Remove unnecessary uses of use_gpu for tests
PiperOrigin-RevId: 236034198
This commit is contained in:
parent
67a91b18b5
commit
64b4879c93
@ -20,7 +20,6 @@ from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.platform import test
|
||||
|
||||
@ -31,15 +30,14 @@ class CompareAndBitpackTest(test.TestCase):
|
||||
x, threshold,
|
||||
truth,
|
||||
expected_err_re=None):
|
||||
with test_util.use_gpu():
|
||||
ans = math_ops.compare_and_bitpack(x, threshold)
|
||||
if expected_err_re is None:
|
||||
tf_ans = self.evaluate(ans)
|
||||
self.assertShapeEqual(truth, ans)
|
||||
self.assertAllEqual(tf_ans, truth)
|
||||
else:
|
||||
with self.assertRaisesOpError(expected_err_re):
|
||||
self.evaluate(ans)
|
||||
ans = math_ops.compare_and_bitpack(x, threshold)
|
||||
if expected_err_re is None:
|
||||
tf_ans = self.evaluate(ans)
|
||||
self.assertShapeEqual(truth, ans)
|
||||
self.assertAllEqual(tf_ans, truth)
|
||||
else:
|
||||
with self.assertRaisesOpError(expected_err_re):
|
||||
self.evaluate(ans)
|
||||
|
||||
def _testBasic(self, dtype):
|
||||
rows = 371
|
||||
|
@ -63,104 +63,99 @@ class DynamicStitchTestBase(object):
|
||||
self.assertEqual([None], stitched_t.get_shape().as_list())
|
||||
|
||||
def testSimpleOneDimensional(self):
|
||||
with test_util.use_gpu():
|
||||
# Test various datatypes in the simple case to ensure that the op was
|
||||
# registered under those types.
|
||||
dtypes_to_test = [
|
||||
dtypes.float32, dtypes.qint8, dtypes.quint8, dtypes.qint32
|
||||
# Test various datatypes in the simple case to ensure that the op was
|
||||
# registered under those types.
|
||||
dtypes_to_test = [
|
||||
dtypes.float32, dtypes.qint8, dtypes.quint8, dtypes.qint32
|
||||
]
|
||||
for dtype in dtypes_to_test:
|
||||
indices = [
|
||||
constant_op.constant([0, 4, 7]),
|
||||
constant_op.constant([1, 6, 2, 3, 5])
|
||||
]
|
||||
data = [
|
||||
math_ops.cast(constant_op.constant([0, 40, 70]), dtype=dtype),
|
||||
math_ops.cast(
|
||||
constant_op.constant([10, 60, 20, 30, 50]), dtype=dtype)
|
||||
]
|
||||
for dtype in dtypes_to_test:
|
||||
indices = [
|
||||
constant_op.constant([0, 4, 7]),
|
||||
constant_op.constant([1, 6, 2, 3, 5])
|
||||
]
|
||||
data = [
|
||||
math_ops.cast(constant_op.constant([0, 40, 70]), dtype=dtype),
|
||||
math_ops.cast(
|
||||
constant_op.constant([10, 60, 20, 30, 50]), dtype=dtype)
|
||||
]
|
||||
stitched_t = self.stitch_op(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
self.assertAllEqual([0, 10, 20, 30, 40, 50, 60, 70], stitched_val)
|
||||
# Dimension 0 is max(flatten(indices))+1.
|
||||
self.assertEqual([8], stitched_t.get_shape().as_list())
|
||||
|
||||
def testOneListOneDimensional(self):
|
||||
with test_util.use_gpu():
|
||||
indices = [constant_op.constant([1, 6, 2, 3, 5, 0, 4, 7])]
|
||||
data = [constant_op.constant([10, 60, 20, 30, 50, 0, 40, 70])]
|
||||
stitched_t = self.stitch_op(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
self.assertAllEqual([0, 10, 20, 30, 40, 50, 60, 70], stitched_val)
|
||||
# Dimension 0 is max(flatten(indices))+1.
|
||||
self.assertEqual([8], stitched_t.get_shape().as_list())
|
||||
|
||||
def testOneListOneDimensional(self):
|
||||
indices = [constant_op.constant([1, 6, 2, 3, 5, 0, 4, 7])]
|
||||
data = [constant_op.constant([10, 60, 20, 30, 50, 0, 40, 70])]
|
||||
stitched_t = self.stitch_op(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
self.assertAllEqual([0, 10, 20, 30, 40, 50, 60, 70], stitched_val)
