Add bfloat support to XLA.

This is necessary in providing bfloat support in GPU backend.
RELNOTES: bfloat support is now added to XLA infra.
PiperOrigin-RevId: 175252067
This commit is contained in:
Yunxing Dai 2017-11-09 20:45:39 -08:00 committed by Andrew Selle
parent 685f604f63
commit 64d9aa1ace
19 changed files with 580 additions and 44 deletions

View File

@ -49,6 +49,9 @@ Status DataTypeToPrimitiveType(DataType data_type, xla::PrimitiveType* type) {
case tensorflow::DT_UINT64:
*type = xla::U64;
return Status::OK();
case tensorflow::DT_BFLOAT16:
*type = xla::BF16;
return Status::OK();
case tensorflow::DT_HALF:
*type = xla::F16;
return Status::OK();

View File

@ -77,6 +77,7 @@ cc_library(
hdrs = ["types.h"],
visibility = [":friends"],
deps = [
"//tensorflow/core:framework_lite",
"//tensorflow/core:lib",
"//third_party/eigen3",
],

View File

@ -33,6 +33,20 @@ limitations under the License.
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/logging.h"
#include "tensorflow/core/platform/types.h"
namespace {
using tensorflow::int64;
constexpr bool kLittleEndian = __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__;
// Converts between little and big endian, assuming elements in the array are 16
// bits long.
void ConvertEndianShort(char* bytes, int64 size) {
CHECK_EQ(size / 2, 0);
for (int64 i = 0; i < size; i += 2) {
std::swap(bytes[i], bytes[i + 1]);
}
}
} // namespace
namespace xla {
@ -169,6 +183,8 @@ Status Literal::Copy(const Literal& src_literal,
return CopyRange<int64>(src_literal, src_base, dest_base, copy_size);
case F16:
return CopyRange<half>(src_literal, src_base, dest_base, copy_size);
case BF16:
return CopyRange<bfloat16>(src_literal, src_base, dest_base, copy_size);
case F32:
return CopyRange<float>(src_literal, src_base, dest_base, copy_size);
case F64:
@ -200,6 +216,8 @@ Status Literal::Copy(const Literal& src_literal,
return *Literal::CreateR0<int64>(0);
case F16:
return *Literal::CreateR0<half>(static_cast<half>(0.0f));
case BF16:
return *Literal::CreateR0<bfloat16>(static_cast<bfloat16>(0.0f));
case F32:
return *Literal::CreateR0<float>(0);
case F64:
@ -285,6 +303,9 @@ Status Literal::Copy(const Literal& src_literal,
case F16:
return *Literal::CreateR0<half>(
static_cast<half>(-std::numeric_limits<float>::infinity()));
case BF16:
return *Literal::CreateR0<bfloat16>(
static_cast<bfloat16>(-std::numeric_limits<float>::infinity()));
case TUPLE:
LOG(FATAL) << "tuple element type has no minimum value";
case OPAQUE:
@ -321,6 +342,9 @@ Status Literal::Copy(const Literal& src_literal,
case F16:
return *Literal::CreateR0<half>(
static_cast<half>(std::numeric_limits<float>::infinity()));
case BF16:
return *Literal::CreateR0<bfloat16>(
static_cast<bfloat16>(std::numeric_limits<float>::infinity()));
case TUPLE:
LOG(FATAL) << "tuple element type has no maximum value";
case OPAQUE:
@ -428,6 +452,7 @@ std::unique_ptr<Literal> Literal::Transpose(
// The shape with affine layout resulting from that operation will be
// F32[8,11]{0,1}, since it leaves the original most minor (the 8 sized), the
// most minor.
//
// Essentially, given MinMaj(Di) the position of the Di dimension within the
// minor to major vector, and given T(Di) the index that the original Di
// dimension has within the transposed array, a layout is affine if
@ -536,6 +561,9 @@ string Literal::GetAsString(
}
case F16:
return tensorflow::strings::StrCat(Get<half>(multi_index));
case BF16:
return tensorflow::strings::StrCat(
static_cast<float>(Get<bfloat16>(multi_index)));
default:
return tensorflow::strings::StrCat(
"[", PrimitiveType_Name(shape().element_type()), "]");
@ -743,6 +771,8 @@ void* Literal::MutableInternalData() {
return reinterpret_cast<void*>(c64s_.data());
case F16:
return reinterpret_cast<void*>(f16s_.data());
case BF16:
return reinterpret_cast<void*>(bf16s_.data());
default:
LOG(FATAL) << "primitive type not supported in literals: "
<< PrimitiveType_Name(shape().element_type());
@ -785,6 +815,9 @@ void Literal::Reserve(int64 num_elements) {
case F16:
Resize<half>(num_elements, static_cast<half>(0.0f));
break;
case BF16:
Resize<bfloat16>(num_elements, static_cast<bfloat16>(0.0f));
break;
default:
LOG(FATAL) << "primitive type not supported in literals: "
<< PrimitiveType_Name(shape().element_type());
@ -824,6 +857,9 @@ tensorflow::Status Literal::ValidateLiteral() const {
case F16:
actual = f16s().size() / sizeof(half);
break;
case BF16:
actual = bf16s().size();
break;
default:
return tensorflow::errors::Unimplemented(
"unhandled element type for literal validation: " +
@ -920,6 +956,7 @@ StatusOr<std::unique_ptr<Literal>> ConvertIfDestTypeMatches(
CONVERT_IF_TYPES_MATCH(F16)
CONVERT_IF_TYPES_MATCH(F32)
CONVERT_IF_TYPES_MATCH(F64)
