Avoid capturing unused variables in lambda functions
PiperOrigin-RevId: 188747641
This commit is contained in:
parent
1d6a57edc0
commit
62fa49ff5d
@ -72,9 +72,9 @@ Status AddForwardLoopCounter(WhileContext* while_ctx, const Scope& scope,
|
||||
};
|
||||
|
||||
// Body function that adds one to input.
|
||||
BodyGraphBuilderFn body_fn = [while_ctx](const Scope& scope,
|
||||
const std::vector<Output>& inputs,
|
||||
std::vector<Output>* outputs) {
|
||||
BodyGraphBuilderFn body_fn = [](const Scope& scope,
|
||||
const std::vector<Output>& inputs,
|
||||
std::vector<Output>* outputs) {
|
||||
DCHECK_EQ(inputs.size(), 1);
|
||||
outputs->emplace_back(ops::Add(scope, inputs[0], 1));
|
||||
return scope.status();
|
||||
|
@ -101,8 +101,8 @@ struct ImageConnectedComponentsFunctor<CPUDevice, T> {
|
||||
int cost = (union_find.block_height() + union_find.block_width()) * 20;
|
||||
Shard(worker_threads->num_threads, worker_threads->workers,
|
||||
num_images * num_blocks_vertically * num_blocks_horizontally, cost,
|
||||
[&union_find, num_images, num_blocks_vertically,
|
||||
num_blocks_horizontally](int64 start_block, int64 limit_block) {
|
||||
[&union_find, num_blocks_vertically, num_blocks_horizontally](
|
||||
int64 start_block, int64 limit_block) {
|
||||
for (int64 i = start_block; i < limit_block; i++) {
|
||||
int64 block_x = i % num_blocks_horizontally;
|
||||
int64 block_y =
|
||||
|
@ -92,7 +92,7 @@ static Status ProcessMemoryTypes(
|
||||
|
||||
Status ValidateMemoryTypes(const DeviceType& device_type, const Graph* g) {
|
||||
return ProcessMemoryTypes(
|
||||
device_type, g, [g](const Edge* e, MemoryType sm, MemoryType dm) {
|
||||
device_type, g, [](const Edge* e, MemoryType sm, MemoryType dm) {
|
||||
if (sm == dm) {
|
||||
return Status::OK();
|
||||
}
|
||||
@ -155,7 +155,7 @@ Status EnsureMemoryTypes(const DeviceType& device_type,
|
||||
};
|
||||
std::vector<Item> edges;
|
||||
TF_RETURN_IF_ERROR(ProcessMemoryTypes(
|
||||
device_type, g, [g, &edges](const Edge* e, MemoryType sm, MemoryType dm) {
|
||||
device_type, g, [&edges](const Edge* e, MemoryType sm, MemoryType dm) {
|
||||
if (sm == dm) {
|
||||
return Status::OK();
|
||||
}
|
||||
|
@ -438,7 +438,7 @@ void GraphMgr::ExecuteAsync(const string& handle, const int64 step_id,
|
||||
|
||||
StartParallelExecutors(handle, step_id, item, rendezvous, collector,
|
||||
cost_graph, cancellation_manager,
|
||||
[this, item, rendezvous, done](const Status& s) {
|
||||
[item, rendezvous, done](const Status& s) {
|
||||
done(s);
|
||||
rendezvous->Unref();
|
||||
item->Unref();
|
||||
|
@ -215,7 +215,7 @@ void Worker::DoPartialRunGraph(CallOptions* opts,
|
||||
GraphMgr::NamedTensors in;
|
||||
GraphMgr::NamedTensors* out = new GraphMgr::NamedTensors;
|
||||
Status s = PrepareRunGraph(request, &in, out);
|
||||
auto finish = [this, done, out, opts](const Status& s) {
|
||||
auto finish = [done, out, opts](const Status& s) {
|
||||
opts->ClearCancelCallback();
|
||||
delete out;
|
||||
done(s);
|
||||
@ -247,7 +247,7 @@ void Worker::DoPartialRunGraph(CallOptions* opts,
|
||||
session->graph_mgr->ExecuteAsync(
|
||||
graph_handle, step_id, session.get(), request->exec_opts(),
|
||||
nullptr /* collector */, nullptr /* response */, cm, in,
|
||||
[this, token, step_id, session, cm](Status s) {
|
||||
[this, token, step_id, session](Status s) {
|
||||
{
|
||||
mutex_lock l(mu_);
|
||||
cancellation_manager_->DeregisterCallback(token);
|
||||
|
@ -867,7 +867,7 @@ class IteratorGetNextOp : public AsyncOpKernel {
|
||||
// inter-op thread pool thread, so we issue the call from the
|
||||
// owned thread pool.
