Remove unnecessary uses of use_gpu for tests

PiperOrigin-RevId: 236034198
This commit is contained in:
Gaurav Jain 2019-02-27 18:27:39 -08:00 committed by TensorFlower Gardener
parent 67a91b18b5
commit 64b4879c93
8 changed files with 269 additions and 290 deletions

View File

@ -20,7 +20,6 @@ from __future__ import print_function
import numpy as np
from tensorflow.python.framework import test_util
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
@ -31,15 +30,14 @@ class CompareAndBitpackTest(test.TestCase):
x, threshold,
truth,
expected_err_re=None):
with test_util.use_gpu():
ans = math_ops.compare_and_bitpack(x, threshold)
if expected_err_re is None:
tf_ans = self.evaluate(ans)
self.assertShapeEqual(truth, ans)
self.assertAllEqual(tf_ans, truth)
else:
with self.assertRaisesOpError(expected_err_re):
self.evaluate(ans)
ans = math_ops.compare_and_bitpack(x, threshold)
if expected_err_re is None:
tf_ans = self.evaluate(ans)
self.assertShapeEqual(truth, ans)
self.assertAllEqual(tf_ans, truth)
else:
with self.assertRaisesOpError(expected_err_re):
self.evaluate(ans)
def _testBasic(self, dtype):
rows = 371