|
||||
# Dimension 0 is max(flatten(indices))+1.
|
||||
self.assertEqual([8], stitched_t.get_shape().as_list())
|
||||
|
||||
def testSimpleTwoDimensional(self):
|
||||
with test_util.use_gpu():
|
||||
indices = [
|
||||
constant_op.constant([0, 4, 7]),
|
||||
constant_op.constant([1, 6]),
|
||||
constant_op.constant([2, 3, 5])
|
||||
]
|
||||
data = [
|
||||
constant_op.constant([[0, 1], [40, 41], [70, 71]]),
|
||||
constant_op.constant([[10, 11], [60, 61]]),
|
||||
constant_op.constant([[20, 21], [30, 31], [50, 51]])
|
||||
]
|
||||
stitched_t = self.stitch_op(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
self.assertAllEqual([[0, 1], [10, 11], [20, 21], [30, 31], [40, 41],
|
||||
[50, 51], [60, 61], [70, 71]], stitched_val)
|
||||
# Dimension 0 is max(flatten(indices))+1.
|
||||
self.assertEqual([8, 2], stitched_t.get_shape().as_list())
|
||||
indices = [
|
||||
constant_op.constant([0, 4, 7]),
|
||||
constant_op.constant([1, 6]),
|
||||
constant_op.constant([2, 3, 5])
|
||||
]
|
||||
data = [
|
||||
constant_op.constant([[0, 1], [40, 41], [70, 71]]),
|
||||
constant_op.constant([[10, 11], [60, 61]]),
|
||||
constant_op.constant([[20, 21], [30, 31], [50, 51]])
|
||||
]
|
||||
stitched_t = self.stitch_op(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
self.assertAllEqual([[0, 1], [10, 11], [20, 21], [30, 31], [40, 41],
|
||||
[50, 51], [60, 61], [70, 71]], stitched_val)
|
||||
# Dimension 0 is max(flatten(indices))+1.
|
||||
self.assertEqual([8, 2], stitched_t.get_shape().as_list())
|
||||
|
||||
def testZeroSizeTensor(self):
|
||||
with test_util.use_gpu():
|
||||
indices = [
|
||||
constant_op.constant([0, 4, 7]),
|
||||
constant_op.constant([1, 6]),
|
||||
constant_op.constant([2, 3, 5]),
|
||||
array_ops.zeros([0], dtype=dtypes.int32)
|
||||
]
|
||||
data = [
|
||||
constant_op.constant([[0, 1], [40, 41], [70, 71]]),
|
||||
constant_op.constant([[10, 11], [60, 61]]),
|
||||
constant_op.constant([[20, 21], [30, 31], [50, 51]]),
|
||||
array_ops.zeros([0, 2], dtype=dtypes.int32)
|
||||
]
|
||||
stitched_t = self.stitch_op(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
self.assertAllEqual([[0, 1], [10, 11], [20, 21], [30, 31], [40, 41],
|
||||
[50, 51], [60, 61], [70, 71]], stitched_val)
|
||||
# Dimension 0 is max(flatten(indices))+1.
|
||||
self.assertEqual([8, 2], stitched_t.get_shape().as_list())
|
||||
indices = [
|
||||
constant_op.constant([0, 4, 7]),
|
||||
constant_op.constant([1, 6]),
|
||||
constant_op.constant([2, 3, 5]),
|
||||
array_ops.zeros([0], dtype=dtypes.int32)
|
||||
]
|
||||
data = [
|
||||
constant_op.constant([[0, 1], [40, 41], [70, 71]]),
|
||||
constant_op.constant([[10, 11], [60, 61]]),
|
||||
constant_op.constant([[20, 21], [30, 31], [50, 51]]),
|
||||
array_ops.zeros([0, 2], dtype=dtypes.int32)
|
||||
]
|
||||
stitched_t = self.stitch_op(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
self.assertAllEqual([[0, 1], [10, 11], [20, 21], [30, 31], [40, 41],
|
||||
[50, 51], [60, 61], [70, 71]], stitched_val)
|
||||
# Dimension 0 is max(flatten(indices))+1.
|
||||
self.assertEqual([8, 2], stitched_t.get_shape().as_list())
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testHigherRank(self):
|
||||
with self.session(use_gpu=True) as sess:
|
||||
indices = [
|
||||
constant_op.constant(6),
|
||||
constant_op.constant([4, 1]),
|
||||
constant_op.constant([[5, 2], [0, 3]])
|
||||
]
|
||||
data = [
|
||||
constant_op.constant([61., 62.]),
|
||||
constant_op.constant([[41., 42.], [11., 12.]]),
|
||||
constant_op.constant([[[51., 52.], [21., 22.]],
|
||||
[[1., 2.], [31., 32.]]])
