(rollforward of cl/337218666) Add method to partially load a SavedModel.

PiperOrigin-RevId: 337950896
Change-Id: Idd0a9e963b34671bdf1d7b87389e2325848e5eea
This commit is contained in:
Katherine Wu 2020-10-19 15:48:48 -07:00 committed by TensorFlower Gardener
parent c9849876cd
commit 63f17d0fe1
3 changed files with 306 additions and 23 deletions
tensorflow/python
keras/saving/saved_model
saved_model

View File

@ -118,7 +118,7 @@ def load(path, compile=True, options=None): # pylint: disable=redefined-builtin
# TODO(kathywu): Add code to load from objects that contain all endpoints
model = tf_load.load_internal(
path, options=options, loader_cls=KerasObjectLoader)
path, options=options, loader_cls=KerasObjectLoader)['root']
# pylint: disable=protected-access
if isinstance(model, training_lib.Model) and compile:

View File

@ -48,6 +48,7 @@ from tensorflow.python.saved_model import utils_impl as saved_model_utils
from tensorflow.python.training.saving import checkpoint_options
from tensorflow.python.training.saving import saveable_object_util
from tensorflow.python.training.tracking import base
from tensorflow.python.training.tracking import data_structures
from tensorflow.python.training.tracking import graph_view
from tensorflow.python.training.tracking import tracking
from tensorflow.python.training.tracking import util
@ -119,7 +120,7 @@ class Loader(object):
"""Helper class to load an object-based SavedModel."""
def __init__(self, object_graph_proto, saved_model_proto, export_dir,
ckpt_options):
ckpt_options, filters):
meta_graph = saved_model_proto.meta_graphs[0]
self._asset_file_def = meta_graph.asset_file_def
self._operation_attributes = {
@ -131,6 +132,26 @@ class Loader(object):
meta_graph.graph_def.library))
self._checkpoint_options = ckpt_options
# Stores user-defined node_filters argument.
self._node_filters = filters
# Stores map of string paths to integers.
self._node_path_to_id = self._convert_node_paths_to_ints()
self._loaded_nodes = {}
if isinstance(filters, dict):
# If node_filters is a dict, then the values may contain already created
# trackable objects. In this case, create a dictionary mapping node IDs to
# the already created nodes. This dict will be updated in
# `_retrieve_all_filtered_nodes` with tracked dependencies.
for node_path, node in filters.items():
if isinstance(node, tuple):
self._loaded_nodes[self._node_path_to_id[node_path]] = node
else:
self._loaded_nodes[self._node_path_to_id[node_path]] = (node, setattr)
# Get a list of all integer node ids to load, or None if all nodes should be
# loaded. This list includes ids of child nodes.
self._filtered_nodes = self._retrieve_all_filtered_nodes()
for name, concrete_function in self._concrete_functions.items():
# Wrap all the concrete function so that they are capable of dealing with
# both in replica and cross replica cases.
@ -145,6 +166,91 @@ class Loader(object):
if not context.executing_eagerly():
ops.add_to_collection(ops.GraphKeys.TABLE_INITIALIZERS, init_op)
def _convert_node_paths_to_ints(self):
"""Maps all string node paths in node_filters to the int node ids."""
if self._node_filters is None:
return None
path_to_int = {}
for node_id in self._node_filters:
int_node_id = None
if isinstance(node_id, str):
node_path = node_id.split(".")
if node_path[0] != "root":
raise ValueError(
"When passing string identifiers to node_filters, the first name"
" must be root.")
int_node_id = 0
for n, name in enumerate(node_path[1:]):
int_node_id = self._find_node_child(
int_node_id, name, ".".join(node_path[:n+2]))
path_to_int[node_id] = int_node_id
else:
raise TypeError("Elements in node_filters must be strings.")
return path_to_int
def _retrieve_all_filtered_nodes(self):
"""Traverses through the object graph to get the IDs of all nodes to load.
As a side-effect, if node_filters is a dictionary that contains already-
created objects, then the dependencies tracked by those objects will be
added to node_filters.
Returns:
List of all nodes to load, or None if all nodes should be loaded.
"""
if self._node_filters is None:
return None # All nodes should be loaded.
all_filtered_nodes = set()
nodes_to_visit = list(self._node_filters)
while nodes_to_visit:
node_path = nodes_to_visit.pop(0)
node_id = self._node_path_to_id[node_path]
if node_id in all_filtered_nodes:
continue
all_filtered_nodes.add(node_id)
node, setter = self._loaded_nodes.get(node_id, (None, None))
if node is not None:
if not isinstance(node, base.Trackable):
