Extract UnconnectedGradients from gradients_impl to simplify dependencies
PiperOrigin-RevId: 218661408
This commit is contained in:
parent
5d2b7b34c8
commit
670eff0b0f
@ -2203,6 +2203,7 @@ py_library(
|
||||
srcs_version = "PY2AND3",
|
||||
deps = [
|
||||
":gradients_impl",
|
||||
":unconnected_gradients",
|
||||
"//tensorflow/python/eager:function",
|
||||
"//tensorflow/python/eager:tape",
|
||||
],
|
||||
@ -2240,6 +2241,7 @@ py_library(
|
||||
":spectral_grad",
|
||||
":tensor_array_ops",
|
||||
":tensor_util",
|
||||
":unconnected_gradients",
|
||||
":util",
|
||||
":variable_scope",
|
||||
"//tensorflow/core:protos_all_py",
|
||||
@ -2250,6 +2252,15 @@ py_library(
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "unconnected_gradients",
|
||||
srcs = ["ops/unconnected_gradients.py"],
|
||||
srcs_version = "PY2AND3",
|
||||
deps = [
|
||||
":util",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "histogram_ops",
|
||||
srcs = ["ops/histogram_ops.py"],
|
||||
|
@ -279,10 +279,10 @@ py_library(
|
||||
"//tensorflow/python:dtypes",
|
||||
"//tensorflow/python:errors",
|
||||
"//tensorflow/python:framework_ops",
|
||||
"//tensorflow/python:gradients_impl",
|
||||
"//tensorflow/python:math_ops",
|
||||
"//tensorflow/python:pywrap_tensorflow",
|
||||
"//tensorflow/python:tensor_shape",
|
||||
"//tensorflow/python:unconnected_gradients",
|
||||
"//tensorflow/python:util",
|
||||
"//tensorflow/python/eager:context",
|
||||
"//tensorflow/python/eager:execute",
|
||||
@ -375,8 +375,8 @@ py_library(
|
||||
srcs = ["imperative_grad.py"],
|
||||
srcs_version = "PY2AND3",
|
||||
deps = [
|
||||
"//tensorflow/python:gradients_impl",
|
||||
"//tensorflow/python:pywrap_tensorflow",
|
||||
"//tensorflow/python:unconnected_gradients",
|
||||
"//tensorflow/python:util",
|
||||
],
|
||||
)
|
||||
|
@ -35,9 +35,9 @@ from tensorflow.python.framework import tensor_shape
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import gen_array_ops
|
||||
from tensorflow.python.ops import gen_math_ops
|
||||
from tensorflow.python.ops import gradients_impl
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.ops import resource_variable_ops
|
||||
from tensorflow.python.ops.unconnected_gradients import UnconnectedGradients
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.util import nest
|
||||
from tensorflow.python.util import tf_contextlib
|
||||
@ -855,7 +855,7 @@ class GradientTape(object):
|
||||
target,
|
||||
sources,
|
||||
output_gradients=None,
|
||||
unconnected_gradients=gradients_impl.UnconnectedGradients.NONE):
|
||||
unconnected_gradients=UnconnectedGradients.NONE):
|
||||
"""Computes the gradient using operations recorded in context of this tape.
|
||||
|
||||
Args:
|
||||
|
@ -481,8 +481,7 @@ class Function(object):
|
||||
outputs,
|
||||
self._func_graph.inputs,
|
||||
grad_ys=gradients_wrt_outputs,
|
||||
src_graph=self._func_graph,
|
||||
unconnected_gradients=gradients_impl.UnconnectedGradients.NONE)
|
||||
src_graph=self._func_graph)
|
||||
|
||||
backwards_graph_captures = list(backwards_graph.captures.keys())
|
||||
|
||||
|
@ -21,7 +21,7 @@ from __future__ import print_function
|
||||
import collections
|
||||
|
||||
from tensorflow.python import pywrap_tensorflow
|
||||
from tensorflow.python.ops import gradients_impl
|
||||
from tensorflow.python.ops.unconnected_gradients import UnconnectedGradients
|
||||
from tensorflow.python.util import compat
|
||||
|
||||
VSpace = collections.namedtuple("VSpace", [
|
||||
@ -34,7 +34,7 @@ def imperative_grad(
|
||||
target,
|
||||
sources,
|
||||
output_gradients=None,
|
||||
unconnected_gradients=gradients_impl.UnconnectedGradients.NONE):
|
||||
unconnected_gradients=UnconnectedGradients.NONE):
|
||||
"""Computes gradients from the imperatively defined tape on top of the stack.
|
||||
|
||||
Works by filtering the tape, computing how many downstream usages are of each
|
||||
@ -59,8 +59,7 @@ def imperative_grad(
|
||||
RuntimeError: if something goes wrong.