|
||||
]
|
||||
stitched_t = self.stitch_op(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
correct = 10. * np.arange(7)[:, None] + [1., 2.]
|
||||
self.assertAllEqual(correct, stitched_val)
|
||||
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
|
||||
# Test gradients
|
||||
stitched_grad = 7. * stitched_val
|
||||
grads = gradients_impl.gradients(stitched_t, indices + data,
|
||||
stitched_grad)
|
||||
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
|
||||
for datum, grad in zip(data, sess.run(grads[3:])):
|
||||
self.assertAllEqual(7. * self.evaluate(datum), grad)
|
||||
indices = [
|
||||
constant_op.constant(6),
|
||||
constant_op.constant([4, 1]),
|
||||
constant_op.constant([[5, 2], [0, 3]])
|
||||
]
|
||||
data = [
|
||||
constant_op.constant([61., 62.]),
|
||||
constant_op.constant([[41., 42.], [11., 12.]]),
|
||||
constant_op.constant([[[51., 52.], [21., 22.]],
|
||||
[[1., 2.], [31., 32.]]])
|
||||
]
|
||||
stitched_t = self.stitch_op(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
correct = 10. * np.arange(7)[:, None] + [1., 2.]
|
||||
self.assertAllEqual(correct, stitched_val)
|
||||
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
|
||||
# Test gradients
|
||||
stitched_grad = 7. * stitched_val
|
||||
grads = gradients_impl.gradients(stitched_t, indices + data,
|
||||
stitched_grad)
|
||||
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
|
||||
for datum, grad in zip(data, self.evaluate(grads[3:])):
|
||||
self.assertAllEqual(7. * self.evaluate(datum), grad)
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testErrorIndicesMultiDimensional(self):
|
||||
@ -241,69 +236,66 @@ class ParallelDynamicStitchTest(DynamicStitchTestBase, test.TestCase):
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testHigherRank(self):
|
||||
with self.session(use_gpu=True) as sess:
|
||||
indices = [
|
||||
constant_op.constant(6),
|
||||
constant_op.constant([4, 1]),
|
||||
constant_op.constant([[5, 2], [0, 3]])
|
||||
]
|
||||
data = [
|
||||
constant_op.constant([61, 62], dtype=dtypes.float32),
|
||||
constant_op.constant([[41, 42], [11, 12]], dtype=dtypes.float32),
|
||||
constant_op.constant(
|
||||
[[[51, 52], [21, 22]], [[1, 2], [31, 32]]], dtype=dtypes.float32)
|
||||
]
|
||||
stitched_t = data_flow_ops.dynamic_stitch(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
correct = 10 * np.arange(7)[:, None] + [1.0, 2.0]
|
||||
self.assertAllEqual(correct, stitched_val)
|
||||
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
|
||||
# Test gradients
|
||||
stitched_grad = 7 * stitched_val
|
||||
grads = gradients_impl.gradients(stitched_t, indices + data,
|
||||
stitched_grad)
|
||||
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
|
||||
for datum, grad in zip(data, sess.run(grads[3:])):
|
||||
self.assertAllEqual(7.0 * self.evaluate(datum), grad)
|
||||
indices = [
|
||||
constant_op.constant(6),
|
||||
constant_op.constant([4, 1]),
|
||||
constant_op.constant([[5, 2], [0, 3]])
|
||||
]
|
||||
data = [
|
||||
constant_op.constant([61, 62], dtype=dtypes.float32),
|
||||
constant_op.constant([[41, 42], [11, 12]], dtype=dtypes.float32),
|
||||
constant_op.constant(
|
||||
[[[51, 52], [21, 22]], [[1, 2], [31, 32]]], dtype=dtypes.float32)
|
||||
]
|
||||
stitched_t = data_flow_ops.dynamic_stitch(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
correct = 10 * np.arange(7)[:, None] + [1.0, 2.0]
|
||||
self.assertAllEqual(correct, stitched_val)
|
||||
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
|
||||
# Test gradients
|
||||
stitched_grad = 7 * stitched_val
|
||||
grads = gradients_impl.gradients(stitched_t, indices + data,
|
||||
stitched_grad)
|
||||
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
|
||||
for datum, grad in zip(data, self.evaluate(grads[3:])):
|
||||
self.assertAllEqual(7.0 * self.evaluate(datum), grad)
|
||||
|
||||
# GPU version unit tests
|
||||
def testScalarGPU(self):
|
||||
with self.cached_session():
|
||||
indices = [constant_op.constant(0), constant_op.constant(1)]
|
||||
data = [constant_op.constant(40.0), constant_op.constant(60.0)]
|
||||
for step in -1, 1:
|
||||
stitched_t = data_flow_ops.dynamic_stitch(indices[::step], data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
self.assertAllEqual([40.0, 60.0][::step], stitched_val)
