Convert tf.einsum docstring to use doctest.
PiperOrigin-RevId: 332881293 Change-Id: I9b26c57bc58e241205e5f8b1e531852797442d6a
This commit is contained in:
parent
e08252041d
commit
66fe41900b
@ -606,21 +606,25 @@ def _enclosing_tpu_context():
|
||||
@tf_export('einsum', 'linalg.einsum')
|
||||
@dispatch.add_dispatch_support
|
||||
def einsum(equation, *inputs, **kwargs):
|
||||
"""Tensor contraction over specified indices and outer product.
|
||||
r"""Tensor contraction over specified indices and outer product.
|
||||
|
||||
Einsum allows defining Tensors by defining their element-wise computation.
|
||||
This computation is defined by `equation`, a shorthand form based on Einstein
|
||||
summation. As an example, consider multiplying two matrices A and B to form a
|
||||
matrix C. The elements of C are given by:
|
||||
|
||||
```
|
||||
C[i,k] = sum_j A[i,j] * B[j,k]
|
||||
```
|
||||
$$ C_{i,k} = \sum_j A_{i,j} B_{j,k} $$
|
||||
|
||||
The corresponding `equation` is:
|
||||
or
|
||||
|
||||
```
|
||||
ij,jk->ik
|
||||
C[i,k] = sum_j A[i,j] * B[j,k]
|
||||
```
|
||||
|
||||
The corresponding einsum `equation` is:
|
||||
|
||||
```
|
||||
ij,jk->ik
|
||||
```
|
||||
|
||||
In general, to convert the element-wise equation into the `equation` string,
|
||||
@ -632,35 +636,98 @@ def einsum(equation, *inputs, **kwargs):
|
||||
3. drop summation signs, and (`ik = ij, jk`)
|
||||
4. move the output to the right, while replacing "=" with "->". (`ij,jk->ik`)
|
||||
|
||||
Note: If the output indices are not specified repeated indices are summed.
|
||||
So `ij,jk->ik` can be simplified to `ij,jk`.
|
||||
|
||||
Many common operations can be expressed in this way. For example:
|
||||
|
||||
```python
|
||||
# Matrix multiplication
|
||||
einsum('ij,jk->ik', m0, m1) # output[i,k] = sum_j m0[i,j] * m1[j, k]
|
||||
**Matrix multiplication**
|
||||
|
||||
# Dot product
|
||||
einsum('i,i->', u, v) # output = sum_i u[i]*v[i]
|
||||
>>> m0 = tf.random.normal(shape=[2, 3])
|
||||
>>> m1 = tf.random.normal(shape=[3, 5])
|
||||
>>> e = tf.einsum('ij,jk->ik', m0, m1)
|
||||
>>> # output[i,k] = sum_j m0[i,j] * m1[j, k]
|
||||
>>> print(e.shape)
|
||||
(2, 5)
|
||||
|
||||
# Outer product
|
||||
einsum('i,j->ij', u, v) # output[i,j] = u[i]*v[j]
|
||||
Repeated indices are summed if the output indices are not specified.
|
||||
|
||||
# Transpose
|
||||
einsum('ij->ji', m) # output[j,i] = m[i,j]
|
||||
>>> e = tf.einsum('ij,jk', m0, m1) # output[i,k] = sum_j m0[i,j] * m1[j, k]
|
||||
>>> print(e.shape)
|
||||
(2, 5)
|
||||
|
||||
# Trace
|
||||
einsum('ii', m) # output[j,i] = trace(m) = sum_i m[i, i]
|
||||
|
||||
# Batch matrix multiplication
|
||||
einsum('aij,ajk->aik', s, t) # out[a,i,k] = sum_j s[a,i,j] * t[a, j, k]
|
||||
```
|
||||
**Dot product**
|
||||
|
||||
To enable and control broadcasting, use an ellipsis. For example, to perform
|
||||
batch matrix multiplication with NumPy-style broadcasting across the batch
|
||||
dimensions, use:
|
||||
>>> u = tf.random.normal(shape=[5])
|
||||
>>> v = tf.random.normal(shape=[5])
|
||||
>>> e = tf.einsum('i,i->', u, v) # output = sum_i u[i]*v[i]
|
||||
>>> print(e.shape)
|
||||
()
|
||||
|
||||
```python
|
||||
einsum('...ij,...jk->...ik', u, v)
|
||||
```
|
||||
**Outer product**
|
||||
|
||||
>>> u = tf.random.normal(shape=[3])
|
||||
>>> v = tf.random.normal(shape=[5])
|
||||
>>> e = tf.einsum('i,j->ij', u, v) # output[i,j] = u[i]*v[j]
|
||||
>>> print(e.shape)
|
||||
(3, 5)
|
||||
|
||||
**Transpose**
|
||||
|
||||
>>> m = tf.ones(2,3)
|
||||
>>> e = tf.einsum('ij->ji', m0) # output[j,i] = m0[i,j]
|
||||
>>> print(e.shape)
|
||||
(3, 2)
|
||||
|
||||
**Diag**
|
||||
|
||||
>>> m = tf.reshape(tf.range(9), [3,3])
|
||||
>>> diag = tf.einsum('ii->i', m)
|
||||
>>> print(diag.shape)
|
||||
(3,)
|
||||
|
||||
**Trace**
|
||||
|
||||
>>> # Repeated indices are summed.
|
||||
>>> trace = tf.einsum('ii', m) # output[j,i] = trace(m) = sum_i m[i, i]
|
||||
>>> assert trace == sum(diag)
|
||||
>>> print(trace.shape)
|
||||
()
|
||||
|
||||
**Batch matrix multiplication**
|
||||
|
||||
>>> s = tf.random.normal(shape=[7,5,3])
|
||||
>>> t = tf.random.normal(shape=[7,3,2])
|
||||
>>> e = tf.einsum('bij,bjk->bik', s, t)
|
||||
>>> # output[a,i,k] = sum_j s[a,i,j] * t[a, j, k]
|
||||
>>> print(e.shape)
|
||||
(7, 5, 2)
|
||||
|
||||
This method does not support broadcasting on named-axes. All axes with
|
||||
matching labels should have the same length. If you have length-1 axes,
|
||||
use `tf.squeseze` or `tf.reshape` to eliminate them.
|
||||
|
||||
To write code that is agnostic to the number of indices in the input
|
||||
use an ellipsis. The ellipsis is a placeholder for "whatever other indices
|
||||
fit here".
|
||||
|
||||
For example, to perform a NumPy-style broadcasting-batch-matrix multiplication
|
||||
where the matrix multiply acts on the last two axes of the input, use:
|
||||
|
||||
>>> s = tf.random.normal(shape=[11, 7, 5, 3])
|
||||
>>> t = tf.random.normal(shape=[11, 7, 3, 2])
|
||||
>>> e = tf.einsum('...ij,...jk->...ik', s, t)
|
||||
>>> print(e.shape)
|
||||
(11, 7, 5, 2)
|
||||
|
||||
Einsum **will** broadcast over axes covered by the ellipsis.
|
||||
|
||||
>>> s = tf.random.normal(shape=[11, 1, 5, 3])
|
||||
>>> t = tf.random.normal(shape=[1, 7, 3, 2])
|
||||
>>> e = tf.einsum('...ij,...jk->...ik', s, t)
|
||||
>>> print(e.shape)
|
||||
(11, 7, 5, 2)
|
||||
|
||||
Args:
|
||||
equation: a `str` describing the contraction, in the same format as
|
||||
|
Loading…
x
Reference in New Issue
Block a user