CONVERT_IF_TYPES_MATCH(BF16)
#undef CONVERT_IF_TYPES_MATCH
case C64:
return ConvertToC64<primitive_src_type>(src_literal);
@ -949,8 +986,9 @@ StatusOr<std::unique_ptr<Literal>> Literal::Convert(
CONVERT_IF_DEST_TYPE_MATCHES(F16)
CONVERT_IF_DEST_TYPE_MATCHES(F32)
CONVERT_IF_DEST_TYPE_MATCHES(F64)
CONVERT_IF_DEST_TYPE_MATCHES(BF16)
#undef CONVERT_IF_DEST_TYPE_MATCHES
// Other types are not yet supported.
// Other types are not yet supported.
default:
return InvalidArgument("Unimplemented: Convert from type %s to type %s",
PrimitiveType_Name(shape().element_type()).c_str(),
@ -1019,6 +1057,8 @@ bool Literal::operator==(const Literal& other) const {
return EqualElements<double>(*this, other, 0, &multi_index);
case F16:
return EqualElements<half>(*this, other, 0, &multi_index);
case BF16:
return EqualElements<bfloat16>(*this, other, 0, &multi_index);
case C64:
return EqualElements<complex64>(*this, other, 0, &multi_index);
default:
@ -1128,13 +1168,18 @@ tensorflow::gtl::MutableArraySlice<complex64> Literal::GetMutableArraySlice() {
template <>
tensorflow::gtl::MutableArraySlice<half> Literal::GetMutableArraySlice<half>() {
// TODO - there is an endianess problem here. fix it, or wait for uint16
// support in protobuf
auto values = mutable_f16s();
return tensorflow::gtl::MutableArraySlice<half>(values->data(),
values->size());
}
template <>
tensorflow::gtl::MutableArraySlice<bfloat16>
Literal::GetMutableArraySlice<bfloat16>() {
auto values = mutable_bf16s();
return {values->data(), values->size()};
}
template <>
tensorflow::gtl::ArraySlice<bool> Literal::GetArraySlice<bool>() const {
CHECK_EQ(shape().element_type(), PRED);
@ -1205,6 +1250,12 @@ tensorflow::gtl::ArraySlice<half> Literal::GetArraySlice<half>() const {
f16s().size() / sizeof(half));
}
template <>
tensorflow::gtl::ArraySlice<bfloat16> Literal::GetArraySlice<bfloat16>() const {
CHECK_EQ(shape().element_type(), BF16);
return {bf16s().data(), bf16s().size()};
}
template <>
tensorflow::gtl::ArraySlice<complex64> Literal::GetArraySlice<complex64>()
const {
@ -1253,6 +1304,9 @@ bool Literal::IsAll(int8 value) const {
return AllElementsEqualValue<double>(*this, value);
case F16:
return AllElementsEqualValue<half>(*this, static_cast<half>(value));
case BF16:
return AllElementsEqualValue<bfloat16>(*this,
static_cast<bfloat16>(value));
case PRED:
if (value == 0) {
return AllElementsEqualValue<bool>(*this, false);
@ -1274,6 +1328,9 @@ bool Literal::IsAllFloat(float value) const {
return AllElementsEqualValue<double>(*this, value);
case F16:
return AllElementsEqualValue<half>(*this, static_cast<half>(value));
case BF16:
return AllElementsEqualValue<bfloat16>(*this,
static_cast<bfloat16>(value));
default:
return false;
}
@ -1310,6 +1367,8 @@ bool Literal::IsZero(tensorflow::gtl::ArraySlice<int64> indices) const {
return Get<complex64>(indices) == complex64(0.0f, 0.0f);
case F16:
return Get<half>(indices) == static_cast<half>(0.0f);
case BF16:
return Get<bfloat16>(indices) == static_cast<bfloat16>(0.0f);
case PRED:
return Get<bool>(indices) == false;
default:
@ -1377,6 +1436,12 @@ void Literal::Resize<half>(int64 num_elements, half value) {
mutable_f16s()->resize(num_elements, value);
}
template <>
void Literal::Resize<bfloat16>(int64 num_elements, bfloat16 value) {
CHECK_EQ(ShapeUtil::ElementsIn(shape()), num_elements);
mutable_bf16s()->resize(num_elements, value);
}
template <>
void Literal::Resize<complex64>(int64 num_elements, complex64 value) {
CHECK_EQ(ShapeUtil::ElementsIn(shape()), num_elements);
@ -1425,6 +1490,19 @@ LiteralProto Literal::ToProto() const {
*proto.mutable_f16s() =
string(reinterpret_cast<const char*>(f16s_.data()),
f16s_.size() * sizeof(half));
if (!kLittleEndian) {
ConvertEndianShort(const_cast<char*>(proto.mutable_f16s()->data()),
proto.f16s().size());
}
break;
case BF16:
*proto.mutable_bf16s() =
string(reinterpret_cast<const char*>(bf16s_.data()),
bf16s_.size() * sizeof(bfloat16));
if (!kLittleEndian) {
ConvertEndianShort(const_cast<char*>(proto.mutable_bf16s()->data()),
proto.bf16s().size());
}
break;
case F32:
CopyToRepeatedField(proto.mutable_f32s(), f32s());
@ -1493,6 +1571,21 @@ void Literal::CopyFromProto(const LiteralProto& literal_proto) {
CHECK_EQ(0, s.size() % sizeof(half));
f16s_ = std::vector<half>(s.size() / sizeof(half));
memcpy(f16s_.data(), s.data(), s.size());
if (!kLittleEndian) {
ConvertEndianShort(reinterpret_cast<char*>(f16s_.data()), s.size());
}
break;
}
case BF16: {
const string& s(literal_proto.bf16s());
CHECK_EQ(0, s.size() % sizeof(bfloat16));
bf16s_ = std::vector<bfloat16>(s.size() / sizeof(bfloat16));
memcpy(bf16s_.data(), s.data(), s.size());
if (!kLittleEndian) {
ConvertEndianShort(reinterpret_cast<char*>(bf16s_.data()), s.size());
}
break;
}
case F32:

