Add a profiler that dumps data in pprof format.

Change: 155249446
This commit is contained in:
Anna R 2017-05-05 14:43:21 -08:00 committed by TensorFlower Gardener
parent 37e3b71b49
commit 63f7fae6a4
5 changed files with 682 additions and 0 deletions

View File

@ -97,6 +97,29 @@ py_test(
], ],
) )
py_library(
name = "pprof_profiler",
srcs = ["pprof_profiler.py"],
srcs_version = "PY2AND3",
deps = ["@pprof_profile_proto//:pprof_proto_py"],
)
py_test(
name = "pprof_profiler_test",
srcs = ["pprof_profiler_test.py"],
main = "pprof_profiler_test.py",
srcs_version = "PY2AND3",
tags = ["no_pip"], # TODO(annarev): get it working with pip.
deps = [
":pprof_profiler",
"//tensorflow/python:client",
"//tensorflow/python:client_testlib",
"//tensorflow/python:framework_test_lib",
"//tensorflow/python:platform_test",
"@pprof_profile_proto//:pprof_proto_py",
],
)
# ----------------------------------------------------------------------------- # -----------------------------------------------------------------------------
# Google-internal targets. These must be at the end for syncrepo. # Google-internal targets. These must be at the end for syncrepo.

View File

@ -0,0 +1,445 @@
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Profiler for TensorFlow models that outputs data in pprof format.
See https://github.com/google/pprof/blob/master/proto/profile.proto for pprof
profile format.
The following needs to be set for profiler to work:
* trace_level needs to be set to FULL_TRACE
* run_metadata object should be passed in to session.run call
Sample usage:
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
with tf.Session as sess:
...
sess.run(computation, run_metadata=run_metadata, options=options)
pprof_profiler.profile(sess.graph, run_metadata, output_dir)
The code above would output a pprof profile to separate output_dir/.*.pb.gz
file for each device. These files can be passed to pprof for formatting.
For e.g.:
pprof -png --nodecount=100 --sample_index=1 output_dir/profile_output.pb.gz
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from collections import defaultdict
from collections import namedtuple
import gzip
import os
import string
import sys
import time
from pprof import profile_pb2
if sys.version_info < (3,):
maketrans = string.maketrans
else:
maketrans = str.maketrans
ProfileDatum = namedtuple('ProfileDatum', [
'node_exec_stats', 'op_type', 'traceback'])
class StringTable(object):
"""Keeps track of strings to add to string_table in pprof proto."""
def __init__(self):
# Pprof requires first entry in string_table to be ''.
self._string_table = ['']
self._string_to_index = {'': 0}
def index_of(self, value_str):
"""Get index of value_str in the string table.
If value_str is not in the string table, we will add it at the end
and then return the new index.
Args:
value_str: (string) Value to lookup/add in/to the string table.
Returns:
Index of value_str in the string table.
"""
if value_str is None:
value_str = ''
if value_str in self._string_to_index:
return self._string_to_index[value_str]
index = len(self._string_table)
self._string_table.append(value_str)
self._string_to_index[value_str] = index
return index
def next_index(self):
"""Gets index that would be assigned to the next added string.
Returns:
Index of the next string if it was added.
"""
return len(self._string_table)
def string_table(self):
"""Returns a list of strings to store in pprof's string_table."""
return self._string_table
class Functions(object):
"""Keeps track of `Function` protos for pprof profile."""
def __init__(self, string_table):
"""Constructor.
Args:
string_table: A `StringTable` object.
"""
self._string_table = string_table
# Maps tuples in the form (file_path, function_name, start_line_number)
# to `Function` protos.
self._function_key_to_function = {}
def index_of(self, file_path, function_name, function_start_line):
"""Returns index of the function, adding the function if needed.
Args:
file_path: (string) Path to file where the function is defined.
function_name: (string) Function name.
function_start_line: (integer) Start line number of function definition.
Returns:
Function index.
"""
function_key = (file_path, function_name, function_start_line)
if function_key in self._function_key_to_function:
return self._function_key_to_function[function_key].id
else:
# Function indexes should start from 1
function_index = len(self._function_key_to_function) + 1
function = profile_pb2.Function()
function.id = function_index
function.name = self._string_table.index_of(function_name)
function.filename = self._string_table.index_of(file_path)
function.start_line = function_start_line
self._function_key_to_function[function_key] = function