|
||||
# Dimension 0 is max(flatten(indices))+1.
|
||||
self.assertEqual([2], stitched_t.get_shape().as_list())
|
||||
indices = [constant_op.constant(0), constant_op.constant(1)]
|
||||
data = [constant_op.constant(40.0), constant_op.constant(60.0)]
|
||||
for step in -1, 1:
|
||||
stitched_t = data_flow_ops.dynamic_stitch(indices[::step], data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
self.assertAllEqual([40.0, 60.0][::step], stitched_val)
|
||||
# Dimension 0 is max(flatten(indices))+1.
|
||||
self.assertEqual([2], stitched_t.get_shape().as_list())
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testHigherRankGPU(self):
|
||||
with self.cached_session() as sess:
|
||||
indices = [
|
||||
constant_op.constant(6),
|
||||
constant_op.constant([4, 1]),
|
||||
constant_op.constant([[5, 2], [0, 3]])
|
||||
]
|
||||
data = [
|
||||
constant_op.constant([61, 62], dtype=dtypes.float32),
|
||||
constant_op.constant([[41, 42], [11, 12]], dtype=dtypes.float32),
|
||||
constant_op.constant(
|
||||
[[[51, 52], [21, 22]], [[1, 2], [31, 32]]], dtype=dtypes.float32)
|
||||
]
|
||||
stitched_t = data_flow_ops.dynamic_stitch(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
correct = 10 * np.arange(7)[:, None] + [1.0, 2.0]
|
||||
self.assertAllEqual(correct, stitched_val)
|
||||
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
|
||||
# Test gradients
|
||||
stitched_grad = 7 * stitched_val
|
||||
grads = gradients_impl.gradients(stitched_t, indices + data,
|
||||
stitched_grad)
|
||||
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
|
||||
for datum, grad in zip(data, sess.run(grads[3:])):
|
||||
self.assertAllEqual(7.0 * self.evaluate(datum), grad)
|
||||
indices = [
|
||||
constant_op.constant(6),
|
||||
constant_op.constant([4, 1]),
|
||||
constant_op.constant([[5, 2], [0, 3]])
|
||||
]
|
||||
data = [
|
||||
constant_op.constant([61, 62], dtype=dtypes.float32),
|
||||
constant_op.constant([[41, 42], [11, 12]], dtype=dtypes.float32),
|
||||
constant_op.constant(
|
||||
[[[51, 52], [21, 22]], [[1, 2], [31, 32]]], dtype=dtypes.float32)
|
||||
]
|
||||
stitched_t = data_flow_ops.dynamic_stitch(indices, data)
|
||||
stitched_val = self.evaluate(stitched_t)
|
||||
correct = 10 * np.arange(7)[:, None] + [1.0, 2.0]
|
||||
self.assertAllEqual(correct, stitched_val)
|
||||
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
|
||||
# Test gradients
|
||||
stitched_grad = 7 * stitched_val
|
||||
grads = gradients_impl.gradients(stitched_t, indices + data,
|
||||
stitched_grad)
|
||||
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
|
||||
for datum, grad in zip(data, self.evaluate(grads[3:])):
|
||||
self.assertAllEqual(7.0 * self.evaluate(datum), grad)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -21,7 +21,6 @@ from __future__ import print_function
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.platform import test
|
||||
|
||||
@ -44,15 +43,14 @@ class ExtractImagePatches(test.TestCase):
|
||||
strides = [1] + strides + [1]
|
||||
rates = [1] + rates + [1]
|
||||
|
||||
with test_util.use_gpu():
|
||||
out_tensor = array_ops.extract_image_patches(
|
||||
constant_op.constant(image),
|
||||
ksizes=ksizes,
|
||||
strides=strides,
|
||||
rates=rates,
|
||||
padding=padding,
|
||||
name="im2col")
|
||||
self.assertAllClose(patches, self.evaluate(out_tensor))
|
||||
out_tensor = array_ops.extract_image_patches(
|
||||
constant_op.constant(image),
|
||||
ksizes=ksizes,
|
||||
strides=strides,
|
||||
rates=rates,
|
||||
padding=padding,
|
||||
name="im2col")
|
||||
self.assertAllClose(patches, self.evaluate(out_tensor))
|
||||
|
||||
def testKsize1x1Stride1x1Rate1x1(self):
|
||||
"""Verifies that for 1x1 kernel the output equals the input."""