View File

@ -163,6 +163,11 @@ class Literal {
const std::vector<complex64>& c64s() const { return c64s_; }
std::vector<complex64>* mutable_c64s() { return &c64s_; }
int bf16s_size() const { return bf16s().size(); }
bfloat16 bf16s(int i) const { return bf16s_[i]; }
const std::vector<bfloat16>& bf16s() const { return bf16s_; }
std::vector<bfloat16>* mutable_bf16s() { return &bf16s_; }
int tuple_literals_size() const { return tuple_literals().size(); }
const Literal& tuple_literals(int i) const { return tuple_literals_[i]; }
Literal* add_tuple_literals() {
@ -622,6 +627,7 @@ class Literal {
std::vector<uint16> u16s_;
std::vector<uint32> u32s_;
std::vector<uint64> u64s_;
std::vector<bfloat16> bf16s_;
std::vector<half> f16s_;
std::vector<float> f32s_;
std::vector<double> f64s_;
@ -674,6 +680,9 @@ tensorflow::gtl::ArraySlice<double> Literal::GetArraySlice<double>() const;
template <>
tensorflow::gtl::ArraySlice<half> Literal::GetArraySlice<half>() const;
template <>
tensorflow::gtl::ArraySlice<bfloat16> Literal::GetArraySlice<bfloat16>() const;
template <>
tensorflow::gtl::ArraySlice<complex64> Literal::GetArraySlice<complex64>()
const;
@ -714,6 +723,9 @@ tensorflow::gtl::MutableArraySlice<double> Literal::GetMutableArraySlice();
template <>
tensorflow::gtl::MutableArraySlice<half> Literal::GetMutableArraySlice();
template <>
tensorflow::gtl::MutableArraySlice<bfloat16> Literal::GetMutableArraySlice();
template <>
tensorflow::gtl::MutableArraySlice<complex64> Literal::GetMutableArraySlice();
@ -747,6 +759,9 @@ void Literal::Resize<double>(int64 num_elements, double value);
template <>
void Literal::Resize<half>(int64 num_elements, half value);
template <>
void Literal::Resize<bfloat16>(int64 num_elements, bfloat16 value);
template <>
void Literal::Resize<complex64>(int64 num_elements, complex64 value);
@ -990,6 +1005,14 @@ inline half Literal::Get<half>(
return GetArraySlice<half>()[linear_index];
}
template <>
inline bfloat16 Literal::Get<bfloat16>(
tensorflow::gtl::ArraySlice<int64> multi_index) const {
CHECK(shape().element_type() == BF16);
int64 linear_index = LinearIndex(multi_index);
return GetArraySlice<bfloat16>()[linear_index];
}
template <typename NativeT>
void Literal::Set(tensorflow::gtl::ArraySlice<int64> multi_index,
NativeT value) {