return function_index
def function_protos(self):
"""Returns list of `profile_pb2.Function` protos."""
return self._function_key_to_function.values()
class Locations(object):
"""Keeps track of `Location` protos for pprof profile.
`Locations` store information about function call locations.
"""
def __init__(self, functions):
"""Constructor.
Args:
functions: A `Functions` object.
"""
self._functions = functions
# Maps tuples in the form (file_path, called_function_name, line_number)
# to `Location` protos.
self._location_key_to_location = {}
def index_of(
self, file_path, line_number, called_function_name, called_file_path,
called_function_start_line):
"""Returns index of the location, adding the location if needed.
Args:
file_path: (string) Path to file that makes the call.
line_number: (integer) Call line number.
called_function_name: (string) Function name of the function called at
`file_path` and `line_number`.
called_file_path: (string) Path to file where the called function is
defined.
called_function_start_line: (integer) Start line number of called
function definition in `called_file_path` file.
Returns:
Index of location.
"""
location_key = (file_path, called_function_name, line_number)
if location_key in self._location_key_to_location:
location = self._location_key_to_location[location_key]
return location.id
else:
# Location indexes should start from 1
location_index = len(self._location_key_to_location) + 1
location = profile_pb2.Location()
location.id = location_index
self._location_key_to_location[location_key] = location
line = location.line.add()
line.function_id = self._functions.index_of(
called_file_path, called_function_name, called_function_start_line)
line.line = line_number
return location_index
def location_protos(self):
"""Returns list of `profile_pb2.Location` protos."""
return self._location_key_to_location.values()
class Samples(object):
"""Keeps track of `Sample` protos for pprof profile.
Samples store the following statistics in order:
count, all_time, op_time
"""
def __init__(self, string_table):
"""Constructor.
Args:
string_table: A `StringTable` object.
"""
self._string_table = string_table
# TODO(annarev): figure out if location is unique for each node name.
# If not, also key this dictionary based on location ids.
self._node_name_to_sample = {}
def add(self, datum, location_ids):
"""Adds a sample data point.
Args:
datum: `ProfileDatum` to add a sample for.
location_ids: List of numberic location ids for this
sample.
"""
node_name = datum.node_exec_stats.node_name
if node_name in self._node_name_to_sample:
sample = self._node_name_to_sample[node_name]
sample.location_id.extend(location_ids)
else:
sample = profile_pb2.Sample()
# Sample stores 3 values: count, all_time, op_time
sample.value.extend([0, 0, 0])
label = sample.label.add()
label.key = self._string_table.index_of('node_name')
label.str = self._string_table.index_of(node_name)
label = sample.label.add()
label.key = self._string_table.index_of('op_type')
label.str = self._string_table.index_of(datum.op_type)
self._node_name_to_sample[node_name] = sample
sample.value[0] += 1
sample.value[1] += datum.node_exec_stats.all_end_rel_micros
sample.value[2] += (
datum.node_exec_stats.op_end_rel_micros -
datum.node_exec_stats.op_start_rel_micros)
def get_sample_protos(self):
"""Returns list of `Sample` protos for pprof profile."""
return self._node_name_to_sample.values()
class PprofProfiler(object):
"""Creates profiles in pprof format."""
def __init__(self, graph, run_metadata):
"""Constructor.
Args:
graph: A `Graph` instance.
run_metadata: A list of `RunMetadata` objects.
"""
self._graph = graph
self._run_metadata = run_metadata
self._string_table = StringTable()
self._functions = Functions(self._string_table)
self._locations = Locations(self._functions)
def profile(self):
"""Generates pprof profiles.
Returns:
Dictionary mapping from device name to proto in `profile_pb2.Profile`
format.
"""
profiles = {}
data_generator_func = self._get_profile_data_generator()
for device_index, device_stats in enumerate(
self._run_metadata.step_stats.dev_stats):
# Create profile
pprof_proto = self._get_pprof_proto(data_generator_func(device_stats))
if not pprof_proto.sample:
print(
'Not enough data to create profile for device %s. Did you pass '
'RunMetadata to session.run call?' % device_stats.device)
continue
# Add device name comment
device_count = len(self._run_metadata.step_stats.dev_stats)
device_description = (
'Device %d of %d: %s' %
(device_index + 1, device_count, device_stats.device))
device_description_str_index = self._string_table.next_index()
pprof_proto.string_table.append(device_description)