View File

@ -63,104 +63,99 @@ class DynamicStitchTestBase(object):
self.assertEqual([None], stitched_t.get_shape().as_list())
def testSimpleOneDimensional(self):
with test_util.use_gpu():
# Test various datatypes in the simple case to ensure that the op was
# registered under those types.
dtypes_to_test = [
dtypes.float32, dtypes.qint8, dtypes.quint8, dtypes.qint32
# Test various datatypes in the simple case to ensure that the op was
# registered under those types.
dtypes_to_test = [
dtypes.float32, dtypes.qint8, dtypes.quint8, dtypes.qint32
]
for dtype in dtypes_to_test:
indices = [
constant_op.constant([0, 4, 7]),
constant_op.constant([1, 6, 2, 3, 5])
]
data = [
math_ops.cast(constant_op.constant([0, 40, 70]), dtype=dtype),
math_ops.cast(
constant_op.constant([10, 60, 20, 30, 50]), dtype=dtype)
]
for dtype in dtypes_to_test:
indices = [
constant_op.constant([0, 4, 7]),
constant_op.constant([1, 6, 2, 3, 5])
]
data = [
math_ops.cast(constant_op.constant([0, 40, 70]), dtype=dtype),
math_ops.cast(
constant_op.constant([10, 60, 20, 30, 50]), dtype=dtype)
]
stitched_t = self.stitch_op(indices, data)
stitched_val = self.evaluate(stitched_t)
self.assertAllEqual([0, 10, 20, 30, 40, 50, 60, 70], stitched_val)
# Dimension 0 is max(flatten(indices))+1.
self.assertEqual([8], stitched_t.get_shape().as_list())
def testOneListOneDimensional(self):
with test_util.use_gpu():
indices = [constant_op.constant([1, 6, 2, 3, 5, 0, 4, 7])]
data = [constant_op.constant([10, 60, 20, 30, 50, 0, 40, 70])]
stitched_t = self.stitch_op(indices, data)
stitched_val = self.evaluate(stitched_t)
self.assertAllEqual([0, 10, 20, 30, 40, 50, 60, 70], stitched_val)
# Dimension 0 is max(flatten(indices))+1.
self.assertEqual([8], stitched_t.get_shape().as_list())
def testOneListOneDimensional(self):
indices = [constant_op.constant([1, 6, 2, 3, 5, 0, 4, 7])]
data = [constant_op.constant([10, 60, 20, 30, 50, 0, 40, 70])]
stitched_t = self.stitch_op(indices, data)
stitched_val = self.evaluate(stitched_t)
self.assertAllEqual([0, 10, 20, 30, 40, 50, 60, 70], stitched_val)
# Dimension 0 is max(flatten(indices))+1.
self.assertEqual([8], stitched_t.get_shape().as_list())
def testSimpleTwoDimensional(self):
with test_util.use_gpu():
indices = [
constant_op.constant([0, 4, 7]),
constant_op.constant([1, 6]),
constant_op.constant([2, 3, 5])
]
data = [
constant_op.constant([[0, 1], [40, 41], [70, 71]]),
constant_op.constant([[10, 11], [60, 61]]),
constant_op.constant([[20, 21], [30, 31], [50, 51]])
]
stitched_t = self.stitch_op(indices, data)
stitched_val = self.evaluate(stitched_t)
self.assertAllEqual([[0, 1], [10, 11], [20, 21], [30, 31], [40, 41],
[50, 51], [60, 61], [70, 71]], stitched_val)
# Dimension 0 is max(flatten(indices))+1.
self.assertEqual([8, 2], stitched_t.get_shape().as_list())
indices = [
constant_op.constant([0, 4, 7]),
constant_op.constant([1, 6]),
constant_op.constant([2, 3, 5])
]
data = [
constant_op.constant([[0, 1], [40, 41], [70, 71]]),
constant_op.constant([[10, 11], [60, 61]]),
constant_op.constant([[20, 21], [30, 31], [50, 51]])
]
stitched_t = self.stitch_op(indices, data)
stitched_val = self.evaluate(stitched_t)
self.assertAllEqual([[0, 1], [10, 11], [20, 21], [30, 31], [40, 41],
[50, 51], [60, 61], [70, 71]], stitched_val)
# Dimension 0 is max(flatten(indices))+1.
self.assertEqual([8, 2], stitched_t.get_shape().as_list())
def testZeroSizeTensor(self):
with test_util.use_gpu():
indices = [
constant_op.constant([0, 4, 7]),
constant_op.constant([1, 6]),
constant_op.constant([2, 3, 5]),
array_ops.zeros([0], dtype=dtypes.int32)
]
data = [
constant_op.constant([[0, 1], [40, 41], [70, 71]]),
constant_op.constant([[10, 11], [60, 61]]),
constant_op.constant([[20, 21], [30, 31], [50, 51]]),
array_ops.zeros([0, 2], dtype=dtypes.int32)
]
stitched_t = self.stitch_op(indices, data)
stitched_val = self.evaluate(stitched_t)
self.assertAllEqual([[0, 1], [10, 11], [20, 21], [30, 31], [40, 41],
[50, 51], [60, 61], [70, 71]], stitched_val)
# Dimension 0 is max(flatten(indices))+1.
self.assertEqual([8, 2], stitched_t.get_shape().as_list())
indices = [
constant_op.constant([0, 4, 7]),
constant_op.constant([1, 6]),
constant_op.constant([2, 3, 5]),
array_ops.zeros([0], dtype=dtypes.int32)
]
data = [
constant_op.constant([[0, 1], [40, 41], [70, 71]]),
constant_op.constant([[10, 11], [60, 61]]),
constant_op.constant([[20, 21], [30, 31], [50, 51]]),
array_ops.zeros([0, 2], dtype=dtypes.int32)
]
stitched_t = self.stitch_op(indices, data)
stitched_val = self.evaluate(stitched_t)
self.assertAllEqual([[0, 1], [10, 11], [20, 21], [30, 31], [40, 41],
[50, 51], [60, 61], [70, 71]], stitched_val)
# Dimension 0 is max(flatten(indices))+1.
self.assertEqual([8, 2], stitched_t.get_shape().as_list())
@test_util.run_deprecated_v1
def testHigherRank(self):
with self.session(use_gpu=True) as sess:
indices = [
constant_op.constant(6),
constant_op.constant([4, 1]),
constant_op.constant([[5, 2], [0, 3]])
]
data = [
constant_op.constant([61., 62.]),
constant_op.constant([[41., 42.], [11., 12.]]),
constant_op.constant([[[51., 52.], [21., 22.]],
[[1., 2.], [31., 32.]]])
]
stitched_t = self.stitch_op(indices, data)
stitched_val = self.evaluate(stitched_t)
correct = 10. * np.arange(7)[:, None] + [1., 2.]
self.assertAllEqual(correct, stitched_val)
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
# Test gradients
stitched_grad = 7. * stitched_val
grads = gradients_impl.gradients(stitched_t, indices + data,
stitched_grad)
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
for datum, grad in zip(data, sess.run(grads[3:])):