View File

@ -110,6 +110,18 @@ TEST_F(LiteralUtilTest, LiteralScalarToString) {
auto c64_lit = Literal::CreateR0<complex64>({3.14f, 2.78f});
ASSERT_EQ("(3.14, 2.78)", c64_lit->ToString());
auto bf16_lit = Literal::CreateR0<bfloat16>(static_cast<bfloat16>(0.5f));
ASSERT_EQ("0.5", bf16_lit->ToString());
// 3.14 will be rounded to 3.125 in bfloat16 format (Round to nearest even).
auto bf16_lit_truncated =
Literal::CreateR0<bfloat16>(static_cast<bfloat16>(3.14f));
ASSERT_EQ("3.140625", bf16_lit_truncated->ToString());
auto bf16_lit_truncated2 =
Literal::CreateR0<bfloat16>(static_cast<bfloat16>(9.001f));
ASSERT_EQ("9", bf16_lit_truncated2->ToString());
}
TEST_F(LiteralUtilTest, LiteralVectorToString) {
@ -397,6 +409,18 @@ TEST_F(LiteralUtilTest, IsAll) {
EXPECT_FALSE(Literal::CreateR2<half>({{h8}, {h9}})->IsAll(8));
EXPECT_FALSE(Literal::CreateR2<half>({{h9}, {h8}})->IsAll(8));
bfloat16 b8(8.0f);
bfloat16 b9(9.0f);
EXPECT_TRUE(Literal::CreateR2<bfloat16>({{b8}, {b8}})->IsAll(8));
EXPECT_FALSE(Literal::CreateR2<bfloat16>({{b8}, {b9}})->IsAll(8));
EXPECT_FALSE(Literal::CreateR2<bfloat16>({{b9}, {b8}})->IsAll(8));
// 9.001 will be truncated to 9.0
bfloat16 b91(9.001f);
bfloat16 b90(9.00f);
EXPECT_TRUE(Literal::CreateR2<bfloat16>({{b91}, {b90}})->IsAll(9.0));
complex64 c8_9 = {8, 9};
EXPECT_FALSE(Literal::CreateR2<complex64>({{c8_9}, {c8_9}})->IsAll(8));
@ -691,6 +715,30 @@ TEST_F(LiteralUtilTest, PopulateR2C64) {
EXPECT_EQ(output, *expected);
}
TEST_F(LiteralUtilTest, PopulateWithValueR0BF16) {
Literal output;
bfloat16 h(0.25f);
output.PopulateWithValue<bfloat16>(h, {});
auto expected = Literal::CreateR0<bfloat16>(h);
EXPECT_EQ(output, *expected);
}
TEST_F(LiteralUtilTest, PopulateWithValueR1BF16) {
Literal output;
bfloat16 h(0.5f);
output.PopulateWithValue<bfloat16>(h, {3});
auto expected = Literal::CreateR1<bfloat16>({h, h, h});
EXPECT_EQ(output, *expected);
}
TEST_F(LiteralUtilTest, PopulateWithValueR2BF16) {
Literal output;
bfloat16 h(2.0f);
output.PopulateWithValue<bfloat16>(h, {2, 2});
auto expected = Literal::CreateR2<bfloat16>({{h, h}, {h, h}});
EXPECT_EQ(output, *expected);
}
TEST_F(LiteralUtilTest, PopulateWithValueR0F32) {
Literal output;
output.PopulateWithValue<float>(2.5f, {});
@ -975,6 +1023,14 @@ TEST_F(LiteralUtilTest, ConvertIfTypesMatch) {
{{half(26.0), half(0.0), half(28.0), half(0.0)},
{half(0.0), half(31.0), half(0.0), half(33.0)}},
}}, layout_r4_dim0major_);
auto bf16 = Literal::CreateR4WithLayout<bfloat16>({{
{{bfloat16(10.0), bfloat16(0.0), bfloat16(12.0), bfloat16(0.0)},
{bfloat16(0.0), bfloat16(15.0), bfloat16(0.0), bfloat16(17.0)}},
{{bfloat16(0.0), bfloat16(19.0), bfloat16(0.0), bfloat16(21.0)},
{bfloat16(22.0), bfloat16(0.0), bfloat16(24.0), bfloat16(0.0)}},
{{bfloat16(26.0), bfloat16(0.0), bfloat16(28.0), bfloat16(0.0)},
{bfloat16(0.0), bfloat16(31.0), bfloat16(0.0), bfloat16(33.0)}},
}}, layout_r4_dim0major_);
auto f32 = Literal::CreateR4WithLayout<float>({{
{{10.0f, 0.0f, 12.0f, 0.0f}, {0.0f, 15.0f, 0.0f, 17.0f}},
{{0.0f, 19.0f, 0.0f, 21.0f}, {22.0f, 0.0f, 24.0f, 0.0f}},
@ -1008,6 +1064,12 @@ TEST_F(LiteralUtilTest, ConvertIfTypesMatch) {
conv = s8->Convert(PRED).ConsumeValueOrDie();
EXPECT_EQ(*conv, *pred);
conv = bf16->Convert(S32).ConsumeValueOrDie();
EXPECT_EQ(*conv, *s32);
conv = bf16->Convert(F32).ConsumeValueOrDie();
EXPECT_EQ(*conv, *f32);
conv = pred->Convert(S32).ConsumeValueOrDie();
EXPECT_EQ(*conv, *int32_pred);

View File

@ -78,6 +78,11 @@ PrimitiveType NativeToPrimitiveType<double>() {
return F64;
}
template <>
PrimitiveType NativeToPrimitiveType<bfloat16>() {
return BF16;
}
template <>
PrimitiveType NativeToPrimitiveType<half>() {
return F16;
@ -89,7 +94,7 @@ PrimitiveType NativeToPrimitiveType<complex64>() {
}
bool IsFloatingPointType(PrimitiveType type) {
return type == F16 || type == F32 || type == F64;
return type == F16 || type == F32 || type == F64 || type == BF16;
}
bool IsComplexType(PrimitiveType type) { return type == C64; }
@ -118,6 +123,7 @@ int BitWidth(PrimitiveType type) {
case S16:
case U16:
case F16:
case BF16:
return 16;
case U32:

View File

@ -77,6 +77,8 @@ template <>
PrimitiveType NativeToPrimitiveType<double>();
template <>
PrimitiveType NativeToPrimitiveType<half>();
template <>
PrimitiveType NativeToPrimitiveType<bfloat16>();
// Complex
template <>
@ -167,6 +169,11 @@ struct PrimitiveTypeToNative<F16> {
using type = half;
};
template <>
struct PrimitiveTypeToNative<BF16> {
using type = bfloat16;
};
// Complex
template <>
struct PrimitiveTypeToNative<C64> {

View File

@ -13,14 +13,14 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#define EIGEN_USE_THREADS
#include "tensorflow/compiler/xla/service/backend.h"
#include <algorithm>
#include <string>
#include <utility>
#define EIGEN_USE_THREADS
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/compiler/xla/service/compiler.h"
#include "tensorflow/compiler/xla/service/platform_util.h"

View File

@ -12,15 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#define EIGEN_USE_THREADS
#include "tensorflow/compiler/xla/service/cpu/cpu_runtime.h"
#include <memory>
#include <string>
#include <tuple>
#define EIGEN_USE_THREADS
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/compiler/xla/array2d.h"
#include "tensorflow/compiler/xla/client/local_client.h"

View File

@ -1450,6 +1450,10 @@ HloEvaluator::HloEvaluator() {
typed_visitors_[F32] = MakeUnique<TypedVisitor<float>>(this);
typed_visitors_[F64] = MakeUnique<TypedVisitor<double>>(this);
typed_visitors_[C64] = MakeUnique<TypedVisitor<complex64>>(this);
typed_visitors_[BF16] = MakeUnique<FunctionVisitor>([](HloInstruction*) {
return Unimplemented("HloEvaluator: unhandled primitive type: BF16.");
});
typed_visitors_[TUPLE] = MakeUnique<FunctionVisitor>([](HloInstruction*) {
return Unimplemented("HloEvaluator: unhandled primitive type: TUPLE.");
});

View File

@ -12,6 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#define EIGEN_USE_THREADS
#include "tensorflow/compiler/xla/service/hlo_runner.h"
@ -19,8 +20,6 @@ limitations under the License.
#include <string>
#include <utility>
#define EIGEN_USE_THREADS
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/compiler/xla/layout_util.h"
#include "tensorflow/compiler/xla/ptr_util.h"

View File

@ -263,6 +263,7 @@ StatusOr<Shape> MakeShapeWithLayoutInternal(
case S32:
case S64:
case F16:
case BF16:
case F32:
case F64:
return true;

View File

@ -116,16 +116,18 @@ template <typename FloatT, typename UnsignedT>
::testing::AssertionResult CompareFloatsBitwiseEqual(FloatT lhs, FloatT rhs) {
auto ulhs = tensorflow::bit_cast<UnsignedT>(lhs);
auto urhs = tensorflow::bit_cast<UnsignedT>(rhs);
auto lhs_double = static_cast<double>(lhs);
auto rhs_double = static_cast<double>(rhs);
if (ulhs != urhs) {
return ::testing::AssertionFailure() << tensorflow::strings::Printf(
"floating values are not bitwise-equal; and equality testing "
"was requested: %s=%g=%a vs %s=%g=%a",
tensorflow::strings::StrCat(tensorflow::strings::Hex(ulhs))
.c_str(),
lhs, lhs,
lhs_double, lhs_double,
tensorflow::strings::StrCat(tensorflow::strings::Hex(urhs))
.c_str(),
rhs, rhs);
rhs_double, rhs_double);
}
return ::testing::AssertionSuccess();
}
@ -149,6 +151,10 @@ template <typename NativeT>
// Specializations for floating types that do bitwise comparisons when equality
// comparison is requested.
template <>
::testing::AssertionResult CompareEqual<bfloat16>(bfloat16 lhs, bfloat16 rhs) {
return CompareFloatsBitwiseEqual<bfloat16, uint16>(lhs, rhs);
}
template <>
::testing::AssertionResult CompareEqual<float>(float lhs, float rhs) {
return CompareFloatsBitwiseEqual<float, uint32>(lhs, rhs);
}
@ -238,6 +244,9 @@ bool ExpectLiteralsEqual(const Literal& expected, const Literal& actual,
case U64:
match = ExpectLiteralsEqual<uint64>(expected, actual, &multi_index, 0);
break;
case BF16:
match = ExpectLiteralsEqual<bfloat16>(expected, actual, &multi_index, 0);
break;
case F32:
match = ExpectLiteralsEqual<float>(expected, actual, &multi_index, 0);
break;

View File

@ -12,13 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#define EIGEN_USE_THREADS
#include "tensorflow/compiler/xla/tests/local_client_test_base.h"
#include <vector>
#define EIGEN_USE_THREADS
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/compiler/xla/client/local_client.h"
#include "tensorflow/compiler/xla/map_util.h"

