[tf.data] s/workers/replicas in all rebatching related files for consistency with distribution strategy naming conventions (https://github.com/tensorflow/community/blob/master/rfcs/20181016-replicator.md).

PiperOrigin-RevId: 261958155
This commit is contained in:
Rachel Lim 2019-08-06 11:28:46 -07:00
parent 71d73e56a2
commit 6208021e3d
11 changed files with 118 additions and 116 deletions

View File

@ -8,9 +8,9 @@ A variant tensor representing the input dataset.
END
}
in_arg {
name: "num_workers"
name: "num_replicas"
description: <<END
A scalar representing the number of workers to distribute this batch across. As
A scalar representing the number of replicas to distribute this batch across. As
a result of this transformation the current batch size would end up being
divided by this parameter.
END
@ -18,6 +18,6 @@ END
summary: "Creates a dataset that changes the batch size."
description: <<END
Creates a dataset that changes the batch size of the dataset to current batch
size // num_workers.
size // num_replicas.
END
}

View File

@ -8,9 +8,9 @@ A variant tensor representing the input dataset.
END
}
in_arg {
name: "num_workers"
name: "num_replicas"
description: <<END
A scalar representing the number of workers to distribute this batch across. As
A scalar representing the number of replicas to distribute this batch across. As
a result of this transformation the current batch size would end up being
divided by this parameter.
END