self.assertAllEqual(7. * self.evaluate(datum), grad)
indices = [
constant_op.constant(6),
constant_op.constant([4, 1]),
constant_op.constant([[5, 2], [0, 3]])
]
data = [
constant_op.constant([61., 62.]),
constant_op.constant([[41., 42.], [11., 12.]]),
constant_op.constant([[[51., 52.], [21., 22.]],
[[1., 2.], [31., 32.]]])
]
stitched_t = self.stitch_op(indices, data)
stitched_val = self.evaluate(stitched_t)
correct = 10. * np.arange(7)[:, None] + [1., 2.]
self.assertAllEqual(correct, stitched_val)
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
# Test gradients
stitched_grad = 7. * stitched_val
grads = gradients_impl.gradients(stitched_t, indices + data,
stitched_grad)
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
for datum, grad in zip(data, self.evaluate(grads[3:])):
self.assertAllEqual(7. * self.evaluate(datum), grad)
@test_util.run_deprecated_v1
def testErrorIndicesMultiDimensional(self):
@ -241,69 +236,66 @@ class ParallelDynamicStitchTest(DynamicStitchTestBase, test.TestCase):
@test_util.run_deprecated_v1
def testHigherRank(self):
with self.session(use_gpu=True) as sess:
indices = [
constant_op.constant(6),
constant_op.constant([4, 1]),
constant_op.constant([[5, 2], [0, 3]])
]
data = [
constant_op.constant([61, 62], dtype=dtypes.float32),
constant_op.constant([[41, 42], [11, 12]], dtype=dtypes.float32),
constant_op.constant(
[[[51, 52], [21, 22]], [[1, 2], [31, 32]]], dtype=dtypes.float32)
]
stitched_t = data_flow_ops.dynamic_stitch(indices, data)
stitched_val = self.evaluate(stitched_t)
correct = 10 * np.arange(7)[:, None] + [1.0, 2.0]
self.assertAllEqual(correct, stitched_val)
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
# Test gradients
stitched_grad = 7 * stitched_val
grads = gradients_impl.gradients(stitched_t, indices + data,
stitched_grad)
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
for datum, grad in zip(data, sess.run(grads[3:])):
self.assertAllEqual(7.0 * self.evaluate(datum), grad)
indices = [
constant_op.constant(6),
constant_op.constant([4, 1]),
constant_op.constant([[5, 2], [0, 3]])
]
data = [
constant_op.constant([61, 62], dtype=dtypes.float32),
constant_op.constant([[41, 42], [11, 12]], dtype=dtypes.float32),
constant_op.constant(
[[[51, 52], [21, 22]], [[1, 2], [31, 32]]], dtype=dtypes.float32)
]
stitched_t = data_flow_ops.dynamic_stitch(indices, data)
stitched_val = self.evaluate(stitched_t)
correct = 10 * np.arange(7)[:, None] + [1.0, 2.0]
self.assertAllEqual(correct, stitched_val)
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
# Test gradients
stitched_grad = 7 * stitched_val
grads = gradients_impl.gradients(stitched_t, indices + data,
stitched_grad)
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
for datum, grad in zip(data, self.evaluate(grads[3:])):
self.assertAllEqual(7.0 * self.evaluate(datum), grad)
# GPU version unit tests
def testScalarGPU(self):
with self.cached_session():
indices = [constant_op.constant(0), constant_op.constant(1)]
data = [constant_op.constant(40.0), constant_op.constant(60.0)]
for step in -1, 1:
stitched_t = data_flow_ops.dynamic_stitch(indices[::step], data)
stitched_val = self.evaluate(stitched_t)
self.assertAllEqual([40.0, 60.0][::step], stitched_val)
# Dimension 0 is max(flatten(indices))+1.
self.assertEqual([2], stitched_t.get_shape().as_list())
indices = [constant_op.constant(0), constant_op.constant(1)]
data = [constant_op.constant(40.0), constant_op.constant(60.0)]
for step in -1, 1:
stitched_t = data_flow_ops.dynamic_stitch(indices[::step], data)
stitched_val = self.evaluate(stitched_t)
self.assertAllEqual([40.0, 60.0][::step], stitched_val)
# Dimension 0 is max(flatten(indices))+1.
self.assertEqual([2], stitched_t.get_shape().as_list())
@test_util.run_deprecated_v1
def testHigherRankGPU(self):
with self.cached_session() as sess:
indices = [
constant_op.constant(6),
constant_op.constant([4, 1]),
constant_op.constant([[5, 2], [0, 3]])
]
data = [
constant_op.constant([61, 62], dtype=dtypes.float32),
constant_op.constant([[41, 42], [11, 12]], dtype=dtypes.float32),
constant_op.constant(
[[[51, 52], [21, 22]], [[1, 2], [31, 32]]], dtype=dtypes.float32)
]
stitched_t = data_flow_ops.dynamic_stitch(indices, data)
stitched_val = self.evaluate(stitched_t)
correct = 10 * np.arange(7)[:, None] + [1.0, 2.0]
self.assertAllEqual(correct, stitched_val)
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
# Test gradients
stitched_grad = 7 * stitched_val
grads = gradients_impl.gradients(stitched_t, indices + data,
stitched_grad)
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
for datum, grad in zip(data, sess.run(grads[3:])):
self.assertAllEqual(7.0 * self.evaluate(datum), grad)
indices = [
constant_op.constant(6),
constant_op.constant([4, 1]),
constant_op.constant([[5, 2], [0, 3]])
]
data = [
constant_op.constant([61, 62], dtype=dtypes.float32),
constant_op.constant([[41, 42], [11, 12]], dtype=dtypes.float32),
constant_op.constant(
[[[51, 52], [21, 22]], [[1, 2], [31, 32]]], dtype=dtypes.float32)
]
stitched_t = data_flow_ops.dynamic_stitch(indices, data)
stitched_val = self.evaluate(stitched_t)
correct = 10 * np.arange(7)[:, None] + [1.0, 2.0]
self.assertAllEqual(correct, stitched_val)
self.assertEqual([7, 2], stitched_t.get_shape().as_list())
# Test gradients
stitched_grad = 7 * stitched_val
grads = gradients_impl.gradients(stitched_t, indices + data,
stitched_grad)
self.assertEqual(grads[:3], [None] * 3) # Indices have no gradients
for datum, grad in zip(data, self.evaluate(grads[3:])):
self.assertAllEqual(7.0 * self.evaluate(datum), grad)
if __name__ == "__main__":

