Remove tf.keras.utils.convert_all_kernels_in_model as its deprecation date is overdue.

PiperOrigin-RevId: 331570917
Change-Id: I60183861ac4e04acad041c631c541189a6f9bfe8
This commit is contained in:
Yanhui Liang 2020-09-14 10:08:03 -07:00 committed by TensorFlower Gardener
parent 499d35942a
commit 627520ec70
6 changed files with 0 additions and 73 deletions

View File

@ -30,7 +30,6 @@ from tensorflow.python.keras import optimizers
from tensorflow.python.keras.saving import model_config as model_config_lib
from tensorflow.python.keras.saving import saving_utils
from tensorflow.python.keras.saving.saved_model import json_utils
from tensorflow.python.keras.utils import conv_utils
from tensorflow.python.keras.utils.generic_utils import LazyLoader
from tensorflow.python.keras.utils.io_utils import ask_to_proceed_with_overwrite
from tensorflow.python.ops import variables as variables_module
@ -402,10 +401,6 @@ def preprocess_weights_for_loading(layer,
conv_layers = ['Conv1D', 'Conv2D', 'Conv3D', 'Conv2DTranspose', 'ConvLSTM2D']
if layer.__class__.__name__ in conv_layers:
if original_backend == 'theano':
weights[0] = conv_utils.convert_kernel(weights[0])
if layer.__class__.__name__ == 'ConvLSTM2D':
weights[1] = conv_utils.convert_kernel(weights[1])
if K.int_shape(layer.weights[0]) != weights[0].shape:
weights[0] = np.transpose(weights[0], (3, 2, 0, 1))
if layer.__class__.__name__ == 'ConvLSTM2D':

View File

@ -35,7 +35,6 @@ from tensorflow.python.keras.utils.generic_utils import get_custom_objects
from tensorflow.python.keras.utils.generic_utils import Progbar
from tensorflow.python.keras.utils.generic_utils import serialize_keras_object
from tensorflow.python.keras.utils.io_utils import HDF5Matrix
from tensorflow.python.keras.utils.layer_utils import convert_all_kernels_in_model
from tensorflow.python.keras.utils.layer_utils import get_source_inputs
from tensorflow.python.keras.utils.multi_gpu_utils import multi_gpu_model
from tensorflow.python.keras.utils.np_utils import normalize

View File

@ -208,31 +208,6 @@ def normalize_padding(value):
return padding
def convert_kernel(kernel):
"""Converts a Numpy kernel matrix from Theano format to TensorFlow format.
Also works reciprocally, since the transformation is its own inverse.
This is used for converting legacy Theano-saved model files.
Arguments:
kernel: Numpy array (3D, 4D or 5D).
Returns:
The converted kernel.
Raises:
ValueError: in case of invalid kernel shape or invalid data_format.
"""
kernel = np.asarray(kernel)
if not 3 <= kernel.ndim <= 5:
raise ValueError('Invalid kernel shape:', kernel.shape)
slices = [slice(None, None, -1) for _ in range(kernel.ndim)]
no_flip = (slice(None, None), slice(None, None))
slices[-2:] = no_flip
return np.copy(kernel[slices])
def conv_kernel_mask(input_shape, kernel_shape, strides, padding):
"""Compute a mask representing the connectivity of a convolution operation.

View File

@ -25,9 +25,6 @@ import weakref
import numpy as np
import six
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.utils.conv_utils import convert_kernel
from tensorflow.python.util import deprecation
from tensorflow.python.util import nest
from tensorflow.python.util.tf_export import keras_export
@ -328,37 +325,6 @@ def gather_non_trainable_weights(trainable, sub_layers, extra_variables):
return weights + non_trainable_extra_variables
@deprecation.deprecated('2020-06-23',
'The Theano kernel format is legacy; '
'this utility will be removed.')
@keras_export('keras.utils.convert_all_kernels_in_model')
def convert_all_kernels_in_model(model):
"""Converts all convolution kernels in a model from Theano to TensorFlow.
Also works from TensorFlow to Theano.
This is used for converting legacy Theano-saved model files.
Arguments:
model: target model for the conversion.
"""
# Note: SeparableConvolution not included
# since only supported by TF.
conv_classes = {
'Conv1D',
'Conv2D',
'Conv3D',
'Conv2DTranspose',
}
to_assign = []
for layer in model.layers:
if layer.__class__.__name__ in conv_classes:
original_kernel = K.get_value(layer.kernel)
converted_kernel = convert_kernel(original_kernel)
to_assign.append((layer.kernel, converted_kernel))
K.batch_set_value(to_assign)
def convert_dense_weights_data_format(dense,
previous_feature_map_shape,
target_data_format='channels_first'):

View File

@ -32,10 +32,6 @@ tf_module {
name: "custom_object_scope"
mtype: "<type \'type\'>"
}
member_method {
name: "convert_all_kernels_in_model"
argspec: "args=[\'model\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "deserialize_keras_object"
argspec: "args=[\'identifier\', \'module_objects\', \'custom_objects\', \'printable_module_name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'object\'], "

View File

@ -32,10 +32,6 @@ tf_module {
name: "custom_object_scope"
mtype: "<type \'type\'>"
}
member_method {
name: "convert_all_kernels_in_model"
argspec: "args=[\'model\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "deserialize_keras_object"
argspec: "args=[\'identifier\', \'module_objects\', \'custom_objects\', \'printable_module_name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\', \'object\'], "