||
.attr("transform", "scale(" + width / outlineCanvasSize + ", " + sliceHeight / outlineCanvasSize + ")")
|
||||
.style("stroke", function(d) { return (mode === "offset" ? "white" : outlineColor(d[timeProp])); })
|
||||
.style("stroke", function(d) { return (mode === "offset" ? "white" : outlineColor(timeAccessor(d))); })
|
||||
.style("fill-opacity", function(d) { return (mode === "offset" ? 1 : 0); })
|
||||
.style("fill", function(d) { return outlineColor(d[timeProp]); });
|
||||
.style("fill", function(d) { return outlineColor(timeAccessor(d)); });
|
||||
|
||||
|
||||
var hoverEnter = histogramEnter.append("g")
|
||||
.attr("class", "hover")
|
||||
.style("fill", function(d) { return outlineColor(d[timeProp]); }),
|
||||
.style("fill", function(d) { return outlineColor(timeAccessor(d)); }),
|
||||
hoverUpdate = histogramUpdate.select(".hover");
|
||||
|
||||
hoverEnter.append("circle")
|
||||
@ -397,7 +546,6 @@
|
||||
.style("opacity", mode === "offset" ? 1 : 0)
|
||||
.attr("transform", "translate(" + width + ", " + (mode === "offset" ? 0 : height) + ")")
|
||||
.call(yAxis);
|
||||
|
||||
}
|
||||
});
|
||||
</script>
|
||||
|
@ -225,11 +225,11 @@ smoothing.
|
||||
this.scopeSubtree(this.$.chartsvg, true);
|
||||
},
|
||||
_makeChart: function(xType, colorScale, _attached) {
|
||||
if (this._makeChartAsyncHandle === null) {
|
||||
if (this._makeChartAsyncCallbackId === null) {
|
||||
this.cancelAsync(this._makeChartAsyncCallbackId);
|
||||
}
|
||||
|
||||
this._makeChartAsyncHandle = this.async(function() {
|
||||
this._makeChartAsyncCallbackId = this.async(function() {
|
||||
this._makeChartAsyncCallbackId = null;
|
||||
if (!this._attached) return;
|
||||
if (this._chart) this._chart.destroy();
|
||||
@ -238,7 +238,7 @@ smoothing.
|
||||
var svg = d3.select(this.$.chartsvg);
|
||||
chart.renderTo(svg);
|
||||
this._chart = chart;
|
||||
}.bind(this), 350);
|
||||
}, 350);
|
||||
},
|
||||
_reloadFromCache: function() {
|
||||
if(this._chart) {
|
||||
|
@ -419,6 +419,10 @@ module VZ {
|
||||
this.datasets = names.map((r) => this.getDataset(r));
|
||||
this.datasets.forEach((d) => d.onUpdate(this.onDatasetChanged));
|
||||
this.linePlot.datasets(this.datasets);
|
||||
|
||||
if (this.smoothingEnabled) {
|
||||
this.smoothLinePlot.datasets(this.datasets);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
1483
tensorflow/tensorboard/dist/tf-tensorboard.html
vendored
1483
tensorflow/tensorboard/dist/tf-tensorboard.html
vendored
File diff suppressed because it is too large
Load Diff
@ -42,14 +42,14 @@ Instead, use `gulp regenerate` to create a new version with your changes.\n\
|
||||
|
||||
/**
|
||||
* Returns a list of non-tensorboard components inside the components
|
||||
* directory, i.e. components that don't begin with 'tf-'.
|
||||
* directory, i.e. components that don't begin with 'tf-' or 'vz-''.
|
||||
*/
|
||||
function getNonTensorBoardComponents() {
|
||||
return fs.readdirSync('components')
|
||||
.filter(function(file) {
|
||||
var prefix = file.slice(0,3);
|
||||
return fs.statSync(path.join('components', file)).isDirectory() &&
|
||||
prefix !== 'tf-';
|
||||
prefix !== 'tf-' && prefix !== 'vz-';
|
||||
})
|
||||
.map(function(dir) { return '/' + dir + '/'; });
|
||||
}
|
||||
|
@ -94,7 +94,7 @@ def main(unused_argv=None):
|
||||
if FLAGS.inspect:
|
||||
logging.info('Not bringing up TensorBoard, but inspecting event files.')
|
||||
efi.inspect(logdir=FLAGS.logdir,
|
||||
event_file=FLAGS.event_file,
|
||||
event_file=os.path.expanduser(FLAGS.event_file),
|
||||
tag=FLAGS.tag)
|
||||
return 0
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user