|
||||
|
@ -21,7 +21,6 @@ from __future__ import print_function
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.platform import test
|
||||
|
||||
@ -46,14 +45,13 @@ class ExtractVolumePatches(test.TestCase):
|
||||
ksizes = [1] + ksizes + [1]
|
||||
strides = [1] + strides + [1]
|
||||
|
||||
with test_util.use_gpu():
|
||||
out_tensor = array_ops.extract_volume_patches(
|
||||
constant_op.constant(image),
|
||||
ksizes=ksizes,
|
||||
strides=strides,
|
||||
padding=padding,
|
||||
name="im2col_3d")
|
||||
self.assertAllClose(patches, self.evaluate(out_tensor))
|
||||
out_tensor = array_ops.extract_volume_patches(
|
||||
constant_op.constant(image),
|
||||
ksizes=ksizes,
|
||||
strides=strides,
|
||||
padding=padding,
|
||||
name="im2col_3d")
|
||||
self.assertAllClose(patches, self.evaluate(out_tensor))
|
||||
|
||||
# pylint: disable=bad-whitespace
|
||||
def testKsize1x1x1Stride1x1x1(self):
|
||||
|
@ -66,64 +66,62 @@ class LuOpTest(test.TestCase):
|
||||
|
||||
def _verifyLu(self, x, output_idx_type=dtypes.int64):
|
||||
# Verify that Px = LU.
|
||||
with test_util.use_gpu():
|
||||
lu, perm = linalg_ops.lu(x, output_idx_type=output_idx_type)
|
||||
|
||||
lu, perm = linalg_ops.lu(x, output_idx_type=output_idx_type)
|
||||
# Prepare the lower factor of shape num_rows x num_rows
|
||||
lu_shape = np.array(lu.shape.as_list())
|
||||
batch_shape = lu_shape[:-2]
|
||||
num_rows = lu_shape[-2]
|
||||
num_cols = lu_shape[-1]
|
||||
|
||||
# Prepare the lower factor of shape num_rows x num_rows
|
||||
lu_shape = np.array(lu.shape.as_list())
|
||||
batch_shape = lu_shape[:-2]
|
||||
num_rows = lu_shape[-2]
|
||||
num_cols = lu_shape[-1]
|
||||
lower = array_ops.matrix_band_part(lu, -1, 0)
|
||||
|
||||
lower = array_ops.matrix_band_part(lu, -1, 0)
|
||||
if num_rows > num_cols:
|
||||
eye = linalg_ops.eye(
|
||||
num_rows, batch_shape=batch_shape, dtype=lower.dtype)
|
||||
lower = array_ops.concat([lower, eye[..., num_cols:]], axis=-1)
|
||||
elif num_rows < num_cols:
|
||||
lower = lower[..., :num_rows]
|
||||
|
||||
if num_rows > num_cols:
|
||||
eye = linalg_ops.eye(
|
||||
num_rows, batch_shape=batch_shape, dtype=lower.dtype)
|
||||
lower = array_ops.concat([lower, eye[..., num_cols:]], axis=-1)
|
||||
elif num_rows < num_cols:
|
||||
lower = lower[..., :num_rows]
|
||||
# Fill the diagonal with ones.
|
||||
ones_diag = array_ops.ones(
|
||||
np.append(batch_shape, num_rows), dtype=lower.dtype)
|
||||
lower = array_ops.matrix_set_diag(lower, ones_diag)
|
||||
|
||||
# Fill the diagonal with ones.
|
||||
ones_diag = array_ops.ones(
|
||||
np.append(batch_shape, num_rows), dtype=lower.dtype)
|
||||
lower = array_ops.matrix_set_diag(lower, ones_diag)
|
||||
# Prepare the upper factor.
|
||||
upper = array_ops.matrix_band_part(lu, 0, -1)
|
||||
|
||||
# Prepare the upper factor.
|
||||
upper = array_ops.matrix_band_part(lu, 0, -1)
|
||||
verification = math_ops.matmul(lower, upper)
|
||||
|
||||
verification = math_ops.matmul(lower, upper)
|
||||
# Permute the rows of product of the Cholesky factors.
|
||||
if num_rows > 0:
|
||||
# Reshape the product of the triangular factors and permutation indices
|
||||
# to a single batch dimension. This makes it easy to apply
|
||||
# invert_permutation and gather_nd ops.
|
||||
perm_reshaped = array_ops.reshape(perm, [-1, num_rows])
|
||||
verification_reshaped = array_ops.reshape(verification,
|
||||
[-1, num_rows, num_cols])
|
||||
# Invert the permutation in each batch.
|
||||
inv_perm_reshaped = map_fn.map_fn(array_ops.invert_permutation,
|
||||
perm_reshaped)
|
||||
batch_size = perm_reshaped.shape.as_list()[0]