pprof_proto.comment.append(device_description_str_index)
profiles[device_stats.device] = pprof_proto
return profiles
def _get_pprof_proto(self, profile_datum_generator):
"""Returns profile data in pprof proto format.
Args:
profile_datum_generator: Generator outputting `ProfileDatum` objects.
Returns:
A proto in pprof format.
"""
pprof_profile = profile_pb2.Profile()
samples = Samples(self._string_table)
for datum in profile_datum_generator:
if not datum.traceback:
continue
stack_frame = datum.traceback[-1]
after_apply_op = False
location_ids = []
# We add locations from stack trace in bottom-up order.
for stack_frame_index in reversed(range(len(datum.traceback) - 1)):
prev_stack_frame = stack_frame
stack_frame = datum.traceback[stack_frame_index]
# Call at current frame calls function at previous frame.
prev_file_path = prev_stack_frame[0]
prev_function = prev_stack_frame[2]
prev_function_start_line = prev_stack_frame[4]
curr_file_path = stack_frame[0]
curr_line_number = stack_frame[1]
# Skip all calls up to apply_op since they are the same for all ops.
if not after_apply_op:
if prev_function == 'apply_op':
after_apply_op = True
continue
location_index = self._locations.index_of(
curr_file_path, curr_line_number,
prev_function, prev_file_path, prev_function_start_line)
location_ids.append(location_index)
samples.add(datum, location_ids)
sample_type_description = 'count'
sample_type = pprof_profile.sample_type.add()
sample_type.type = self._string_table.index_of(sample_type_description)
sample_type.unit = self._string_table.index_of('count')
sample_type_description = 'all_time'
sample_type = pprof_profile.sample_type.add()
sample_type.type = self._string_table.index_of(sample_type_description)
sample_type.unit = self._string_table.index_of('nanoseconds')
sample_type_description = 'op_time'
sample_type = pprof_profile.sample_type.add()
sample_type.type = self._string_table.index_of(sample_type_description)
sample_type.unit = self._string_table.index_of('nanoseconds')
pprof_profile.string_table.extend(self._string_table.string_table())
pprof_profile.sample.extend(samples.get_sample_protos())
pprof_profile.function.extend(self._functions.function_protos())
pprof_profile.location.extend(self._locations.location_protos())
return pprof_profile
def _get_profile_data_generator(self):
"""Get function that generates `ProfileDatum` objects.
Returns:
A function that generates `ProfileDatum` objects.
"""
node_to_traceback = defaultdict(list)
node_to_op_type = defaultdict(str)
for op in self._graph.get_operations():
node_to_traceback[op.name] = op.traceback_with_start_lines
node_to_op_type[op.name] = op.type
def profile_data_generator(device_step_stats):
for node_stats in device_step_stats.node_stats:
if node_stats.node_name == '_SOURCE' or node_stats.node_name == '_SINK':
continue
yield ProfileDatum(
node_stats,
node_to_op_type[node_stats.node_name],
node_to_traceback[node_stats.node_name])
return profile_data_generator
def get_profiles(graph, run_metadata):
"""Generate profiles in pprof format.
See https://github.com/google/pprof/blob/master/proto/profile.proto
for pprof proto format.
Args:
graph: A `Graph` object.
run_metadata: A `RunMetadata` proto.
Returns:
A dictionary mapping from device name to pprof proto for that device.
"""
return PprofProfiler(graph, run_metadata).profile()
def profile(graph, run_metadata, output_dir=None):
"""Generate profiles in pprof format.
See https://github.com/google/pprof/blob/master/proto/profile.proto
for pprof proto format.
Args:
graph: A `Graph` object.
run_metadata: A `RunMetadata` proto.
output_dir: (string) Directory to output pprof profile to.
Profile files for each device will be stored in compressed
serialized proto format. If output_dir is None, profile protos
will be printed to stdout instead.
Returns:
List of output files created by this profile call.
(Note: this list will be empty if output_dir is None)
"""
profiles = get_profiles(graph, run_metadata)
output_file_template = None
if output_dir:
if not os.path.isdir(output_dir):
os.makedirs(output_dir)
time_suffix = time.strftime('%Y%m%d%H%M%S')
output_file_template = os.path.join(
output_dir, '%s_' + time_suffix + '.pb.gz')
profile_files = []
for device, pprof_proto in profiles.items():
if output_file_template is None:
print('No output directory specified, printing to stdout instead.')
print(pprof_proto)
else:
device_name = str(device).strip('/').translate(
maketrans('/:', '__'))
profile_file = output_file_template % device_name
profile_files.append(profile_file)
with gzip.open(profile_file, 'w') as output_file:
print('Writing profile to %s...' % profile_file)
output_file.write(pprof_proto.SerializeToString())
return profile_files