View File

@ -21,7 +21,6 @@ from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import test
@ -44,15 +43,14 @@ class ExtractImagePatches(test.TestCase):
strides = [1] + strides + [1]
rates = [1] + rates + [1]
with test_util.use_gpu():
out_tensor = array_ops.extract_image_patches(
constant_op.constant(image),
ksizes=ksizes,
strides=strides,
rates=rates,
padding=padding,
name="im2col")
self.assertAllClose(patches, self.evaluate(out_tensor))
out_tensor = array_ops.extract_image_patches(
constant_op.constant(image),
ksizes=ksizes,
strides=strides,
rates=rates,
padding=padding,
name="im2col")
self.assertAllClose(patches, self.evaluate(out_tensor))
def testKsize1x1Stride1x1Rate1x1(self):
"""Verifies that for 1x1 kernel the output equals the input."""

View File

@ -21,7 +21,6 @@ from __future__ import print_function
import numpy as np
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import test_util
from tensorflow.python.ops import array_ops
from tensorflow.python.platform import test
@ -46,14 +45,13 @@ class ExtractVolumePatches(test.TestCase):
ksizes = [1] + ksizes + [1]
strides = [1] + strides + [1]
with test_util.use_gpu():
out_tensor = array_ops.extract_volume_patches(
constant_op.constant(image),
ksizes=ksizes,
strides=strides,
padding=padding,
name="im2col_3d")
self.assertAllClose(patches, self.evaluate(out_tensor))
out_tensor = array_ops.extract_volume_patches(
constant_op.constant(image),
ksizes=ksizes,
strides=strides,
padding=padding,
name="im2col_3d")
self.assertAllClose(patches, self.evaluate(out_tensor))
# pylint: disable=bad-whitespace
def testKsize1x1x1Stride1x1x1(self):