View File

@ -19,6 +19,7 @@ limitations under the License.
#include <complex>
#include "third_party/eigen3/Eigen/Core"
#include "tensorflow/core/framework/numeric_types.h"
#include "tensorflow/core/platform/types.h"
#include <Eigen/Core>
@ -32,6 +33,8 @@ using ::tensorflow::int16;
using ::tensorflow::int32;
using ::tensorflow::int64;
using ::tensorflow::bfloat16;
using ::tensorflow::uint8;
using ::tensorflow::uint16;
using ::tensorflow::uint32;

View File

@ -46,6 +46,12 @@ enum PrimitiveType {
// converted to f16 from f32 at arbirary points in the computation.
F16 = 10;
F32 = 11;
// Truncated 16 bit floating-point format. This is similar to IEEE's 16 bit
// floating-point format, but uses 1 bit for the sign, 8 bits for the exponent
// and 7 bits for the mantissa.
BF16 = 16;
F64 = 12;
// Complex values of fixed width.
@ -63,6 +69,8 @@ enum PrimitiveType {
// An opaque type used for passing context specific data to a custom
// operation.
OPAQUE = 14;
// Next = 17
}
// Describes the value held inside padding elements.
@ -310,7 +318,10 @@ message LiteralProto {
repeated double f64s = 9;
repeated float c64s = 12; // Stored as interleaved real, imag floats.
repeated LiteralProto tuple_literals = 10;
bytes f16s = 11; // Note: the F16s are encoded in little endian byte order
// The F16s and BF16s are encoded in little endian byte order
bytes f16s = 11;
bytes bf16s = 13;
// Next = 14
}
message WindowDimension {

View File

@ -18,32 +18,24 @@ limitations under the License.
namespace tensorflow {
void FloatToBFloat16(const float* src, bfloat16* dst, int64 size) {
const uint16_t* p = reinterpret_cast<const uint16_t*>(src);
uint16_t* q = reinterpret_cast<uint16_t*>(dst);
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
for (; size != 0; p += 2, q++, size--) {
*q = p[0];
}
#else
for (; size != 0; p += 2, q++, size--) {
*q = p[1];
}
#endif
for (int64 i = 0; i < size; ++i) {
dst[i] = bfloat16(src[i]);
}
}
void BFloat16ToFloat(const bfloat16* src, float* dst, int64 size) {
const uint16_t* p = reinterpret_cast<const uint16_t*>(src);
uint16_t* q = reinterpret_cast<uint16_t*>(dst);
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
for (; size != 0; p++, q += 2, size--) {
q[0] = *p;
q[1] = 0;
for (; size != 0; p++, q += 2, size--) {
q[0] = *p;
q[1] = 0;
}
#else
for (; size != 0; p++, q += 2, size--) {
q[0] = 0;
q[1] = *p;
}
#else
for (; size != 0; p++, q += 2, size--) {
q[0] = 0;
q[1] = *p;
}
#endif
}