View File

@ -0,0 +1,164 @@
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the 'License');
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an 'AS IS' BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for pprof_profiler."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
from pprof import profile_pb2
from tensorflow.contrib.tfprof.python.tools.tfprof import pprof_profiler
from tensorflow.core.framework import step_stats_pb2
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.framework import constant_op
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.platform import test
class PprofProfilerTest(test.TestCase):
def testDataEmpty(self):
output_dir = test.get_temp_dir()
run_metadata = config_pb2.RunMetadata()
graph = test.mock.MagicMock()
graph.get_operations.return_value = []
profiles = pprof_profiler.get_profiles(graph, run_metadata)
self.assertEquals(0, len(profiles))
profile_files = pprof_profiler.profile(
graph, run_metadata, output_dir)
self.assertEquals(0, len(profile_files))
def testRunMetadataEmpty(self):
output_dir = test.get_temp_dir()
run_metadata = config_pb2.RunMetadata()
graph = test.mock.MagicMock()
op1 = test.mock.MagicMock()
op1.name = 'Add/123'
op1.traceback = [('a/b/file1', 10, 'some_var')]
op1.type = 'add'
graph.get_operations.return_value = [op1]
profiles = pprof_profiler.get_profiles(graph, run_metadata)
self.assertEquals(0, len(profiles))
profile_files = pprof_profiler.profile(
graph, run_metadata, output_dir)
self.assertEquals(0, len(profile_files))
def testValidProfile(self):
output_dir = test.get_temp_dir()
run_metadata = config_pb2.RunMetadata()
node1 = step_stats_pb2.NodeExecStats(
node_name='Add/123',
op_start_rel_micros=3,
op_end_rel_micros=5,
all_end_rel_micros=4)
run_metadata = config_pb2.RunMetadata()
device1 = run_metadata.step_stats.dev_stats.add()
device1.device = 'deviceA'
device1.node_stats.extend([node1])
graph = test.mock.MagicMock()
op1 = test.mock.MagicMock()
op1.name = 'Add/123'
op1.traceback = [
('a/b/file1', 10, 'apply_op', 'abc'), ('a/c/file2', 12, 'my_op', 'def')]
op1.type = 'add'
graph.get_operations.return_value = [op1]
expected_proto = """sample_type {
type: 5
unit: 5
}
sample_type {
type: 6
unit: 7
}
sample_type {
type: 8
unit: 7
}
sample {
value: 1
value: 4
value: 2
label {
key: 1
str: 2
}
label {
key: 3
str: 4
}
}
string_table: ""
string_table: "node_name"
string_table: "Add/123"
string_table: "op_type"
string_table: "add"
string_table: "count"
string_table: "all_time"
string_table: "nanoseconds"
string_table: "op_time"
string_table: "Device 1 of 1: deviceA"
comment: 9
"""
# Test with protos
profiles = pprof_profiler.get_profiles(graph, run_metadata)
self.assertEquals(1, len(profiles))
self.assertTrue('deviceA' in profiles)
self.assertEquals(expected_proto, str(profiles['deviceA']))
# Test with files
profile_files = pprof_profiler.profile(
graph, run_metadata, output_dir)
self.assertEquals(1, len(profile_files))
with gzip.open(profile_files[0]) as profile_file:
profile_contents = profile_file.read()
profile = profile_pb2.Profile()
profile.ParseFromString(profile_contents)
self.assertEquals(expected_proto, str(profile))
def testProfileWithWhileLoop(self):
options = config_pb2.RunOptions()
options.trace_level = config_pb2.RunOptions.FULL_TRACE
run_metadata = config_pb2.RunMetadata()
num_iters = 5
with self.test_session() as sess:
i = constant_op.constant(0)
c = lambda i: math_ops.less(i, num_iters)
b = lambda i: math_ops.add(i, 1)
r = control_flow_ops.while_loop(c, b, [i])
sess.run(r, options=options, run_metadata=run_metadata)
profiles = pprof_profiler.get_profiles(sess.graph, run_metadata)
self.assertEquals(1, len(profiles))
profile = next(iter(profiles.values()))
add_samples = [] # Samples for the while/Add node
for sample in profile.sample:
if profile.string_table[sample.label[0].str] == 'while/Add':
add_samples.append(sample)
# Values for same nodes are aggregated.
self.assertEquals(1, len(add_samples))
# Value of "count" should be equal to number of iterations.
self.assertEquals(num_iters, add_samples[0].value[0])
if __name__ == '__main__':
test.main()