View File

@ -66,64 +66,62 @@ class LuOpTest(test.TestCase):
def _verifyLu(self, x, output_idx_type=dtypes.int64):
# Verify that Px = LU.
with test_util.use_gpu():
lu, perm = linalg_ops.lu(x, output_idx_type=output_idx_type)
lu, perm = linalg_ops.lu(x, output_idx_type=output_idx_type)
# Prepare the lower factor of shape num_rows x num_rows
lu_shape = np.array(lu.shape.as_list())
batch_shape = lu_shape[:-2]
num_rows = lu_shape[-2]
num_cols = lu_shape[-1]
# Prepare the lower factor of shape num_rows x num_rows
lu_shape = np.array(lu.shape.as_list())
batch_shape = lu_shape[:-2]
num_rows = lu_shape[-2]
num_cols = lu_shape[-1]
lower = array_ops.matrix_band_part(lu, -1, 0)
lower = array_ops.matrix_band_part(lu, -1, 0)
if num_rows > num_cols:
eye = linalg_ops.eye(
num_rows, batch_shape=batch_shape, dtype=lower.dtype)
lower = array_ops.concat([lower, eye[..., num_cols:]], axis=-1)
elif num_rows < num_cols:
lower = lower[..., :num_rows]
if num_rows > num_cols:
eye = linalg_ops.eye(
num_rows, batch_shape=batch_shape, dtype=lower.dtype)
lower = array_ops.concat([lower, eye[..., num_cols:]], axis=-1)
elif num_rows < num_cols:
lower = lower[..., :num_rows]
# Fill the diagonal with ones.
ones_diag = array_ops.ones(
np.append(batch_shape, num_rows), dtype=lower.dtype)
lower = array_ops.matrix_set_diag(lower, ones_diag)
# Fill the diagonal with ones.
ones_diag = array_ops.ones(
np.append(batch_shape, num_rows), dtype=lower.dtype)
lower = array_ops.matrix_set_diag(lower, ones_diag)
# Prepare the upper factor.
upper = array_ops.matrix_band_part(lu, 0, -1)
# Prepare the upper factor.
upper = array_ops.matrix_band_part(lu, 0, -1)
verification = math_ops.matmul(lower, upper)
verification = math_ops.matmul(lower, upper)
# Permute the rows of product of the Cholesky factors.
if num_rows > 0:
# Reshape the product of the triangular factors and permutation indices
# to a single batch dimension. This makes it easy to apply
# invert_permutation and gather_nd ops.
perm_reshaped = array_ops.reshape(perm, [-1, num_rows])
verification_reshaped = array_ops.reshape(verification,
[-1, num_rows, num_cols])
# Invert the permutation in each batch.
inv_perm_reshaped = map_fn.map_fn(array_ops.invert_permutation,
perm_reshaped)
batch_size = perm_reshaped.shape.as_list()[0]
# Prepare the batch indices with the same shape as the permutation.
# The corresponding batch index is paired with each of the `num_rows`
# permutation indices.
batch_indices = math_ops.cast(
array_ops.broadcast_to(
math_ops.range(batch_size)[:, None], perm_reshaped.shape),
dtype=output_idx_type)
permuted_verification_reshaped = array_ops.gather_nd(
verification_reshaped,
array_ops.stack([batch_indices, inv_perm_reshaped], axis=-1))
# Permute the rows of product of the Cholesky factors.
if num_rows > 0:
# Reshape the product of the triangular factors and permutation indices
# to a single batch dimension. This makes it easy to apply
# invert_permutation and gather_nd ops.
perm_reshaped = array_ops.reshape(perm, [-1, num_rows])
verification_reshaped = array_ops.reshape(verification,
[-1, num_rows, num_cols])
# Invert the permutation in each batch.
inv_perm_reshaped = map_fn.map_fn(array_ops.invert_permutation,
perm_reshaped)
batch_size = perm_reshaped.shape.as_list()[0]
# Prepare the batch indices with the same shape as the permutation.
# The corresponding batch index is paired with each of the `num_rows`
# permutation indices.
batch_indices = math_ops.cast(
array_ops.broadcast_to(
math_ops.range(batch_size)[:, None], perm_reshaped.shape),
dtype=output_idx_type)
permuted_verification_reshaped = array_ops.gather_nd(
verification_reshaped,
array_ops.stack([batch_indices, inv_perm_reshaped], axis=-1))
# Reshape the verification matrix back to the original shape.
verification = array_ops.reshape(permuted_verification_reshaped,
lu_shape)