|
||||
"""
|
||||
try:
|
||||
unconnected_gradients = gradients_impl.UnconnectedGradients(
|
||||
unconnected_gradients)
|
||||
unconnected_gradients = UnconnectedGradients(unconnected_gradients)
|
||||
except ValueError:
|
||||
raise ValueError(
|
||||
"Unknown value for unconnected_gradients: %r" % unconnected_gradients)
|
||||
|
@ -25,5 +25,5 @@ from tensorflow.python.ops.custom_gradient import custom_gradient
|
||||
from tensorflow.python.ops.gradients_impl import AggregationMethod
|
||||
from tensorflow.python.ops.gradients_impl import gradients
|
||||
from tensorflow.python.ops.gradients_impl import hessians
|
||||
from tensorflow.python.ops.gradients_impl import UnconnectedGradients
|
||||
from tensorflow.python.ops.unconnected_gradients import UnconnectedGradients
|
||||
# pylint: enable=unused-import
|
||||
|
@ -20,7 +20,6 @@ from __future__ import print_function
|
||||
|
||||
import collections
|
||||
import contextlib
|
||||
import enum # pylint: disable=g-bad-import-order
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
@ -35,6 +34,7 @@ from tensorflow.python.framework import function as framework_function
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import tensor_shape
|
||||
from tensorflow.python.framework import tensor_util
|
||||
from tensorflow.python.framework.func_graph import FuncGraph
|
||||
from tensorflow.python.ops import array_grad # pylint: disable=unused-import
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import check_ops # pylint: disable=unused-import
|
||||
@ -53,16 +53,11 @@ from tensorflow.python.ops import random_grad # pylint: disable=unused-import
|
||||
from tensorflow.python.ops import resource_variable_ops
|
||||
from tensorflow.python.ops import spectral_grad # pylint: disable=unused-import
|
||||
from tensorflow.python.ops import tensor_array_ops
|
||||
from tensorflow.python.ops.unconnected_gradients import UnconnectedGradients
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.util import compat
|
||||
from tensorflow.python.util.lazy_loader import LazyLoader
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
# This is to avoid a circular dependency
|
||||
# backprop -> gradients_impl -> func_graph
|
||||
funct_graph = LazyLoader(
|
||||
"func_graph", globals(),
|
||||
"tensorflow.python.framework.func_graph")
|
||||
|
||||
# This is to avoid a circular dependency (eager.function depends on
|
||||
# gradients_impl). This is set in eager/function.py.
|
||||
@ -455,12 +450,12 @@ def _RaiseNoGradWrtInitialLoopValError(op, from_ops, xs):
|
||||
|
||||
|
||||
def _IsFunction(graph):
|
||||
return (isinstance(graph, funct_graph.FuncGraph) or
|
||||
return (isinstance(graph, FuncGraph) or
|
||||
isinstance(graph, framework_function._FuncGraph)) # pylint: disable=protected-access
|
||||
|
||||
|
||||
def _Captures(func_graph):
|
||||
if isinstance(func_graph, funct_graph.FuncGraph):
|
||||
if isinstance(func_graph, FuncGraph):
|
||||
return func_graph.captures
|
||||
else:
|
||||
assert isinstance(func_graph, framework_function._FuncGraph) # pylint: disable=protected-access
|
||||
@ -539,26 +534,6 @@ def _Consumers(t, func_graphs):
|
||||
return consumers
|
||||
|
||||
|
||||
@tf_export("UnconnectedGradients")
|
||||
class UnconnectedGradients(enum.Enum):
|
||||
"""Controls how gradient computation behaves when y does not depend on x.
|
||||
|
||||
The gradient of y with respect to x can be zero in two different ways: there
|
||||
could be no differentiable path in the graph connecting x to y (and so we can
|
||||
statically prove that the gradient is zero) or it could be that runtime values
|
||||
of tensors in a particular execution lead to a gradient of zero (say, if a
|
||||
relu unit happens to not be activated). To allow you to distinguish between
|
||||
these two cases you can choose what value gets returned for the gradient when
|
||||
there is no path in the graph from x to y:
|
||||
|
||||
* `NONE`: Indicates that [None] will be returned if there is no path from x
|
||||
to y
|
||||
* `ZERO`: Indicates that a zero tensor will be returned in the shape of x.
|
||||
"""
|
||||
NONE = "none"
|
||||
ZERO = "zero"
|
||||
|
||||
|
||||
@tf_export("gradients")
|
||||
def gradients(ys,
|
||||
xs,
|
||||
@ -703,7 +678,7 @@ def _GradientsHelper(ys,
|
||||
curr_graph = src_graph
|
||||
while _IsFunction(curr_graph):
|
||||
func_graphs.append(curr_graph)
|
||||
if isinstance(curr_graph, funct_graph.FuncGraph):
|
||||
if isinstance(curr_graph, FuncGraph):
|
||||
curr_graph = curr_graph.outer_graph
|
||||
else:
|
||||
assert isinstance(curr_graph, framework_function._FuncGraph) # pylint: disable=protected-access
|
||||
|
43
tensorflow/python/ops/unconnected_gradients.py
Normal file
43
tensorflow/python/ops/unconnected_gradients.py
Normal file
@ -0,0 +1,43 @@
|
||||
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
"""Utilities for calculating gradients."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import enum
|
||||
|
||||
from tensorflow.python.util.tf_export import tf_export
|
||||
|
||||
|
||||
@tf_export("UnconnectedGradients")
|
||||
class UnconnectedGradients(enum.Enum):
|
||||
"""Controls how gradient computation behaves when y does not depend on x.
|
||||
|
||||
The gradient of y with respect to x can be zero in two different ways: there
|
||||
could be no differentiable path in the graph connecting x to y (and so we can
|
||||
statically prove that the gradient is zero) or it could be that runtime values
|
||||
of tensors in a particular execution lead to a gradient of zero (say, if a
|
||||
relu unit happens to not be activated). To allow you to distinguish between
|
||||
these two cases you can choose what value gets returned for the gradient when
|
||||
there is no path in the graph from x to y:
|
||||
|
||||
* `NONE`: Indicates that [None] will be returned if there is no path from x
|
||||
to y
|
||||
* `ZERO`: Indicates that a zero tensor will be returned in the shape of x.
|
||||
"""
|
||||
NONE = "none"
|
||||
ZERO = "zero"
|
Loading…
Reference in New Issue
Block a user