|
||||
# Prepare the batch indices with the same shape as the permutation.
|
||||
# The corresponding batch index is paired with each of the `num_rows`
|
||||
# permutation indices.
|
||||
batch_indices = math_ops.cast(
|
||||
array_ops.broadcast_to(
|
||||
math_ops.range(batch_size)[:, None], perm_reshaped.shape),
|
||||
dtype=output_idx_type)
|
||||
permuted_verification_reshaped = array_ops.gather_nd(
|
||||
verification_reshaped,
|
||||
array_ops.stack([batch_indices, inv_perm_reshaped], axis=-1))
|
||||
|
||||
# Permute the rows of product of the Cholesky factors.
|
||||
if num_rows > 0:
|
||||
# Reshape the product of the triangular factors and permutation indices
|
||||
# to a single batch dimension. This makes it easy to apply
|
||||
# invert_permutation and gather_nd ops.
|
||||
perm_reshaped = array_ops.reshape(perm, [-1, num_rows])
|
||||
verification_reshaped = array_ops.reshape(verification,
|
||||
[-1, num_rows, num_cols])
|
||||
# Invert the permutation in each batch.
|
||||
inv_perm_reshaped = map_fn.map_fn(array_ops.invert_permutation,
|
||||
perm_reshaped)
|
||||
batch_size = perm_reshaped.shape.as_list()[0]
|
||||
# Prepare the batch indices with the same shape as the permutation.
|
||||
# The corresponding batch index is paired with each of the `num_rows`
|
||||
# permutation indices.
|
||||
batch_indices = math_ops.cast(
|
||||
array_ops.broadcast_to(
|
||||
math_ops.range(batch_size)[:, None], perm_reshaped.shape),
|
||||
dtype=output_idx_type)
|
||||
permuted_verification_reshaped = array_ops.gather_nd(
|
||||
verification_reshaped,
|
||||
array_ops.stack([batch_indices, inv_perm_reshaped], axis=-1))
|
||||
# Reshape the verification matrix back to the original shape.
|
||||
verification = array_ops.reshape(permuted_verification_reshaped,
|
||||
lu_shape)
|
||||
|
||||
# Reshape the verification matrix back to the original shape.
|
||||
verification = array_ops.reshape(permuted_verification_reshaped,
|
||||
lu_shape)
|
||||
|
||||
self._verifyLuBase(x, lower, upper, perm, verification,
|
||||
output_idx_type)
|
||||
self._verifyLuBase(x, lower, upper, perm, verification,
|
||||
output_idx_type)
|
||||
|
||||
def testBasic(self):
|
||||
data = np.array([[4., -1., 2.], [-1., 6., 0], [10., 0., 5.]])
|
||||
@ -140,46 +138,44 @@ class LuOpTest(test.TestCase):
|
||||
self._verifyLu(complex_data, output_idx_type=output_idx_type)
|
||||
|
||||
def testPivoting(self):
|
||||
with test_util.use_gpu():
|
||||
# This matrix triggers partial pivoting because the first diagonal entry
|
||||
# is small.
|
||||
data = np.array([[1e-9, 1., 0.], [1., 0., 0], [0., 1., 5]])
|
||||
self._verifyLu(data.astype(np.float32))
|
||||
# This matrix triggers partial pivoting because the first diagonal entry
|
||||
# is small.
|
||||
data = np.array([[1e-9, 1., 0.], [1., 0., 0], [0., 1., 5]])
|
||||
self._verifyLu(data.astype(np.float32))
|
||||
|
||||
for dtype in (np.float32, np.float64):
|
||||
self._verifyLu(data.astype(dtype))
|
||||
_, p = linalg_ops.lu(data)
|
||||
p_val = self.evaluate([p])
|
||||
# Make sure p_val is not the identity permutation.
|
||||
self.assertNotAllClose(np.arange(3), p_val)
|
||||
for dtype in (np.float32, np.float64):
|
||||
self._verifyLu(data.astype(dtype))
|
||||
_, p = linalg_ops.lu(data)
|
||||
p_val = self.evaluate([p])
|
||||
# Make sure p_val is not the identity permutation.
|
||||
self.assertNotAllClose(np.arange(3), p_val)
|
||||
|
||||
for dtype in (np.complex64, np.complex128):
|
||||
complex_data = np.tril(1j * data, -1).astype(dtype)
|
||||
complex_data += np.triu(-1j * data, 1).astype(dtype)
|
||||
complex_data += data
|
||||
self._verifyLu(complex_data)
|
||||
_, p = linalg_ops.lu(data)
|
||||
p_val = self.evaluate([p])