View File

@ -70,6 +70,27 @@ temp_workaround_http_archive = repository_rule(
}, },
) )
def _http_files_with_build_impl(repo_ctx):
repo_ctx.template("BUILD", repo_ctx.attr.build_file, {
"%prefix%": ".." if _repos_are_siblings() else "external",
"%ws%": repo_ctx.attr.repository
}, False)
for output, urls in repo_ctx.attr.file_urls.items():
repo_ctx.download(urls, output,
repo_ctx.attr.sha256, executable=False)
# Downloads a set of files and adds a BUILD file.
http_files_with_build = repository_rule(
implementation = _http_files_with_build_impl,
attrs = {
"build_file": attr.label(),
"repository": attr.string(),
# Map from output file to URLs to download that file from.
"file_urls": attr.string_list_dict(default = {}),
"sha256": attr.string(default = ""),
},
)
# Executes specified command with arguments and calls 'fail' if it exited with # Executes specified command with arguments and calls 'fail' if it exited with
# non-zero code # non-zero code
@ -617,6 +638,17 @@ def tf_workspace(path_prefix="", tf_repo_name=""):
repository = tf_repo_name, repository = tf_repo_name,
) )
http_files_with_build(
name = "pprof_profile_proto",
file_urls = {
"pprof/profile.proto":
["https://raw.githubusercontent.com/google/pprof/master/proto/profile.proto"],
"pprof/LICENSE":
["https://raw.githubusercontent.com/google/pprof/master/LICENSE"]},
build_file = str(Label("//third_party:pprof.BUILD")),
repository = tf_repo_name,
)
############################################################################## ##############################################################################
# TensorBoard Build Tools # TensorBoard Build Tools

18
third_party/pprof.BUILD vendored Normal file
View File

@ -0,0 +1,18 @@
package(
default_visibility = ["//visibility:public"],
)
licenses(["notice"]) # MIT
load("@protobuf//:protobuf.bzl", "py_proto_library")
exports_files(["pprof/LICENSE"])
py_proto_library(
name = "pprof_proto_py",
srcs = ["pprof/profile.proto"],
default_runtime = "@protobuf//:protobuf_python",
protoc = "@protobuf//:protoc",
srcs_version = "PY2AND3",
deps = ["@protobuf//:protobuf_python"],
)