# Reshape the verification matrix back to the original shape.
verification = array_ops.reshape(permuted_verification_reshaped,
lu_shape)
self._verifyLuBase(x, lower, upper, perm, verification,
output_idx_type)
self._verifyLuBase(x, lower, upper, perm, verification,
output_idx_type)
def testBasic(self):
data = np.array([[4., -1., 2.], [-1., 6., 0], [10., 0., 5.]])
@ -140,46 +138,44 @@ class LuOpTest(test.TestCase):
self._verifyLu(complex_data, output_idx_type=output_idx_type)
def testPivoting(self):
with test_util.use_gpu():
# This matrix triggers partial pivoting because the first diagonal entry
# is small.
data = np.array([[1e-9, 1., 0.], [1., 0., 0], [0., 1., 5]])
self._verifyLu(data.astype(np.float32))
# This matrix triggers partial pivoting because the first diagonal entry
# is small.
data = np.array([[1e-9, 1., 0.], [1., 0., 0], [0., 1., 5]])
self._verifyLu(data.astype(np.float32))
for dtype in (np.float32, np.float64):
self._verifyLu(data.astype(dtype))
_, p = linalg_ops.lu(data)
p_val = self.evaluate([p])
# Make sure p_val is not the identity permutation.
self.assertNotAllClose(np.arange(3), p_val)
for dtype in (np.float32, np.float64):
self._verifyLu(data.astype(dtype))
_, p = linalg_ops.lu(data)
p_val = self.evaluate([p])
# Make sure p_val is not the identity permutation.
self.assertNotAllClose(np.arange(3), p_val)
for dtype in (np.complex64, np.complex128):
complex_data = np.tril(1j * data, -1).astype(dtype)
complex_data += np.triu(-1j * data, 1).astype(dtype)
complex_data += data
self._verifyLu(complex_data)
_, p = linalg_ops.lu(data)
p_val = self.evaluate([p])
# Make sure p_val is not the identity permutation.
self.assertNotAllClose(np.arange(3), p_val)
for dtype in (np.complex64, np.complex128):
complex_data = np.tril(1j * data, -1).astype(dtype)
complex_data += np.triu(-1j * data, 1).astype(dtype)
complex_data += data
self._verifyLu(complex_data)
_, p = linalg_ops.lu(data)
p_val = self.evaluate([p])
# Make sure p_val is not the identity permutation.
self.assertNotAllClose(np.arange(3), p_val)
def testInvalidMatrix(self):
# LU factorization gives an error when the input is singular.
# Note: A singular matrix may return without error but it won't be a valid
# factorization.
with test_util.use_gpu():
for dtype in self.float_types:
with self.assertRaises(errors.InvalidArgumentError):
self.evaluate(
linalg_ops.lu(
np.array([[1., 2., 3.], [2., 4., 6.], [2., 3., 4.]],
dtype=dtype)))
with self.assertRaises(errors.InvalidArgumentError):
self.evaluate(
linalg_ops.lu(
np.array([[[1., 2., 3.], [2., 4., 6.], [1., 2., 3.]],
[[1., 2., 3.], [3., 4., 5.], [5., 6., 7.]]],
dtype=dtype)))
for dtype in self.float_types:
with self.assertRaises(errors.InvalidArgumentError):
self.evaluate(
linalg_ops.lu(
np.array([[1., 2., 3.], [2., 4., 6.], [2., 3., 4.]],
dtype=dtype)))
with self.assertRaises(errors.InvalidArgumentError):
self.evaluate(
linalg_ops.lu(
np.array([[[1., 2., 3.], [2., 4., 6.], [1., 2., 3.]],
[[1., 2., 3.], [3., 4., 5.], [5., 6., 7.]]],
dtype=dtype)))
def testBatch(self):
simple_array = np.array([[[1., -1.], [2., 5.]]]) # shape (1, 2, 2)
@ -220,14 +216,13 @@ class LuOpTest(test.TestCase):
@test_util.run_deprecated_v1
def testConcurrentExecutesWithoutError(self):
with test_util.use_gpu():
matrix1 = random_ops.random_normal([5, 5], seed=42)
matrix2 = random_ops.random_normal([5, 5], seed=42)
lu1, p1 = linalg_ops.lu(matrix1)
lu2, p2 = linalg_ops.lu(matrix2)
lu1_val, p1_val, lu2_val, p2_val = self.evaluate([lu1, p1, lu2, p2])
self.assertAllEqual(lu1_val, lu2_val)
self.assertAllEqual(p1_val, p2_val)
matrix1 = random_ops.random_normal([5, 5], seed=42)
matrix2 = random_ops.random_normal([5, 5], seed=42)
lu1, p1 = linalg_ops.lu(matrix1)
lu2, p2 = linalg_ops.lu(matrix2)
lu1_val, p1_val, lu2_val, p2_val = self.evaluate([lu1, p1, lu2, p2])
self.assertAllEqual(lu1_val, lu2_val)
self.assertAllEqual(p1_val, p2_val)
class LuBenchmark(test.Benchmark):