raise TypeError(
"Error when processing dictionary values passed to nodes_to_load."
"Object at {} is expected to be a checkpointable TensorFlow "
"object (e.g. tf.Variable, tf.Module or Keras layer)."
.format(node_path))
node._maybe_initialize_trackable() # pylint: disable=protected-access
for reference in self._proto.nodes[node_id].children:
child_object, _ = self._loaded_nodes.get(
reference.node_id, (None, None))
# See if node already tracks the child reference, in which case add the
# child to the loaded_nodes dict.
if child_object is None and node is not None:
child_object = node._lookup_dependency(reference.local_name) # pylint: disable=protected-access
if isinstance(child_object, data_structures.TrackableDataStructure):
# Make setattr a noop to avoid overwriting already existing data
# structures.
setter = lambda *args: None
self._loaded_nodes[reference.node_id] = (child_object, setter)
child_path = "{}.{}".format(node_path, reference.local_name)
self._node_path_to_id[child_path] = reference.node_id
nodes_to_visit.append(child_path)
if 0 in all_filtered_nodes:
return None
return all_filtered_nodes
def _find_node_child(self, node_id, child_name, path):
for reference in self._proto.nodes[node_id].children:
if reference.local_name == child_name:
return reference.node_id
raise ValueError("unable to find node {}".format(path))
def _load_all(self):
"""Loads all nodes and functions from the SavedModel and their edges."""
self._load_nodes()
@ -159,7 +265,7 @@ class Loader(object):
self._create_saveable_object_factories()
def _create_saveable_object_factories(self):
for node_id, proto in enumerate(self._proto.nodes):
for node_id, proto in self._iter_all_nodes():
node = self.get(node_id)
node._self_saveable_object_factories = {} # pylint: disable=protected-access
for name, saveable_object_proto in proto.saveable_objects.items():
@ -170,9 +276,24 @@ class Loader(object):
def _load_edges(self):
"""Adds edges from objects to other objects and functions."""
for node_id, object_proto in enumerate(self._proto.nodes):
for node_id, object_proto in self._iter_all_nodes():
self._add_object_graph_edges(object_proto, node_id)
# If root object isn't loaded, then create edges from the root for
# checkpoint compatibility.
if self._filtered_nodes is not None and 0 not in self._filtered_nodes:
root = self.get(0)
for node_path in self._node_filters:
loaded_node = self._nodes[self._node_path_to_id[node_path]]
path = node_path.split(".")
current_node = root
for name in path[1:-1]:
if not hasattr(current_node, name):
setattr(current_node, name, self._recreate_base_user_object()[0])
current_node = getattr(current_node, name)
if not hasattr(current_node, path[-1]):
setattr(current_node, path[-1], loaded_node)
def _add_object_graph_edges(self, proto, node_id):
"""Adds edges from an object to its children."""
obj = self._nodes[node_id]
@ -214,7 +335,7 @@ class Loader(object):
for name, proto in concrete_functions:
concrete_function = self._concrete_functions[name]
bound_inputs = [
self._get_tensor_from_node(node_id)
self._get_tensor_from_node(node_id, name)
for node_id in proto.bound_inputs]
bound_variables = [
self._nodes[node_id]
@ -251,8 +372,14 @@ class Loader(object):
# placeholder for this input.
concrete_function.graph.capture(bound_input)
def _get_tensor_from_node(self, node_id):
def _get_tensor_from_node(self, node_id, fn_name):
"""Resolves a node id into a tensor to be captured for a function."""
if self._node_filters is not None and self._nodes[node_id] is None:
raise ValueError(
"Error when processing nodes_to_load. Function \"{}\" requires "
"inputs/variables that are not loaded when nodes_to_load={}"
.format(fn_name, self._node_filters))
with ops.init_scope():
obj = self._nodes[node_id]
if distribute_utils.is_distributed_variable(obj):
@ -268,24 +395,39 @@ class Loader(object):
return obj.resource_handle
raise ValueError("Can't convert node %s to tensor" % (type(obj)))
def _initialize_loaded_nodes(self):
nodes = {}
node_setters = {}
for node_id, (node, setter) in self._loaded_nodes.items():
nodes[node_id] = node
node_setters[node_id] = setter
return nodes, node_setters
def _iter_all_nodes(self):
if self._filtered_nodes is None:
return enumerate(self._proto.nodes)
else:
return [(node_id, self._proto.nodes[node_id])
for node_id in self._filtered_nodes]
def _load_nodes(self):
"""Load all saved objects."""
# Maps from node ids to recreated objects
nodes = {}
