Depthwise convolution tests changed.
PiperOrigin-RevId: 261154825
This commit is contained in:
parent
219e8d8d6f
commit
623abf22f8
@ -296,9 +296,12 @@ xla_test(
|
|||||||
xla_test(
|
xla_test(
|
||||||
name = "conv_depthwise_test",
|
name = "conv_depthwise_test",
|
||||||
timeout = "long",
|
timeout = "long",
|
||||||
srcs = ["conv_depthwise_test.cc"],
|
srcs = [
|
||||||
|
"conv_depthwise_test.cc",
|
||||||
|
],
|
||||||
shard_count = 50,
|
shard_count = 50,
|
||||||
deps = [
|
deps = [
|
||||||
|
":conv_depthwise_common",
|
||||||
":test_macros_header",
|
":test_macros_header",
|
||||||
"//tensorflow/compiler/xla:execution_options_util",
|
"//tensorflow/compiler/xla:execution_options_util",
|
||||||
"//tensorflow/compiler/xla:status_macros",
|
"//tensorflow/compiler/xla:status_macros",
|
||||||
@ -709,6 +712,27 @@ cc_library(
|
|||||||
],
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
cc_library(
|
||||||
|
name = "conv_depthwise_common",
|
||||||
|
testonly = True,
|
||||||
|
srcs = ["conv_depthwise_common.cc"],
|
||||||
|
hdrs = ["conv_depthwise_common.h"],
|
||||||
|
deps = [
|
||||||
|
":test_macros_header",
|
||||||
|
"//tensorflow/compiler/xla:execution_options_util",
|
||||||
|
"//tensorflow/compiler/xla:status_macros",
|
||||||
|
"//tensorflow/compiler/xla:test",
|
||||||
|
"//tensorflow/compiler/xla/client:xla_computation",
|
||||||
|
"//tensorflow/compiler/xla/service:bfloat16_normalization",
|
||||||
|
"//tensorflow/compiler/xla/service:despecializer",
|
||||||
|
"//tensorflow/compiler/xla/service:hlo_parser",
|
||||||
|
"//tensorflow/compiler/xla/tests:client_library_test_base",
|
||||||
|
"//tensorflow/compiler/xla/tests:hlo_test_base",
|
||||||
|
"//tensorflow/compiler/xla/tests:xla_internal_test_main",
|
||||||
|
"@com_google_absl//absl/types:optional",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
xla_test(
|
xla_test(
|
||||||
name = "exhaustive_unary_test_f32_or_smaller",
|
name = "exhaustive_unary_test_f32_or_smaller",
|
||||||
srcs = ["exhaustive_unary_test.cc"],
|
srcs = ["exhaustive_unary_test.cc"],
|
||||||
|
135
tensorflow/compiler/xla/tests/conv_depthwise_common.cc
Normal file
135
tensorflow/compiler/xla/tests/conv_depthwise_common.cc
Normal file
@ -0,0 +1,135 @@
|
|||||||
|
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#include "tensorflow/compiler/xla/tests/conv_depthwise_common.h"
|
||||||
|
|
||||||
|
#include "absl/types/optional.h"
|
||||||
|
#include "tensorflow/compiler/xla/client/xla_computation.h"
|
||||||
|
#include "tensorflow/compiler/xla/execution_options_util.h"
|
||||||
|
#include "tensorflow/compiler/xla/service/bfloat16_normalization.h"
|
||||||
|
#include "tensorflow/compiler/xla/service/despecializer.h"
|
||||||
|
#include "tensorflow/compiler/xla/service/hlo_parser.h"
|
||||||
|
#include "tensorflow/compiler/xla/status_macros.h"
|
||||||
|
#include "tensorflow/compiler/xla/test.h"
|
||||||
|
#include "tensorflow/compiler/xla/tests/client_library_test_base.h"
|
||||||
|
#include "tensorflow/compiler/xla/tests/hlo_test_base.h"
|
||||||
|
#include "tensorflow/compiler/xla/tests/test_macros.h"
|
||||||
|
|
||||||
|
namespace xla {
