Support DEPTH_TO_SPACE in XNNPACK delegate
PiperOrigin-RevId: 344815817 Change-Id: I20179c0a6fe0db730dc0f2d6fc1d1825cb1bdbfa
This commit is contained in:
parent
4f1baf0219
commit
634864312d
tensorflow
lite
delegates/xnnpack
BUILDREADME.mddepth_to_space_test.ccdepth_to_space_tester.ccdepth_to_space_tester.hxnnpack_delegate.cc
tools/cmake/modules
@ -102,6 +102,23 @@ cc_library(
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "depth_to_space_tester",
|
||||
testonly = 1,
|
||||
srcs = ["depth_to_space_tester.cc"],
|
||||
hdrs = ["depth_to_space_tester.h"],
|
||||
deps = [
|
||||
"//tensorflow/lite:framework",
|
||||
"//tensorflow/lite:schema_fbs_version",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/kernels:builtin_ops",
|
||||
"//tensorflow/lite/schema:schema_conversion_utils",
|
||||
"//tensorflow/lite/schema:schema_fbs",
|
||||
"@com_google_googletest//:gtest",
|
||||
"@flatbuffers",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "depthwise_conv_2d_tester",
|
||||
testonly = 1,
|
||||
@ -381,6 +398,21 @@ cc_test(
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "depth_to_space_test",
|
||||
srcs = ["depth_to_space_test.cc"],
|
||||
linkopts = select({
|
||||
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||
"//conditions:default": [],
|
||||
}),
|
||||
deps = [
|
||||
":depth_to_space_tester",
|
||||
":test_main",
|
||||
":xnnpack_delegate_test_mode",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "depthwise_conv_2d_test",
|
||||
srcs = ["depthwise_conv_2d_test.cc"],
|
||||
|
@ -154,6 +154,11 @@ Below is the list of current operators and limitations:
|
||||
* Fused `NONE`, `RELU`, `RELU_N1_TO_1`, and `RELU6` activations are supported,
|
||||
but fused `TANH` and `SIGN_BIT` activations are not.
|
||||
|
||||
### `DEPTH_TO_SPACE`
|
||||
|
||||
* Inputs and outputs must be in 32-bit floating-point format.
|
||||
* Block size must be greater than 1.
|
||||
|
||||
### `DEPTHWISE_CONV_2D`
|
||||
|
||||
* Inputs and outputs must be in 32-bit floating-point format.
|
||||
|
156
tensorflow/lite/delegates/xnnpack/depth_to_space_test.cc
Normal file
156
tensorflow/lite/delegates/xnnpack/depth_to_space_test.cc
Normal file
@ -0,0 +1,156 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <random>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/delegates/xnnpack/depth_to_space_tester.h"
|
||||
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
TEST(DepthToSpace, SinglePixel) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto block_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng));
|
||||
|
||||
DepthToSpaceTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(1)
|
||||
.InputWidth(1)
|
||||
.OutputChannels(channel_rng())
|
||||
.BlockSize(block_rng())
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(DepthToSpace, SingleRow) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto width_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng));
|
||||
auto block_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng));
|
||||
|
||||
DepthToSpaceTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(1)
|
||||
.InputWidth(width_rng())
|
||||
.OutputChannels(channel_rng())
|
||||
.BlockSize(block_rng())
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(DepthToSpace, SingleColumn) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto height_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng));
|
||||
auto block_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng));
|
||||
|
||||
DepthToSpaceTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(height_rng())
|
||||
.InputWidth(1)
|
||||
.OutputChannels(channel_rng())
|
||||
.BlockSize(block_rng())
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(DepthToSpace, FullImage) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto size_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng));
|
||||