|
||||
# Make sure p_val is not the identity permutation.
|
||||
self.assertNotAllClose(np.arange(3), p_val)
|
||||
for dtype in (np.complex64, np.complex128):
|
||||
complex_data = np.tril(1j * data, -1).astype(dtype)
|
||||
complex_data += np.triu(-1j * data, 1).astype(dtype)
|
||||
complex_data += data
|
||||
self._verifyLu(complex_data)
|
||||
_, p = linalg_ops.lu(data)
|
||||
p_val = self.evaluate([p])
|
||||
# Make sure p_val is not the identity permutation.
|
||||
self.assertNotAllClose(np.arange(3), p_val)
|
||||
|
||||
def testInvalidMatrix(self):
|
||||
# LU factorization gives an error when the input is singular.
|
||||
# Note: A singular matrix may return without error but it won't be a valid
|
||||
# factorization.
|
||||
with test_util.use_gpu():
|
||||
for dtype in self.float_types:
|
||||
with self.assertRaises(errors.InvalidArgumentError):
|
||||
self.evaluate(
|
||||
linalg_ops.lu(
|
||||
np.array([[1., 2., 3.], [2., 4., 6.], [2., 3., 4.]],
|
||||
dtype=dtype)))
|
||||
with self.assertRaises(errors.InvalidArgumentError):
|
||||
self.evaluate(
|
||||
linalg_ops.lu(
|
||||
np.array([[[1., 2., 3.], [2., 4., 6.], [1., 2., 3.]],
|
||||
[[1., 2., 3.], [3., 4., 5.], [5., 6., 7.]]],
|
||||
dtype=dtype)))
|
||||
for dtype in self.float_types:
|
||||
with self.assertRaises(errors.InvalidArgumentError):
|
||||
self.evaluate(
|
||||
linalg_ops.lu(
|
||||
np.array([[1., 2., 3.], [2., 4., 6.], [2., 3., 4.]],
|
||||
dtype=dtype)))
|
||||
with self.assertRaises(errors.InvalidArgumentError):
|
||||
self.evaluate(
|
||||
linalg_ops.lu(
|
||||
np.array([[[1., 2., 3.], [2., 4., 6.], [1., 2., 3.]],
|
||||
[[1., 2., 3.], [3., 4., 5.], [5., 6., 7.]]],
|
||||
dtype=dtype)))
|
||||
|
||||
def testBatch(self):
|
||||
simple_array = np.array([[[1., -1.], [2., 5.]]]) # shape (1, 2, 2)
|
||||
@ -220,14 +216,13 @@ class LuOpTest(test.TestCase):
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testConcurrentExecutesWithoutError(self):
|
||||
with test_util.use_gpu():
|
||||
matrix1 = random_ops.random_normal([5, 5], seed=42)
|
||||
matrix2 = random_ops.random_normal([5, 5], seed=42)
|
||||
lu1, p1 = linalg_ops.lu(matrix1)
|
||||
lu2, p2 = linalg_ops.lu(matrix2)
|
||||
lu1_val, p1_val, lu2_val, p2_val = self.evaluate([lu1, p1, lu2, p2])
|
||||
self.assertAllEqual(lu1_val, lu2_val)
|
||||
self.assertAllEqual(p1_val, p2_val)
|
||||
matrix1 = random_ops.random_normal([5, 5], seed=42)
|
||||
matrix2 = random_ops.random_normal([5, 5], seed=42)
|
||||
lu1, p1 = linalg_ops.lu(matrix1)
|
||||
lu2, p2 = linalg_ops.lu(matrix2)
|
||||
lu1_val, p1_val, lu2_val, p2_val = self.evaluate([lu1, p1, lu2, p2])
|
||||
self.assertAllEqual(lu1_val, lu2_val)
|
||||
self.assertAllEqual(p1_val, p2_val)
|
||||
|
||||
|
||||
class LuBenchmark(test.Benchmark):
|
||||
|
@ -127,7 +127,7 @@ def _GetMatMulGradientTest(a_np_, b_np_, use_static_shape_, **kwargs_):
|
||||
epsilon = np.finfo(a_np_.dtype).eps
|
||||
delta = epsilon**(1.0 / 3.0)
|
||||
tol = 20 * delta
|
||||
with self.session(), test_util.use_gpu():
|
||||
with self.session():
|
||||
theoretical, numerical = gradient_checker_v2.compute_gradient(
|
||||
lambda x: math_ops.matmul(x, effective_b_np, **kwargs_),
|
||||
[effective_a_np],
|
||||
|
@ -32,12 +32,12 @@ class SquareRootOpTest(test.TestCase):
|
||||
|
||||
def _verifySquareRoot(self, matrix, np_type):
|
||||
matrix = matrix.astype(np_type)
|
||||
with test_util.use_gpu():
|
||||
# Verify that matmul(sqrtm(A), sqrtm(A)) = A
|
||||