|
||||||
|
string GetFloatDataType(bool use_bfloat16) {
|
||||||
|
return use_bfloat16 ? "bf16" : "f32";
|
||||||
|
}
|
||||||
|
|
||||||
|
string DepthwiseConvolution2DTestDataToString(
|
||||||
|
const ::testing::TestParamInfo<
|
||||||
|
::testing::tuple<DepthwiseConvolution2DSpec, bool>>& data) {
|
||||||
|
const auto& spec = ::testing::get<0>(data.param);
|
||||||
|
const string data_type = GetFloatDataType(::testing::get<1>(data.param));
|
||||||
|
string str = absl::StrCat(
|
||||||
|
"activation_dims_", absl::StrJoin(spec.activation_dims, "x"),
|
||||||
|
"_activation_layout_", absl::StrJoin(spec.activation_layout, "_"),
|
||||||
|
"_kernel_dims_", absl::StrJoin(spec.kernel_dims, "x"), "_kernel_layout_",
|
||||||
|
absl::StrJoin(spec.kernel_layout, "_"), "_output_dims_",
|
||||||
|
absl::StrJoin(spec.output_dims, "x"), "_output_layout_",
|
||||||
|
absl::StrJoin(spec.output_layout, "_"), data_type);
|
||||||
|
// -1 indicates non-existence.
|
||||||
|
if (spec.stride != -1) {
|
||||||
|
absl::StrAppend(&str, "_lhs_dilation_", spec.lhs_dilate, "x1");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Test names are not allowed to contain the '-' character.
|
||||||
|
absl::c_replace(str, '-', 'n');
|
||||||
|
return str;
|
||||||
|
}
|
||||||
|
|
||||||
|
string BuildHloTextDepthwiseConvolution2D(
|
||||||
|
const DepthwiseConvolution2DSpec& spec, bool use_bfloat16,
|
||||||
|
bool is_scheduled) {
|
||||||
|
const string data_type = GetFloatDataType(use_bfloat16);
|
||||||
|
const string sched_tag = is_scheduled ? ", is_scheduled=true " : "";
|
||||||
|
if (spec.activation_dims[1] == 1 && spec.kernel_dims[1] == 2) {
|
||||||
|
return absl::StrFormat(
|
||||||
|
R"(
|
||||||
|
HloModule TensorFlowDepthwiseConv %s
|
||||||
|
ENTRY main {
|
||||||
|
activation = %s[%s]{%s} parameter(0)
|
||||||
|
kernel = %s[%s]{%s} parameter(1)
|
||||||
|
ROOT conv = %s[%s]{%s} convolution(%s[%s]{%s} activation, %s[%s]{%s} kernel),
|
||||||
|
window={size=%dx%d pad=1_1x%d_%d rhs_dilate=1x%d}, dim_labels=b01f_01io->b01f,
|
||||||
|
feature_group_count=%d
|
||||||
|
}
|
||||||
|
)",
|
||||||
|
sched_tag, data_type, absl::StrJoin(spec.activation_dims, ","),
|
||||||
|
absl::StrJoin(spec.activation_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.kernel_dims, ","),
|
||||||
|
absl::StrJoin(spec.kernel_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.output_dims, ","),
|
||||||
|
absl::StrJoin(spec.output_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.activation_dims, ","),
|
||||||
|
absl::StrJoin(spec.activation_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.kernel_dims, ","),
|
||||||
|
absl::StrJoin(spec.kernel_layout, ","), spec.window, spec.window,
|
||||||
|
spec.window, spec.window, spec.window, spec.output_feature);
|
||||||
|
|
||||||
|
} else if (spec.stride == -1) {
|
||||||
|
return absl::StrFormat(
|
||||||
|
R"(
|
||||||
|
HloModule TensorFlowDepthwiseConv %s
|
||||||
|
ENTRY main {
|
||||||
|
activation = %s[%s]{%s} parameter(0)
|
||||||
|
kernel = %s[%s]{%s} parameter(1)
|
||||||
|
ROOT conv = %s[%s]{%s} convolution(%s[%s]{%s} activation, %s[%s]{%s} kernel),