auto block_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng));
|
||||
|
||||
DepthToSpaceTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(size_rng())
|
||||
.InputWidth(size_rng())
|
||||
.OutputChannels(channel_rng())
|
||||
.BlockSize(block_rng())
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(DepthToSpace, MultiThreading) {
|
||||
TfLiteXNNPackDelegateOptions delegate_options =
|
||||
TfLiteXNNPackDelegateOptionsDefault();
|
||||
delegate_options.num_threads = 2;
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto batch_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 4), std::ref(rng));
|
||||
auto size_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(5, 25), std::ref(rng));
|
||||
auto block_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 3), std::ref(rng));
|
||||
auto channel_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 16), std::ref(rng));
|
||||
|
||||
DepthToSpaceTester()
|
||||
.BatchSize(batch_rng())
|
||||
.InputHeight(size_rng())
|
||||
.InputWidth(size_rng())
|
||||
.OutputChannels(channel_rng())
|
||||
.BlockSize(block_rng())
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
171
tensorflow/lite/delegates/xnnpack/depth_to_space_tester.cc
Normal file
171
tensorflow/lite/delegates/xnnpack/depth_to_space_tester.cc
Normal file
@ -0,0 +1,171 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/delegates/xnnpack/depth_to_space_tester.h"
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <numeric>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/interpreter.h"
|
||||
#include "tensorflow/lite/kernels/register.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
#include "tensorflow/lite/schema/schema_conversion_utils.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
void DepthToSpaceTester::Test(TfLiteDelegate* delegate) const {
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto f32rng =
|
||||
std::bind(std::uniform_real_distribution<float>(), std::ref(rng));
|
||||
|
||||
std::vector<char> buffer = CreateTfLiteModel();
|
||||
const Model* model = GetModel(buffer.data());
|
||||
|
||||
std::unique_ptr<Interpreter> delegate_interpreter;
|
||||
ASSERT_EQ(
|
||||
InterpreterBuilder(
|
||||
model,
|
||||
::tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates())(
|
||||
&delegate_interpreter),
|
||||
kTfLiteOk);
|
||||
std::unique_ptr<Interpreter> default_interpreter;
|
||||
ASSERT_EQ(
|
||||
InterpreterBuilder(
|
||||
model,
|
||||
::tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates())(
|
||||
&default_interpreter),
|
||||
kTfLiteOk);
|
||||
|
||||
ASSERT_TRUE(delegate_interpreter);
|
||||
ASSERT_TRUE(default_interpreter);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
|
||||
ASSERT_EQ(default_interpreter->inputs().size(), 1);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
|
||||
ASSERT_EQ(default_interpreter->outputs().size(), 1);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
|
||||
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
|
||||
|
||||
float* default_input_data = default_interpreter->typed_tensor<float>(
|
||||
default_interpreter->inputs()[0]);
|
||||
std::generate(default_input_data,
|
||||
default_input_data + BatchSize() * InputHeight() *
|
||||
InputWidth() * InputChannels(),
|
||||
std::ref(f32rng));
|
||||
|
||||
float* delegate_input_data = delegate_interpreter->typed_tensor<float>(
|
||||
delegate_interpreter->inputs()[0]);
|
||||
std::copy(default_input_data,
|
||||
default_input_data +
|
||||
BatchSize() * InputHeight() * InputWidth() * InputChannels(),
|
||||
delegate_input_data);
|
||||
|
||||
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
|
||||
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
|
||||
|
||||
float* default_output_data = default_interpreter->typed_tensor<float>(
|
||||
default_interpreter->outputs()[0]);
|
||||
float* delegate_output_data = delegate_interpreter->typed_tensor<float>(