View File

@ -15,6 +15,7 @@ limitations under the License.
#include "tensorflow/core/framework/bfloat16.h"
#include "tensorflow/core/lib/core/casts.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/platform/test_benchmark.h"
@ -27,6 +28,97 @@ TEST(Bfloat16Test, Simple) {
EXPECT_EQ(0x4140, a.value);
}
float BinaryToFloat(uint32_t sign, uint32_t exponent, uint32_t high_mantissa,
uint32_t low_mantissa) {
return bit_cast<float>((sign << 31) + (exponent << 23) +
(high_mantissa << 16) + low_mantissa);
}
struct Bfloat16TestParam {
float input;
float expected;
};
class Bfloat16Test : public ::testing::Test,
public ::testing::WithParamInterface<Bfloat16TestParam> {};
TEST_P(Bfloat16Test, RoundOrTruncate) {
bfloat16 a(GetParam().input);
if (std::isnan(GetParam().input)) {
EXPECT_TRUE(std::isnan(float(a)));
return;
}
EXPECT_EQ(GetParam().expected, float(a));
}
INSTANTIATE_TEST_CASE_P(
Bfloat16Test_Instantiation, Bfloat16Test,
::testing::Values(
// More than half.
Bfloat16TestParam{
BinaryToFloat(0, 0b10000000, 0b1001000, 0b1111010111000011),
BinaryToFloat(0, 0b10000000, 0b1001001, 0b0000000000000000)},
Bfloat16TestParam{
BinaryToFloat(1, 0b10000000, 0b1001000, 0b1111010111000011),
BinaryToFloat(1, 0b10000000, 0b1001001, 0b0000000000000000)},
// Exact half.
Bfloat16TestParam{
BinaryToFloat(0, 0b10000000, 0b1001000, 0b1000000000000000),
BinaryToFloat(0, 0b10000000, 0b1001000, 0b0000000000000000)},
// NaN stays at NaN.
Bfloat16TestParam{
BinaryToFloat(0, 0b11111111, 0b0000000, 0b0000000000000001),
BinaryToFloat(0, 0b11111111, 0b1000000, 0b0000000000000000)},
// NaN stays at NaN -- no exponents overflow.
Bfloat16TestParam{
BinaryToFloat(0, 0b11111111, 0b1111111, 0b1111111111111111),
BinaryToFloat(0, 0b11111111, 0b1000000, 0b0000000000000000)},
// More than half, round to an odd number.
Bfloat16TestParam{
BinaryToFloat(1, 0b10000000, 0b1001000, 0b1100000000000000),
BinaryToFloat(1, 0b10000000, 0b1001001, 0b0000000000000000)},
// Less than half, truncate.
Bfloat16TestParam{
BinaryToFloat(0, 0b10000000, 0b1001000, 0b0000000000000000),
BinaryToFloat(0, 0b10000000, 0b1001000, 0b0000000000000000)},
// Less than half, truncate.
Bfloat16TestParam{
BinaryToFloat(0, 0b10000000, 0b1001000, 0b0100000000000000),
BinaryToFloat(0, 0b10000000, 0b1001000, 0b0000000000000000)},
// Exact at half, but result is already even.
Bfloat16TestParam{
BinaryToFloat(0, 0b10000000, 0b1001000, 0b1000000000000000),
BinaryToFloat(0, 0b10000000, 0b1001000, 0b0000000000000000)},
// Denormal values.
Bfloat16TestParam{
BinaryToFloat(0, 0b00000000, 0b1001000, 0b1000000000000000),
BinaryToFloat(0, 0b00000000, 0b1001000, 0b0000000000000000)},
Bfloat16TestParam{
BinaryToFloat(0, 0b00000000, 0b1111111, 0b1100000000000000),
BinaryToFloat(0, 0b00000001, 0b0000000, 0b0000000000000000)}));
TEST(Bfloat16Test, RoundWithFractionOverflow) {
// Still works with fraction overflow -- round to 4./
//
// Input 3.9960938:
// Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit)
// 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1100000000000000
//
// Should round to 4.0:
// Sign | Exp (8 bit) | Frac (first 7 bit)
// 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
bfloat16 a(3.9960938f);
EXPECT_EQ(4.0, float(a));
}
TEST(Bfloat16Test, Conversion) {
float a[100];
for (int i = 0; i < 100; ++i) {