|
||||||
|
window={size=%dx%d}, dim_labels=b01f_01io->b01f,
|
||||||
|
feature_group_count=%d
|
||||||
|
}
|
||||||
|
)",
|
||||||
|
sched_tag, data_type, absl::StrJoin(spec.activation_dims, ","),
|
||||||
|
absl::StrJoin(spec.activation_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.kernel_dims, ","),
|
||||||
|
absl::StrJoin(spec.kernel_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.output_dims, ","),
|
||||||
|
absl::StrJoin(spec.output_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.activation_dims, ","),
|
||||||
|
absl::StrJoin(spec.activation_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.kernel_dims, ","),
|
||||||
|
absl::StrJoin(spec.kernel_layout, ","), spec.window, spec.window,
|
||||||
|
spec.output_feature);
|
||||||
|
} else {
|
||||||
|
return absl::StrFormat(
|
||||||
|
R"(
|
||||||
|
HloModule TensorFlowDepthwiseConv %s
|
||||||
|
|
||||||
|
ENTRY main {
|
||||||
|
activation = %s[%s]{%s} parameter(0)
|
||||||
|
kernel = %s[%s]{%s} parameter(1)
|
||||||
|
ROOT conv = %s[%s]{%s} convolution(%s[%s]{%s} activation, %s[%s]{%s} kernel),
|
||||||
|
window={size=%dx%d stride=%dx1 pad=%d_%dx0_0 lhs_dilate=%dx1},
|
||||||
|
dim_labels=b01f_01io->b01f, feature_group_count=%d
|
||||||
|
}
|
||||||
|
)",
|
||||||
|
sched_tag, data_type, absl::StrJoin(spec.activation_dims, ","),
|
||||||
|
absl::StrJoin(spec.activation_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.kernel_dims, ","),
|
||||||
|
absl::StrJoin(spec.kernel_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.output_dims, ","),
|
||||||
|
absl::StrJoin(spec.output_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.activation_dims, ","),
|
||||||
|
absl::StrJoin(spec.activation_layout, ","), data_type,
|
||||||
|
absl::StrJoin(spec.kernel_dims, ","),
|
||||||
|
absl::StrJoin(spec.kernel_layout, ","), spec.window, spec.window,
|
||||||
|
spec.stride, 0, 0, spec.lhs_dilate, spec.output_feature);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} // namespace xla
|
53
tensorflow/compiler/xla/tests/conv_depthwise_common.h
Normal file
53
tensorflow/compiler/xla/tests/conv_depthwise_common.h
Normal file
@ -0,0 +1,53 @@
|
|||||||
|
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
==============================================================================*/
|
||||||
|
|
||||||
|
#ifndef TENSORFLOW_COMPILER_XLA_TESTS_CONV_DEPTHWISE_COMMON_H_
|
||||||
|
#define TENSORFLOW_COMPILER_XLA_TESTS_CONV_DEPTHWISE_COMMON_H_
|
||||||
|
|
||||||
|
#include "absl/types/optional.h"
|
||||||
|
#include "tensorflow/compiler/xla/client/xla_computation.h"
|
||||||
|
#include "tensorflow/compiler/xla/execution_options_util.h"
|
||||||
|
#include "tensorflow/compiler/xla/service/bfloat16_normalization.h"
|
||||||
|
#include "tensorflow/compiler/xla/service/despecializer.h"
|
||||||
|
#include "tensorflow/compiler/xla/service/hlo_parser.h"
|
||||||
|
#include "tensorflow/compiler/xla/status_macros.h"
|
||||||
|
#include "tensorflow/compiler/xla/test.h"
|
||||||
|
#include "tensorflow/compiler/xla/tests/client_library_test_base.h"
|
||||||
|
#include "tensorflow/compiler/xla/tests/hlo_test_base.h"
|
||||||