|
||||
delegate_interpreter->outputs()[0]);
|
||||
|
||||
for (int32_t i = 0; i < BatchSize(); i++) {
|
||||
for (int32_t y = 0; y < OutputHeight(); y++) {
|
||||
for (int32_t x = 0; x < OutputWidth(); x++) {
|
||||
for (int32_t c = 0; c < OutputChannels(); c++) {
|
||||
const int32_t index = ((i * OutputHeight() + y) * OutputWidth() + x) *
|
||||
OutputChannels() +
|
||||
c;
|
||||
ASSERT_EQ(default_output_data[index], delegate_output_data[index])
|
||||
<< "batch " << i << " / " << BatchSize() << ", y position " << y
|
||||
<< " / " << OutputHeight() << ", x position " << x << " / "
|
||||
<< OutputWidth() << ", channel " << c << " / "
|
||||
<< OutputChannels();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<char> DepthToSpaceTester::CreateTfLiteModel() const {
|
||||
flatbuffers::FlatBufferBuilder builder;
|
||||
flatbuffers::Offset<OperatorCode> operator_code =
|
||||
CreateOperatorCode(builder, BuiltinOperator_DEPTH_TO_SPACE, 0);
|
||||
|
||||
const std::array<flatbuffers::Offset<Buffer>, 1> buffers{{
|
||||
CreateBuffer(builder, builder.CreateVector({})),
|
||||
}};
|
||||
|
||||
const std::array<int32_t, 4> input_shape{
|
||||
{BatchSize(), InputHeight(), InputWidth(), InputChannels()}};
|
||||
const std::array<int32_t, 4> output_shape{
|
||||
{BatchSize(), OutputHeight(), OutputWidth(), OutputChannels()}};
|
||||
const std::array<flatbuffers::Offset<Tensor>, 2> tensors{{
|
||||
CreateTensor(
|
||||
builder,
|
||||
builder.CreateVector<int32_t>(input_shape.data(), input_shape.size()),
|
||||
TensorType_FLOAT32),
|
||||
CreateTensor(builder,
|
||||
builder.CreateVector<int32_t>(output_shape.data(),
|
||||
output_shape.size()),
|
||||
TensorType_FLOAT32),
|
||||
}};
|
||||
|
||||
const std::array<int32_t, 1> op_inputs{{0}};
|
||||
const std::array<int32_t, 1> op_outputs{{1}};
|
||||
const flatbuffers::Offset<Operator> op = CreateOperator(
|
||||
builder, /*opcode_index=*/0,
|
||||
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
||||
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size()),
|
||||
tflite::BuiltinOptions_DepthToSpaceOptions,
|
||||
CreateDepthToSpaceOptions(builder, BlockSize()).Union());
|
||||
|
||||
const std::array<int32_t, 1> subgraph_inputs{{op_inputs.front()}};
|
||||
const std::array<int32_t, 1> subgraph_outputs{{op_outputs.front()}};
|
||||
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
|
||||
builder, builder.CreateVector(tensors.data(), tensors.size()),
|
||||
builder.CreateVector<int32_t>(subgraph_inputs.data(),
|
||||
subgraph_inputs.size()),
|
||||
builder.CreateVector<int32_t>(subgraph_outputs.data(),
|
||||
subgraph_outputs.size()),
|
||||
builder.CreateVector(&op, 1));
|
||||
|
||||
const flatbuffers::Offset<Model> model_buffer = CreateModel(
|
||||
builder, TFLITE_SCHEMA_VERSION, builder.CreateVector(&operator_code, 1),
|
||||
builder.CreateVector(&subgraph, 1),
|
||||
builder.CreateString("Depth-To-Space model"),
|
||||
builder.CreateVector(buffers.data(), buffers.size()));
|
||||
|
||||
builder.Finish(model_buffer);
|
||||
|
||||
return std::vector<char>(builder.GetBufferPointer(),
|
||||
builder.GetBufferPointer() + builder.GetSize());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
97
tensorflow/lite/delegates/xnnpack/depth_to_space_tester.h
Normal file
97
tensorflow/lite/delegates/xnnpack/depth_to_space_tester.h
Normal file
@ -0,0 +1,97 @@
|
||||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_DEPTH_TO_SPACE_TESTER_H_
|
||||
#define TENSORFLOW_LITE_DELEGATES_XNNPACK_DEPTH_TO_SPACE_TESTER_H_
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
class DepthToSpaceTester {
|
||||
public:
|
||||
DepthToSpaceTester() = default;
|
||||
DepthToSpaceTester(const DepthToSpaceTester&) = delete;
|
||||
DepthToSpaceTester& operator=(const DepthToSpaceTester&) = delete;
|
||||
|
||||
inline DepthToSpaceTester& BatchSize(int32_t batch_size) {