View File

@ -44,29 +44,262 @@ typedef Eigen::QUInt16 quint16;
// see framework/bfloat16.h for description.
struct bfloat16 {
EIGEN_DEVICE_FUNC bfloat16() {}
EIGEN_DEVICE_FUNC explicit bfloat16(const float v) {
const uint16_t* p = reinterpret_cast<const uint16_t*>(&v);
explicit EIGEN_DEVICE_FUNC bfloat16(float v) {
uint32_t input;
memcpy(&input, &v, sizeof(uint32_t));
if ((~input & 0x7f800000) == 0 && (input & 0x007fffff) != 0) {
// If the value is a NaN, squash it to a qNaN with msb of fraction set,
// this makes sure after truncation we don't end up with an inf.
//
// qNaN magic: All exponent bits set + most significant bit of fraction
// set.
value = 0x7fc0;
} else {
// Fast rounding algorithm that rounds a half value to nearest even. This
// reduces expected error when we convert a large number of floats. Here
// is how it works:
//
// Definitions:
// To convert a float 32 to bfloat16, a float 32 can be viewed as 32 bits
// with the following tags:
//
// Sign | Exp (8 bits) | Frac (23 bits)
// S EEEEEEEE FFFFFFLRTTTTTTTTTTTTTTT
//
// S: Sign bit.
// E: Exponent bits.
// F: First 6 bits of fraction.
// L: Least significant bit of resulting bfloat16 if we truncate away the
// rest of the float32. This is also the 7th bit of fraction
// R: Rounding bit, 8th bit of fraction.
// T: Sticky bits, rest of fraction, 15 bits.
//
// To round half to nearest even, there are 3 cases where we want to round
// down (simply truncate the result of the bits away, which consists of
// rounding bit and sticky bits) and two cases where we want to round up
// (truncate then add one to the result).
//
// The fast converting algorithm simply adds lsb (L) to 0x7fff (15 bits of
// 1s) as the rounding bias, adds the rounding bias to the input, then
// truncates the last 16 bits away.
//
// To understand how it works, we can analyze this algorithm case by case:
//
// 1. L = 0, R = 0:
// Expect: round down, this is less than half value.
//
// Algorithm:
// - Rounding bias: 0x7fff + 0 = 0x7fff
// - Adding rounding bias to input may create any carry, depending on
// whether there is any value set to 1 in T bits.
// - R may be set to 1 if there is a carry.
// - L remains 0.
// - Note that this case also handles Inf and -Inf, where all fraction
// bits, including L, R and Ts are all 0. The output remains Inf after
// this algorithm.
//
// 2. L = 1, R = 0:
// Expect: round down, this is less than half value.
//
// Algorithm:
// - Rounding bias: 0x7fff + 1 = 0x8000
// - Adding rounding bias to input doesn't change sticky bits but
// adds 1 to rounding bit.
// - L remains 1.
//
// 3. L = 0, R = 1, all of T are 0:
// Expect: round down, this is exactly at half, the result is already
// even (L=0).
//
// Algorithm:
// - Rounding bias: 0x7fff + 0 = 0x7fff
// - Adding rounding bias to input sets all sticky bits to 1, but
// doesn't create a carry.
// - R remains 1.
// - L remains 0.
//
// 4. L = 1, R = 1:
// Expect: round up, this is exactly at half, the result needs to be
// round to the next even number.
//
// Algorithm:
// - Rounding bias: 0x7fff + 1 = 0x8000
// - Adding rounding bias to input doesn't change sticky bits, but
// creates a carry from rounding bit.
// - The carry sets L to 0, creates another carry bit and propagate
// forward to F bits.
// - If all the F bits are 1, a carry then propagates to the exponent
// bits, which then creates the minimum value with the next exponent
// value. Note that we won't have the case where exponents are all 1,
// since that's either a NaN (handled in the other if condition) or inf
// (handled in case 1).
//
// 5. L = 0, R = 1, any of T is 1:
// Expect: round up, this is greater than half.
//
// Algorithm:
// - Rounding bias: 0x7fff + 0 = 0x7fff
// - Adding rounding bias to input creates a carry from sticky bits,
// sets rounding bit to 0, then create another carry.
// - The second carry sets L to 1.
//
// Examples:
//
// Exact half value that is already even:
// Input:
// Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit)
// S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1000000000000000
//
// This falls into case 3. We truncate the rest of 16 bits and no
// carry is created into F and L:
//
// Output:
// Sign | Exp (8 bit) | Frac (first 7 bit)
// S E E E E E E E E F F F F F F L
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
//
// Exact half value, round to next even number:
// Input:
// Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit)
// S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1000000000000000
//
// This falls into case 4. We create a carry from R and T,
// which then propagates into L and F:
//
// Output:
// Sign | Exp (8 bit) | Frac (first 7 bit)
// S E E E E E E E E F F F F F F L
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
//
//
// Max denormal value round to min normal value:
// Input:
// Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit)
// S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT
// 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1111111111111111
//
// This falls into case 4. We create a carry from R and T,
// propagate into L and F, which then propagates into exponent
// bits:
//
// Output:
// Sign | Exp (8 bit) | Frac (first 7 bit)
// S E E E E E E E E F F F F F F L
// 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
//
// Max normal value round to Inf:
// Input:
// Sign | Exp (8 bit) | Frac (first 7 bit) | Frac (last 16 bit)
// S E E E E E E E E F F F F F F L RTTTTTTTTTTTTTTT
// 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1111111111111111
//
// This falls into case 4. We create a carry from R and T,
// propagate into L and F, which then propagates into exponent
// bits:
//
// Sign | Exp (8 bit) | Frac (first 7 bit)
// S E E E E E E E E F F F F F F L
// 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
//
//
// Least significant bit of resulting bfloat.
uint32_t lsb = (input >> 16) & 1;
uint32_t rounding_bias = 0x7fff + lsb;
input += rounding_bias;
value = static_cast<uint16_t>(input >> 16);
}
}
template <class T>
explicit EIGEN_DEVICE_FUNC bfloat16(const T& val)
: bfloat16(static_cast<float>(val)) {}
EIGEN_DEVICE_FUNC EIGEN_EXPLICIT_CAST(float) const {
float result;
uint16_t* q = reinterpret_cast<uint16_t*>(&result);
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
value = p[0];
q[0] = value;
q[1] = 0;
#else
value = p[1];
q[0] = 0;
q[1] = value;
#endif
return result;
}
EIGEN_DEVICE_FUNC explicit operator bool() const {
return static_cast<bool>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator Eigen::half() const {
return static_cast<Eigen::half>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator short() const {
return static_cast<short>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator int() const {
return static_cast<int>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator char() const {
return static_cast<char>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator signed char() const {
return static_cast<signed char>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator unsigned char() const {
return static_cast<unsigned char>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator unsigned int() const {
return static_cast<unsigned int>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator unsigned long() const {
return static_cast<unsigned long>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator unsigned long long() const {
return static_cast<unsigned long long>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator long long() const {
return static_cast<long long>(float(*this));
}
EIGEN_DEVICE_FUNC explicit operator double() const {
return static_cast<double>(float(*this));
}
uint16_t value;
};
inline bool operator==(const bfloat16 a, const bfloat16 b) {
return a.value == b.value;
}
inline bool operator!=(const bfloat16 a, const bfloat16 b) {
return a.value != b.value;
}
} // end namespace tensorflow
namespace Eigen {
template <>
struct NumTraits<tensorflow::bfloat16> : GenericNumTraits<uint16_t> {};
EIGEN_STRONG_INLINE bool operator==(const tensorflow::bfloat16 a,
const tensorflow::bfloat16 b) {
return a.value == b.value;
}
using ::tensorflow::operator==;
using ::tensorflow::operator!=;
} // namespace Eigen
#ifdef COMPILER_MSVC