|
#include "tensorflow/compiler/xla/tests/test_macros.h"
|
||||||
|
|
||||||
|
namespace xla {
|
||||||
|
string GetFloatDataType(bool use_bfloat16);
|
||||||
|
|
||||||
|
struct DepthwiseConvolution2DSpec {
|
||||||
|
int64 output_feature, window, stride, pad, lhs_dilate;
|
||||||
|
std::vector<int64> activation_dims;
|
||||||
|
std::vector<int64> activation_layout;
|
||||||
|
std::vector<int64> kernel_dims;
|
||||||
|
std::vector<int64> kernel_layout;
|
||||||
|
std::vector<int64> output_dims;
|
||||||
|
std::vector<int64> output_layout;
|
||||||
|
};
|
||||||
|
|
||||||
|
string DepthwiseConvolution2DTestDataToString(
|
||||||
|
const ::testing::TestParamInfo<
|
||||||
|
::testing::tuple<DepthwiseConvolution2DSpec, bool>>& data);
|
||||||
|
|
||||||
|
string BuildHloTextDepthwiseConvolution2D(
|
||||||
|
const DepthwiseConvolution2DSpec& spec, bool use_bfloat16,
|
||||||
|
bool is_scheduled = false);
|
||||||
|
|
||||||
|
} // namespace xla
|
||||||
|
#endif // TENSORFLOW_COMPILER_XLA_TESTS_CONV_DEPTHWISE_COMMON_H_
|
@ -22,26 +22,13 @@ limitations under the License.
|
|||||||
#include "tensorflow/compiler/xla/status_macros.h"
|
#include "tensorflow/compiler/xla/status_macros.h"
|
||||||
#include "tensorflow/compiler/xla/test.h"
|
#include "tensorflow/compiler/xla/test.h"
|
||||||
#include "tensorflow/compiler/xla/tests/client_library_test_base.h"
|
#include "tensorflow/compiler/xla/tests/client_library_test_base.h"
|
||||||
|
#include "tensorflow/compiler/xla/tests/conv_depthwise_common.h"
|
||||||
#include "tensorflow/compiler/xla/tests/hlo_test_base.h"
|
#include "tensorflow/compiler/xla/tests/hlo_test_base.h"
|
||||||
#include "tensorflow/compiler/xla/tests/test_macros.h"
|
#include "tensorflow/compiler/xla/tests/test_macros.h"
|
||||||
|
|
||||||
namespace xla {
|
namespace xla {
|
||||||
namespace {
|
namespace {
|
||||||
|
|
||||||
string GetFloatDataType(bool use_bfloat16) {
|
|
||||||
return use_bfloat16 ? "bf16" : "f32";
|
|
||||||
}
|
|
||||||
|
|
||||||
struct DepthwiseConvolution2DSpec {
|
|
||||||
int64 output_feature, window, stride, pad, lhs_dilate;
|
|
||||||
std::vector<int64> activation_dims;
|
|
||||||
std::vector<int64> activation_layout;
|
|
||||||
std::vector<int64> kernel_dims;
|
|
||||||
std::vector<int64> kernel_layout;
|
|
||||||
std::vector<int64> output_dims;
|
|
||||||
std::vector<int64> output_layout;
|
|
||||||
};
|
|
||||||
|
|
||||||
class DepthwiseConvolution2DTest
|
class DepthwiseConvolution2DTest
|
||||||
: public HloTestBase,
|
: public HloTestBase,
|
||||||
public ::testing::WithParamInterface<
|
public ::testing::WithParamInterface<
|
||||||
@ -70,6 +57,7 @@ static std::vector<DepthwiseConvolution2DSpec> GetConv2DTestCases() {
|
|||||||
|
|
||||||
config.kernel_dims = {kernel_size, kernel_size, 1, feature};
|
config.kernel_dims = {kernel_size, kernel_size, 1, feature};
|
||||||
config.kernel_layout = {3, 2, 1, 0};
|
config.kernel_layout = {3, 2, 1, 0};
|
||||||
|
config.output_layout = {3, 0, 2, 1};
|
||||||
|
|
||||||
if (activation_size == 1 && kernel_size == 2) {
|
if (activation_size == 1 && kernel_size == 2) {
|
||||||
// Test for outer dim.