|
||||
EXPECT_GT(batch_size, 0);
|
||||
batch_size_ = batch_size;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t BatchSize() const { return batch_size_; }
|
||||
|
||||
inline int32_t InputChannels() const {
|
||||
return OutputChannels() * BlockSize() * BlockSize();
|
||||
}
|
||||
|
||||
inline DepthToSpaceTester& OutputChannels(int32_t output_channels) {
|
||||
EXPECT_GT(output_channels, 0);
|
||||
output_channels_ = output_channels;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t OutputChannels() const { return output_channels_; }
|
||||
|
||||
inline DepthToSpaceTester& InputHeight(int32_t input_height) {
|
||||
EXPECT_GT(input_height, 0);
|
||||
input_height_ = input_height;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t InputHeight() const { return input_height_; }
|
||||
|
||||
inline DepthToSpaceTester& InputWidth(int32_t input_width) {
|
||||
EXPECT_GT(input_width, 0);
|
||||
input_width_ = input_width;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t InputWidth() const { return input_width_; }
|
||||
|
||||
inline int32_t OutputWidth() const { return InputWidth() * BlockSize(); }
|
||||
|
||||
inline int32_t OutputHeight() const { return InputHeight() * BlockSize(); }
|
||||
|
||||
inline DepthToSpaceTester& BlockSize(int32_t block_size) {
|
||||
EXPECT_GT(block_size, 1);
|
||||
block_size_ = block_size;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline int32_t BlockSize() const { return block_size_; }
|
||||
|
||||
void Test(TfLiteDelegate* delegate) const;
|
||||
|
||||
private:
|
||||
std::vector<char> CreateTfLiteModel() const;
|
||||
|
||||
int32_t batch_size_ = 1;
|
||||
int32_t input_height_ = 1;
|
||||
int32_t input_width_ = 1;
|
||||
int32_t output_channels_ = 1;
|
||||
int32_t block_size_ = 2;
|
||||
};
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_DELEGATES_XNNPACK_DEPTH_TO_SPACE_TESTER_H_
|
@ -1420,6 +1420,13 @@ class Subgraph {
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorNonDynamicAllocation(
|
||||
logging_context, output_tensor, node->outputs->data[0], node_index));
|
||||
|
||||
if (depth_to_space_params->block_size <= 1) {
|
||||
TF_LITE_MAYBE_KERNEL_LOG(
|
||||
logging_context, "invalid block size (%d) in DEPTH_TO_SPACE node #%d",
|
||||
depth_to_space_params->block_size, node_index);
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
if (subgraph != nullptr) {
|
||||
const xnn_status status = xnn_define_depth_to_space(
|
||||
subgraph,
|
||||
|
@ -22,7 +22,7 @@ include(FetchContent)
|
||||
OverridableFetchContent_Declare(
|
||||
xnnpack
|
||||
GIT_REPOSITORY https://github.com/google/xnnpack
|
||||
GIT_TAG bbe85068bb7aa6249a4e915462014016373c945f
|
||||
GIT_TAG 0a9c1200ccb49bba0170a46a62044b13714f39a3
|
||||
GIT_PROGRESS TRUE
|
||||
PREFIX "${CMAKE_BINARY_DIR}"
|
||||
SOURCE_DIR "${CMAKE_BINARY_DIR}/xnnpack"
|
||||
|
@ -135,11 +135,11 @@ def tf_repositories(path_prefix = "", tf_repo_name = ""):
|
||||
# and update the sha256 with the result.
|
||||
tf_http_archive(
|
||||
name = "XNNPACK",
|
||||
sha256 = "22c065f68df9a7a6321c4e9ee1f2d3cbfb471785804fb4fffa0fb2858d847e7f",
|
||||
strip_prefix = "XNNPACK-bbe85068bb7aa6249a4e915462014016373c945f",
|
||||
sha256 = "eb087959b684d2d3965f8914075032e3995e4726ac8ce9c09a367863ff184b99",
|
||||
strip_prefix = "XNNPACK-0a9c1200ccb49bba0170a46a62044b13714f39a3",
|
||||
urls = [
|
||||
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/bbe85068bb7aa6249a4e915462014016373c945f.zip",
|
||||
"https://github.com/google/XNNPACK/archive/bbe85068bb7aa6249a4e915462014016373c945f.zip",
|
||||
"https://storage.googleapis.com/mirror.tensorflow.org/github.com/google/XNNPACK/archive/0a9c1200ccb49bba0170a46a62044b13714f39a3.zip",
|
||||
"https://github.com/google/XNNPACK/archive/0a9c1200ccb49bba0170a46a62044b13714f39a3.zip",
|
||||
],
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user