|
||||
thread_pool_->Schedule(std::bind(
|
||||
[this, ctx, iterator](DoneCallback done) {
|
||||
[ctx, iterator](DoneCallback done) {
|
||||
std::vector<Tensor> components;
|
||||
bool end_of_sequence = false;
|
||||
|
||||
|
@ -127,7 +127,7 @@ class Mutex : public ResourceBase {
|
||||
}
|
||||
}
|
||||
thread_pool_->Schedule(std::bind(
|
||||
[this, c, cm, cancelled,
|
||||
[this, cm, cancelled,
|
||||
token](std::function<void(const Status& s, SharedLockReleaser&& lock)>
|
||||
fn_) {
|
||||
bool local_locked;
|
||||
@ -173,7 +173,7 @@ class MutexLockOp : public AsyncOpKernel {
|
||||
OP_REQUIRES_OK_ASYNC(
|
||||
c,
|
||||
LookupOrCreateResource<Mutex>(c, HandleFromInput(c, 0), &mutex,
|
||||
[this, c](Mutex** ptr) {
|
||||
[c](Mutex** ptr) {
|
||||
*ptr = new Mutex(
|
||||
c, HandleFromInput(c, 0).name());
|
||||
return Status::OK();
|
||||
@ -186,10 +186,10 @@ class MutexLockOp : public AsyncOpKernel {
|
||||
|
||||
mutex->AcquireAsync(
|
||||
c, std::bind(
|
||||
[this, c, variant, mutex](DoneCallback done_,
|
||||
// End of bound arguments.
|
||||
const Status& s,
|
||||
Mutex::SharedLockReleaser&& lock) {
|
||||
[c, variant, mutex](DoneCallback done_,
|
||||
// End of bound arguments.
|
||||
const Status& s,
|
||||
Mutex::SharedLockReleaser&& lock) {
|
||||
VLOG(2) << "Finished locking mutex " << mutex
|
||||
<< " with lock: " << lock.shared_lock.get()
|
||||
<< " status: " << s.ToString();
|
||||
|
@ -351,7 +351,7 @@ class AssignVariableOp<Device, Variant> : public OpKernel {
|
||||
Var* variable = nullptr;
|
||||
OP_REQUIRES_OK(context, LookupOrCreateResource<Var>(
|
||||
context, HandleFromInput(context, 0), &variable,
|
||||
[this, context](Var** ptr) {
|
||||
[](Var** ptr) {
|
||||
// Created on host.
|
||||
*ptr = new Var(DT_VARIANT);
|
||||
return Status::OK();
|
||||
|
@ -327,7 +327,7 @@ class SparseCrossOp : public OpKernel {
|
||||
|
||||
typename CrossTraits<HASHED_OUTPUT, InternalType>::Updater updater(
|
||||
output_start_indices, indices_out, values_out);
|
||||
auto do_work = [this, &columns, crosser, updater](int64 begin, int64 end) {
|
||||
auto do_work = [&columns, crosser, updater](int64 begin, int64 end) {
|
||||
for (int b = begin; b < end; b++) {
|
||||
ProductIterator<InternalType> product_iterator(columns, b);
|
||||
int64 cross_count = 0;
|
||||
|
@ -208,10 +208,10 @@ class SplitVOpCPUImpl {
|
||||
input_element_count >= std::max(num_threads, num_split) * 4096 &&
|
||||
input_element_count < num_split * 180 * 1024);
|
||||
|
||||
auto range_output_func = [&indices, context, &input_shape, prefix_dim_size,
|
||||
split_dim, &split_sizes_vec, &split_start_points,
|
||||
suffix_dim_size, use_parallelism_between_outputs,
|
||||
&input_reshaped, &make_sizes,
|
||||
auto range_output_func = [&indices, context, &input_shape, split_dim,
|
||||
&split_sizes_vec, &split_start_points,
|
||||
use_parallelism_between_outputs, &input_reshaped,
|
||||
&make_sizes,
|
||||
&reshape_result](int64 start, int64 limit) {
|
||||
for (int64 i = start; i < limit; ++i) {
|
||||
TensorShape output_shape(input_shape);
|
||||
|
Loading…
Reference in New Issue
Block a user