|
// Test for outer dim.
|
||||||
@ -87,127 +75,12 @@ static std::vector<DepthwiseConvolution2DSpec> GetConv2DTestCases() {
|
|||||||
config.output_dims = {batch, activation_size - kernel_size + 1,
|
config.output_dims = {batch, activation_size - kernel_size + 1,
|
||||||
activation_size - kernel_size + 1, feature};
|
activation_size - kernel_size + 1, feature};
|
||||||
}
|
}
|
||||||
|
|
||||||
// Try this layout for all kernel shapes.
|
|
||||||
config.output_layout = {3, 0, 2, 1};
|
|
||||||
config_set.push_back(config);
|
config_set.push_back(config);
|
||||||
|
|
||||||
// Try other layouts only for certain kernel shapes.
|
|
||||||
if (kernel_size % 2 == 0) {
|
|
||||||
config.activation_layout = {0, 3, 2, 1};
|
|
||||||
config_set.push_back(config);
|
|
||||||
|
|
||||||
config.output_layout = {0, 3, 2, 1};
|
|
||||||
config_set.push_back(config);
|
|
||||||
|
|
||||||
config.activation_layout = {3, 0, 2, 1};
|
|
||||||
config_set.push_back(config);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
return config_set;
|
return config_set;
|
||||||
}
|
}
|
||||||
|
|
||||||
string DepthwiseConvolution2DTestDataToString(
|
|
||||||
const ::testing::TestParamInfo<
|
|
||||||
::testing::tuple<DepthwiseConvolution2DSpec, bool>>& data) {
|
|
||||||
const auto& spec = ::testing::get<0>(data.param);
|
|
||||||
const string data_type = GetFloatDataType(::testing::get<1>(data.param));
|
|
||||||
string str = absl::StrCat(
|
|
||||||
"activation_dims_", absl::StrJoin(spec.activation_dims, "x"),
|
|
||||||
"_activation_layout_", absl::StrJoin(spec.activation_layout, "_"),
|
|
||||||
"_kernel_dims_", absl::StrJoin(spec.kernel_dims, "x"), "_kernel_layout_",
|
|
||||||
absl::StrJoin(spec.kernel_layout, "_"), "_output_dims_",
|
|
||||||
absl::StrJoin(spec.output_dims, "x"), "_output_layout_",
|
|
||||||
absl::StrJoin(spec.output_layout, "_"), data_type);
|
|
||||||
// -1 indicates non-existence.
|
|
||||||
if (spec.stride != -1) {
|
|
||||||
absl::StrAppend(&str, "_lhs_dilation_", spec.lhs_dilate, "x1");
|
|
||||||
}
|
|
||||||
|
|
||||||
// Test names are not allowed to contain the '-' character.