# Maps from node ids to setter functions (same signature as setattr) for
# setting dependencies.
node_setters = {}
# `nodes` maps from node ids to recreated objects
# `node_setters` maps from node ids to setter functions
# (same signature as setattr) for setting dependencies.
nodes, node_setters = self._initialize_loaded_nodes()
# Figure out which objects are slot variables. These objects are created
# with Optimizer.add_slot rather than _recreate_variable.
slot_variable_node_ids = set()
for proto in self._proto.nodes:
for _, proto in self._iter_all_nodes():
for slot_variable_proto in proto.slot_variables:
slot_variable_node_ids.add(slot_variable_proto.slot_variable_node_id)
# Re-create everything except slot variables.
for node_id, proto in enumerate(self._proto.nodes):
if node_id in slot_variable_node_ids:
for node_id, proto in self._iter_all_nodes():
if node_id in slot_variable_node_ids or nodes.get(node_id) is not None:
# Defer recreating slot variables so we can use the public Optimizer
# interface.
continue
@ -295,7 +437,7 @@ class Loader(object):
# Now that we have created the variables being optimized, we have enough
# information to re-create slot variables for them.
for node_id, proto in enumerate(self._proto.nodes):
for node_id, proto in self._iter_all_nodes():
optimizer_object = nodes[node_id]
for slot_variable_proto in proto.slot_variables:
optimized_variable = nodes[
@ -306,7 +448,13 @@ class Loader(object):
nodes[slot_variable_proto.slot_variable_node_id] = slot_variable
node_setters[slot_variable_proto.slot_variable_node_id] = setattr
self._nodes = [nodes[node_id] for node_id in range(len(self._proto.nodes))]
# If root object is not loaded, add a dummy root object for checkpoint
# compatibility.
if 0 not in nodes:
nodes[0] = self._recreate_base_user_object()[0]
self._nodes = [nodes.get(node_id)
for node_id in range(len(self._proto.nodes))]
self._node_setters = node_setters
@property
@ -380,6 +528,8 @@ class Loader(object):
return output_debug_info
def get(self, node_id):
if isinstance(node_id, str):
node_id = self._node_path_to_id[node_id]
return self._nodes[node_id]
def _recreate(self, proto, node_id):
@ -408,7 +558,7 @@ class Loader(object):
return self._recreate_base_user_object(proto, node_id)
return looked_up
def _recreate_base_user_object(self, proto, node_id):
def _recreate_base_user_object(self, proto=None, node_id=None):
del proto, node_id
# Note: each user object has its own class. This allows making each one
# individually callable by adding a `__call__` method to the classes of
@ -518,6 +668,103 @@ def _call_attribute(instance, *args, **kwargs):
return instance.__call__(*args, **kwargs)
def load_partial(export_dir, filters, tags=None, options=None):
"""Partially load a SavedModel (saved from V2).
Similar to `tf.saved_model.load`, but with an additional argument that
lets you specify which nodes to load.
`tf.saved_model.load_partial(export_dir, ["root"])` and
`tf.saved_model.load(export_dir)` are equivalent.
Note: This only works for SavedModels saved with TensorFlow V2 from
`tf.saved_model.save` or Keras. This will not load SavedModels save from
the Estimator API.
In Tensorflow V2, SavedModel stores the **object graph** of the saved object.
The graph contains nodes (`tf.Module`, `tf.Variable`, `tf.function`, Keras
layers, etc.) and edges that are the name of the attributes connecting the
objects.
*Example 1*
```
model = tf.Module()
model.child_layer = tf.Module()
model.child_layer.v = tf.Variable(5.)
tf.saved_model.save(model, '/tmp/model')
loaded = tf.__internal__.saved_model.load_partial(
... '/tmp/model',
... ['root.child_layer', 'root.child_layer.v'])
loaded['root.child_layer'].v.numpy()
5.
loaded['root.child_layer'].v is loaded['root.child_layer.v']
True
*Example 2*
model = tf.Module()
model.child_layer = tf.Module()
model.child_layer.v = tf.Variable(5.)
>>>
tf.saved_model.save(model, '/tmp/model')
# Create a variable
new_variable = tf.Variable(0.)
loaded = tf.__internal__.saved_model.load_partial(
... '/tmp/model',
... {'root.child_layer': None, 'root.child_layer.v': new_variable})
loaded['root.child_layer'].v.numpy()
5.
new_variable.numpy()
5.
```
**Loading under different distribution strategies**
You can load different parts of the model under different distribution
strategies. Note that this is very experimental so use with care.
```
model = tf.Module()
model.layer_1 = tf.Module()
model.layer_1.v = tf.Variable(5.)
model.layer_2 = tf.Module()