sqrt = gen_linalg_ops.matrix_square_root(matrix)
|
||||
square = math_ops.matmul(sqrt, sqrt)
|
||||
self.assertShapeEqual(matrix, square)
|
||||
self.assertAllClose(matrix, square, rtol=1e-4, atol=1e-3)
|
||||
|
||||
# Verify that matmul(sqrtm(A), sqrtm(A)) = A
|
||||
sqrt = gen_linalg_ops.matrix_square_root(matrix)
|
||||
square = math_ops.matmul(sqrt, sqrt)
|
||||
self.assertShapeEqual(matrix, square)
|
||||
self.assertAllClose(matrix, square, rtol=1e-4, atol=1e-3)
|
||||
|
||||
def _verifySquareRootReal(self, x):
|
||||
for np_type in [np.float32, np.float64]:
|
||||
|
@ -41,20 +41,19 @@ class UnstackOpTest(test.TestCase):
|
||||
|
||||
def testSimple(self):
|
||||
np.random.seed(7)
|
||||
with test_util.use_gpu():
|
||||
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
||||
for dtype in [
|
||||
np.bool, np.float16, np.float32, np.float64, np.int32, np.int64
|
||||
]:
|
||||
data = np.random.randn(*shape).astype(dtype)
|
||||
# Convert data to a single tensorflow tensor
|
||||
x = constant_op.constant(data)
|
||||
# Unstack into a list of tensors
|
||||
cs = array_ops.unstack(x, num=shape[0])
|
||||
self.assertEqual(type(cs), list)
|
||||
self.assertEqual(len(cs), shape[0])
|
||||
cs = [self.evaluate(c) for c in cs]
|
||||
self.assertAllEqual(cs, data)
|
||||
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
||||
for dtype in [
|
||||
np.bool, np.float16, np.float32, np.float64, np.int32, np.int64
|
||||
]:
|
||||
data = np.random.randn(*shape).astype(dtype)
|
||||
# Convert data to a single tensorflow tensor
|
||||
x = constant_op.constant(data)
|
||||
# Unstack into a list of tensors
|
||||
cs = array_ops.unstack(x, num=shape[0])
|
||||
self.assertEqual(type(cs), list)
|
||||
self.assertEqual(len(cs), shape[0])
|
||||
cs = [self.evaluate(c) for c in cs]
|
||||
self.assertAllEqual(cs, data)
|
||||
|
||||
def testSimpleGpu(self):
|
||||
if not test_util.is_gpu_available():
|
||||
@ -80,7 +79,7 @@ class UnstackOpTest(test.TestCase):
|
||||
data = np.random.randn(*shape)
|
||||
shapes = [shape[1:]] * shape[0]
|
||||
for i in xrange(shape[0]):
|
||||
with self.cached_session(use_gpu=True):
|
||||
with self.cached_session():
|
||||
x = constant_op.constant(data)
|
||||
cs = array_ops.unstack(x, num=shape[0])
|
||||
err = gradient_checker.compute_gradient_error(x, shape, cs[i],
|
||||
@ -94,7 +93,7 @@ class UnstackOpTest(test.TestCase):
|
||||
out_shape = list(shape)
|
||||
del out_shape[1]
|
||||
for i in xrange(shape[1]):
|
||||
with self.cached_session(use_gpu=True):
|
||||
with self.cached_session():
|
||||
x = constant_op.constant(data)
|
||||
cs = array_ops.unstack(x, num=shape[1], axis=1)
|
||||
err = gradient_checker.compute_gradient_error(x, shape, cs[i],
|
||||
@ -103,12 +102,11 @@ class UnstackOpTest(test.TestCase):
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testInferNum(self):
|
||||
with self.cached_session():
|
||||
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
||||
x = array_ops.placeholder(np.float32, shape=shape)
|
||||
cs = array_ops.unstack(x)
|
||||
self.assertEqual(type(cs), list)
|
||||
self.assertEqual(len(cs), shape[0])
|
||||
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
|
||||
x = array_ops.placeholder(np.float32, shape=shape)
|
||||
cs = array_ops.unstack(x)
|
||||
self.assertEqual(type(cs), list)
|
||||
self.assertEqual(len(cs), shape[0])
|
||||
|
||||
@test_util.run_deprecated_v1
|
||||
def testCannotInferNumFromUnknownShape(self):
|
||||
|
Loading…
Reference in New Issue
Block a user