View File

@ -127,7 +127,7 @@ def _GetMatMulGradientTest(a_np_, b_np_, use_static_shape_, **kwargs_):
epsilon = np.finfo(a_np_.dtype).eps
delta = epsilon**(1.0 / 3.0)
tol = 20 * delta
with self.session(), test_util.use_gpu():
with self.session():
theoretical, numerical = gradient_checker_v2.compute_gradient(
lambda x: math_ops.matmul(x, effective_b_np, **kwargs_),
[effective_a_np],

View File

@ -32,12 +32,12 @@ class SquareRootOpTest(test.TestCase):
def _verifySquareRoot(self, matrix, np_type):
matrix = matrix.astype(np_type)
with test_util.use_gpu():
# Verify that matmul(sqrtm(A), sqrtm(A)) = A
sqrt = gen_linalg_ops.matrix_square_root(matrix)
square = math_ops.matmul(sqrt, sqrt)
self.assertShapeEqual(matrix, square)
self.assertAllClose(matrix, square, rtol=1e-4, atol=1e-3)
# Verify that matmul(sqrtm(A), sqrtm(A)) = A
sqrt = gen_linalg_ops.matrix_square_root(matrix)
square = math_ops.matmul(sqrt, sqrt)
self.assertShapeEqual(matrix, square)
self.assertAllClose(matrix, square, rtol=1e-4, atol=1e-3)
def _verifySquareRootReal(self, x):
for np_type in [np.float32, np.float64]:

View File

@ -41,20 +41,19 @@ class UnstackOpTest(test.TestCase):
def testSimple(self):
np.random.seed(7)
with test_util.use_gpu():
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
for dtype in [
np.bool, np.float16, np.float32, np.float64, np.int32, np.int64
]:
data = np.random.randn(*shape).astype(dtype)
# Convert data to a single tensorflow tensor
x = constant_op.constant(data)
# Unstack into a list of tensors
cs = array_ops.unstack(x, num=shape[0])
self.assertEqual(type(cs), list)
self.assertEqual(len(cs), shape[0])
cs = [self.evaluate(c) for c in cs]
self.assertAllEqual(cs, data)
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
for dtype in [
np.bool, np.float16, np.float32, np.float64, np.int32, np.int64
]:
data = np.random.randn(*shape).astype(dtype)
# Convert data to a single tensorflow tensor
x = constant_op.constant(data)
# Unstack into a list of tensors
cs = array_ops.unstack(x, num=shape[0])
self.assertEqual(type(cs), list)
self.assertEqual(len(cs), shape[0])
cs = [self.evaluate(c) for c in cs]
self.assertAllEqual(cs, data)
def testSimpleGpu(self):
if not test_util.is_gpu_available():
@ -80,7 +79,7 @@ class UnstackOpTest(test.TestCase):
data = np.random.randn(*shape)
shapes = [shape[1:]] * shape[0]
for i in xrange(shape[0]):
with self.cached_session(use_gpu=True):
with self.cached_session():
x = constant_op.constant(data)
cs = array_ops.unstack(x, num=shape[0])
err = gradient_checker.compute_gradient_error(x, shape, cs[i],
@ -94,7 +93,7 @@ class UnstackOpTest(test.TestCase):
out_shape = list(shape)
del out_shape[1]
for i in xrange(shape[1]):
with self.cached_session(use_gpu=True):
with self.cached_session():
x = constant_op.constant(data)
cs = array_ops.unstack(x, num=shape[1], axis=1)
err = gradient_checker.compute_gradient_error(x, shape, cs[i],
@ -103,12 +102,11 @@ class UnstackOpTest(test.TestCase):
@test_util.run_deprecated_v1
def testInferNum(self):
with self.cached_session():
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
x = array_ops.placeholder(np.float32, shape=shape)
cs = array_ops.unstack(x)
self.assertEqual(type(cs), list)
self.assertEqual(len(cs), shape[0])
for shape in (2,), (3,), (2, 3), (3, 2), (4, 3, 2):
x = array_ops.placeholder(np.float32, shape=shape)
cs = array_ops.unstack(x)
self.assertEqual(type(cs), list)
self.assertEqual(len(cs), shape[0])
@test_util.run_deprecated_v1
def testCannotInferNumFromUnknownShape(self):