model.layer_2.v = tf.Variable(7.)
tf.saved_model.save(model, '/tmp/model')
# Load with no strategy
loaded = tf.__internal__.saved_model.load_partial(
... '/tmp/model',
... ['root.layer_1'])
loaded['root.layer_1'].v
<tf.Variable 'Variable:0' shape=() dtype=float32, numpy=5.0>
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
... loaded2 = tf.__internal__.saved_model.load_partial(
... '/tmp/model',
... ['root.layer_2'])
loaded2['root.layer_2'].v
MirroredVariable:{
0: <tf.Variable 'Variable:0' shape=() dtype=float32, numpy=7.0>
}
```
Args:
export_dir: The SavedModel directory to load from.
filters: A list or dictionary where each element or key is a string
path to nodes that should be loaded. Node paths consist of all the child
attribute names to reach that node in the form: `root.{attribute_name}`.
The loader will load all of the specified nodes and their recursive
descendants. When this option is defined, the loader will return a
dictionary mapping the node paths to the loaded objects.
tags: A tag or sequence of tags identifying the MetaGraph to load. Optional
if the SavedModel contains a single MetaGraph, as for those exported from
`tf.saved_model.save`.
options: `tf.saved_model.LoadOptions` object that specifies options for
loading.
Returns:
A dictionary mapping node paths from the filter to loaded objects.
"""
return load_internal(export_dir, tags, options, filters=filters)
@tf_export("saved_model.load", v1=["saved_model.load_v2"])
def load(export_dir, tags=None, options=None):
"""Load a SavedModel from `export_dir`.
@ -597,8 +844,8 @@ def load(export_dir, tags=None, options=None):
tags: A tag or sequence of tags identifying the MetaGraph to load. Optional
if the SavedModel contains a single MetaGraph, as for those exported from
`tf.saved_model.save`.
options: Optional, `tf.saved_model.LoadOptions` object that specifies
options for loading.
options: `tf.saved_model.LoadOptions` object that specifies options for
loading.
Returns:
A trackable object with a `signatures` attribute mapping from signature
@ -609,10 +856,11 @@ def load(export_dir, tags=None, options=None):
Raises:
ValueError: If `tags` don't match a MetaGraph in the SavedModel.
"""
return load_internal(export_dir, tags, options)
return load_internal(export_dir, tags, options)["root"]
def load_internal(export_dir, tags=None, options=None, loader_cls=Loader):
def load_internal(export_dir, tags=None, options=None, loader_cls=Loader,
filters=None):
"""Loader implementation."""
options = options or load_options.LoadOptions()
if tags is not None and not isinstance(tags, set):
@ -639,7 +887,7 @@ def load_internal(export_dir, tags=None, options=None, loader_cls=Loader):
with ops.init_scope():
try:
loader = loader_cls(object_graph_proto, saved_model_proto, export_dir,
ckpt_options)
ckpt_options, filters)
except errors.NotFoundError as err:
raise FileNotFoundError(
str(err) + "\n If trying to load on a different device from the "
@ -654,7 +902,14 @@ def load_internal(export_dir, tags=None, options=None, loader_cls=Loader):
root.tensorflow_git_version = (
meta_graph_def.meta_info_def.tensorflow_git_version)
else:
if filters:
raise ValueError("SavedModels saved from Tensorflow V1 or Estimator (any "
"version) cannot be loaded with node filters.")
with ops.init_scope():
root = load_v1_in_v2.load(export_dir, tags)
root.graph_debug_info = debug_info
return root
if filters:
return {node_id: loader.get(node_id) for node_id in filters}
else:
return {"root": root}

View File

@ -2028,6 +2028,34 @@ class SingleCycleTests(test.TestCase, parameterized.TestCase):
tensor_spec.TensorSpec(shape=[], dtype=dtypes.float32)])
cycle(root, 1)
def test_load_partial_object(self):
root = module.Module()
root.variables_holder = module.Module()
root.variables_holder.v = variables.Variable(1.)
class Adder(module.Module):
@def_function.function(input_signature=[tensor_spec.TensorSpec(shape=[])])
def __call__(self, y):
root.variables_holder.v.assign_add(y)
return 1
root.adder = Adder()
save_dir = os.path.join(self.get_temp_dir(), "saved_model")
save.save(root, save_dir)
imported = load.load_partial(save_dir,
["root.variables_holder.v", "root.adder"])
v = imported["root.variables_holder.v"]
adder = imported["root.adder"]
self.assertEqual(self.evaluate(v), 1)
adder(5)
self.assertEqual(self.evaluate(v), 6)
with self.assertRaisesRegex(ValueError, "requires inputs/variables"):
imported = load.load_partial(save_dir, ["root.adder"])
if __name__ == "__main__":
test.main()