|
|
||||||
absl::c_replace(str, '-', 'n');
|
|
||||||
return str;
|
|
||||||
}
|
|
||||||
|
|
||||||
string BuildHloTextDepthwiseConvolution2D(
|
|
||||||
const DepthwiseConvolution2DSpec& spec, bool use_bfloat16) {
|
|
||||||
const string data_type = GetFloatDataType(use_bfloat16);
|
|
||||||
if (spec.activation_dims[1] == 1 && spec.kernel_dims[1] == 2) {
|
|
||||||
return absl::StrFormat(
|
|
||||||
R"(
|
|
||||||
HloModule TensorFlowDepthwiseConv
|
|
||||||
|
|
||||||
ENTRY main {
|
|
||||||
activation = %s[%s]{%s} parameter(0)
|
|
||||||
kernel = %s[%s]{%s} parameter(1)
|
|
||||||
ROOT conv = %s[%s]{%s} convolution(%s[%s]{%s} activation, %s[%s]{%s} kernel),
|
|
||||||
window={size=%dx%d pad=1_1x%d_%d rhs_dilate=1x%d}, dim_labels=b01f_01io->b01f,
|
|
||||||
feature_group_count=%d
|
|
||||||
}
|
|
||||||
)",
|
|
||||||
data_type, absl::StrJoin(spec.activation_dims, ","),
|
|
||||||
absl::StrJoin(spec.activation_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.kernel_dims, ","),
|
|
||||||
absl::StrJoin(spec.kernel_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.output_dims, ","),
|
|
||||||
absl::StrJoin(spec.output_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.activation_dims, ","),
|
|
||||||
absl::StrJoin(spec.activation_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.kernel_dims, ","),
|
|
||||||
absl::StrJoin(spec.kernel_layout, ","), spec.window, spec.window,
|
|
||||||
spec.window, spec.window, spec.window, spec.output_feature);
|
|
||||||
|
|
||||||
} else if (spec.stride == -1) {
|
|
||||||
return absl::StrFormat(
|
|
||||||
R"(
|
|
||||||
HloModule TensorFlowDepthwiseConv
|
|
||||||
|
|
||||||
ENTRY main {
|
|
||||||
activation = %s[%s]{%s} parameter(0)
|
|
||||||
kernel = %s[%s]{%s} parameter(1)
|
|
||||||
ROOT conv = %s[%s]{%s} convolution(%s[%s]{%s} activation, %s[%s]{%s} kernel),
|
|
||||||
window={size=%dx%d}, dim_labels=b01f_01io->b01f,
|
|
||||||
feature_group_count=%d
|
|
||||||
}
|
|
||||||
)",
|
|
||||||
data_type, absl::StrJoin(spec.activation_dims, ","),
|
|
||||||
absl::StrJoin(spec.activation_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.kernel_dims, ","),
|
|
||||||
absl::StrJoin(spec.kernel_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.output_dims, ","),
|
|
||||||
absl::StrJoin(spec.output_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.activation_dims, ","),
|
|
||||||
absl::StrJoin(spec.activation_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.kernel_dims, ","),
|
|
||||||
absl::StrJoin(spec.kernel_layout, ","), spec.window, spec.window,
|
|
||||||
spec.output_feature);
|
|
||||||
} else {
|
|
||||||
return absl::StrFormat(
|
|
||||||
R"(
|
|
||||||
HloModule TensorFlowDepthwiseConv
|
|
||||||
|
|
||||||
ENTRY main {
|
|
||||||
activation = %s[%s]{%s} parameter(0)
|
|
||||||
kernel = %s[%s]{%s} parameter(1)
|
|
||||||
ROOT conv = %s[%s]{%s} convolution(%s[%s]{%s} activation, %s[%s]{%s} kernel),
|
|
||||||
window={size=%dx%d stride=%dx1 pad=%d_%dx0_0 lhs_dilate=%dx1},
|
|
||||||
dim_labels=b01f_01io->b01f, feature_group_count=%d
|
|
||||||
}
|
|
||||||
)",
|
|
||||||
data_type, absl::StrJoin(spec.activation_dims, ","),
|
|
||||||
absl::StrJoin(spec.activation_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.kernel_dims, ","),
|
|
||||||
absl::StrJoin(spec.kernel_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.output_dims, ","),
|
|
||||||
absl::StrJoin(spec.output_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.activation_dims, ","),
|
|
||||||
absl::StrJoin(spec.activation_layout, ","), data_type,
|
|
||||||
absl::StrJoin(spec.kernel_dims, ","),
|
|
||||||
absl::StrJoin(spec.kernel_layout, ","), spec.window, spec.window,
|
|
||||||
spec.stride, 0, 0, spec.lhs_dilate, spec.output_feature);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
XLA_TEST_P(DepthwiseConvolution2DTest, DoIt) {
|
XLA_TEST_P(DepthwiseConvolution2DTest, DoIt) {
|
||||||
const DepthwiseConvolution2DSpec& spec = ::testing::get<0>(GetParam());
|
const DepthwiseConvolution2DSpec& spec = ::testing::get<0>(GetParam());
|
||||||
|
Loading…
Reference in New Issue
Block a user