View File

@ -39,7 +39,7 @@ Status RebatchOptimizer::Init(
return errors::InvalidArgument(
"Cannot initialize RebatchOptimizer without config.");
num_workers_ = config->parameter_map().at("num_workers").i();
num_replicas_ = config->parameter_map().at("num_replicas").i();
use_fallback_ = config->parameter_map().at("use_fallback").b();
return Status::OK();
}
@ -307,14 +307,14 @@ Status GetBatchDim(AttrValue output_shapes, int* batch_dim) {
return Status::OK();
}
Status UpdateOutputShapes(const string& node_name, int64 num_workers,
Status UpdateOutputShapes(const string& node_name, int64 num_replicas,
MutableGraphView* graph) {
NodeDef* node = graph->GetNode(node_name);
if (node->attr().contains(kOutputShapesAttr)) {
AttrValue output_shapes = node->attr().at(kOutputShapesAttr);
for (auto& shape : *output_shapes.mutable_list()->mutable_shape()) {
if (!shape.unknown_rank() && shape.dim(0).size() != -1) {
shape.mutable_dim(0)->set_size(shape.dim(0).size() / num_workers);
shape.mutable_dim(0)->set_size(shape.dim(0).size() / num_replicas);
}
}
(*node->mutable_attr())[kOutputShapesAttr] = output_shapes;
@ -335,16 +335,16 @@ int64 GetBatchSizeArgIndex(const NodeDef& batch_node) {
}
Status MakeNewBatchSizeNode(const string& global_batch_size_name,
int64 num_workers, FunctionDef* fdef,
int64 num_replicas, FunctionDef* fdef,
NodeDef** result) {
NodeDef* one_node;
TF_RETURN_IF_ERROR(AddConstInt64Node(1, fdef, &one_node));
NodeDef* num_workers_node;
TF_RETURN_IF_ERROR(AddConstInt64Node(num_workers, fdef, &num_workers_node));
NodeDef* num_replicas_node;
TF_RETURN_IF_ERROR(AddConstInt64Node(num_replicas, fdef, &num_replicas_node));
NodeDef* numerator_node =
AddBinaryNode(global_batch_size_name,
strings::StrCat(num_workers_node->name(), ":output:0"),
strings::StrCat(num_replicas_node->name(), ":output:0"),
kAddOp, DT_INT64, fdef);
numerator_node = AddBinaryNode(
strings::StrCat(numerator_node->name(), ":z:0"),
@ -352,14 +352,14 @@ Status MakeNewBatchSizeNode(const string& global_batch_size_name,
*result =
AddBinaryNode(strings::StrCat(numerator_node->name(), ":z:0"),
strings::StrCat(num_workers_node->name(), ":output:0"),
strings::StrCat(num_replicas_node->name(), ":output:0"),
kTruncateDivOp, DT_INT64, fdef);
return Status::OK();
}
// Given a "batch" dataset node, we replace the `batch_size` input with a new
// input that corresponds to the original input divided by `num_workers`.
Status MutateBatchSize(const NodeDef& node, int64 num_workers,
// input that corresponds to the original input divided by `num_replicas`.
Status MutateBatchSize(const NodeDef& node, int64 num_replicas,
MutableGraphView* graph) {
// For all the batching datasets the batch_size is input number 1 except for
// MapAndBatchDataset.
@ -369,8 +369,8 @@ Status MutateBatchSize(const NodeDef& node, int64 num_workers,
int64 batch_size;
TF_RETURN_IF_ERROR(
graph_utils::GetScalarConstNodeValue(*batch_size_node, &batch_size));
DCHECK_EQ(batch_size % num_workers, 0);
batch_size = batch_size / num_workers;
DCHECK_EQ(batch_size % num_replicas, 0);
batch_size = batch_size / num_replicas;
NodeDef* new_batch_size_node =
graph_utils::AddScalarConstNode<int64>(batch_size, graph);
// We don't call UpdateFanouts here because CSE elimination might lead to
@ -413,8 +413,8 @@ Status AddFlatMapNode(const string& input_dataset,
// def flat_map_fn(*batched_components):
// ds = tf.data.Dataset.from_tensor_slices(batched_components)
// return ds.batch(minibatch_size, drop_remainder=False)
Status CreateFlatMapFnWithBatch(const DataTypeVector& dtypes, int64 num_workers,
FunctionDef* result) {
Status CreateFlatMapFnWithBatch(const DataTypeVector& dtypes,
int64 num_replicas, FunctionDef* result) {
NodeDef* tensor_slice_node = result->add_node_def();
tensor_slice_node->set_op("TensorSliceDataset");
for (int i = 0; i < dtypes.size(); ++i) {
@ -445,7 +445,7 @@ Status CreateFlatMapFnWithBatch(const DataTypeVector& dtypes, int64 num_workers,
function_utils::AddFunctionInput("captured_batch_size", result, DT_INT64);
NodeDef* new_batch_size;
TF_RETURN_IF_ERROR(MakeNewBatchSizeNode(
original_batch_size->name(), num_workers, result, &new_batch_size));
original_batch_size->name(), num_replicas, result, &new_batch_size));
batch_node->add_input(strings::StrCat(new_batch_size->name(), ":z:0"));
// `drop_remainder` input
@ -470,9 +470,9 @@ Status CreateFlatMapFnWithBatch(const DataTypeVector& dtypes, int64 num_workers,
// in a step adds up to the global batch size. However, since this adds
// additional data copies (both from_tensor_slices and batch), we only use
// this approach when necessary, i.e. when we need to drop remainder on the
// global batch, or when the global batch size does not divide num_workers
// global batch, or when the global batch size does not divide num_replicas
// evenly.
Status AppendFlatMap(const NodeDef& batch_node, int64 num_workers,
Status AppendFlatMap(const NodeDef& batch_node, int64 num_replicas,
FunctionLibraryDefinition* flib, MutableGraphView* graph) {
// `.flat_map(lambda x: tf.data.Dataset.from_tensor_slices(x).
// batch(minibatch_size, drop_remainder=False))`
@ -484,7 +484,7 @@ Status AppendFlatMap(const NodeDef& batch_node, int64 num_workers,
TF_RETURN_IF_ERROR(
graph_utils::GetDatasetOutputTypesAttr(batch_node, &dtypes));
TF_RETURN_IF_ERROR(
CreateFlatMapFnWithBatch(dtypes, num_workers, &flat_map_fn));
CreateFlatMapFnWithBatch(dtypes, num_replicas, &flat_map_fn));
int64 batch_size_index = GetBatchSizeArgIndex(batch_node);
@ -496,7 +496,7 @@ Status AppendFlatMap(const NodeDef& batch_node, int64 num_workers,
// Because the flat map function uses drop_remainder = False,
// the shape might be unknown
auto old_dim = shape.dim(0).size();
auto new_dim = old_dim % num_workers == 0 ? old_dim / num_workers : -1;
auto new_dim = old_dim % num_replicas == 0 ? old_dim / num_replicas : -1;
shape.mutable_dim(0)->set_size(new_dim);
}
}
@ -514,12 +514,13 @@ Status AppendFlatMap(const NodeDef& batch_node, int64 num_workers,
// There are several things we do here, depending on the values of
// batch_size and drop_remainder.
// (1) If batch size is known and divisible by num_workers, and drop_remainder
// (1) If batch size is known and divisible by num_replicas, and drop_remainder
// is known to be False, we mutate the batch size directly.
// .batch(global_batch_size) -> .batch(global_batch_size // num_workers)
// .batch(global_batch_size) -> .batch(global_batch_size // num_replicas)
// (2) Otherwise, we add a flat_map transformation to preserve the global batch
// size across the workers and to preserve the drop remainder behavior.
bool ShouldMutateBatchSizeDirectly(const NodeDef& batch_node, int64 num_workers,
// size across the replicas and to preserve the drop remainder behavior.
bool ShouldMutateBatchSizeDirectly(const NodeDef& batch_node,
int64 num_replicas,
MutableGraphView* graph) {
int64 batch_size_arg_index = GetBatchSizeArgIndex(batch_node);
NodeDef* batch_size_node =
@ -528,9 +529,9 @@ bool ShouldMutateBatchSizeDirectly(const NodeDef& batch_node, int64 num_workers,
int64 batch_size;
Status s =
graph_utils::GetScalarConstNodeValue(*batch_size_node, &batch_size);
// If batch size is unknown or indivisible by num workers, we don't
// If batch size is unknown or indivisible by num replicas, we don't
// mutate it directly
if (!s.ok() || batch_size % num_workers != 0) return false;
if (!s.ok() || batch_size % num_replicas != 0) return false;
if (batch_node.op() == kBatchOp || batch_node.op() == kPaddedBatchOp) {
// These ops don't have a `drop_remainder` input, and behave like
@ -547,16 +548,16 @@ bool ShouldMutateBatchSizeDirectly(const NodeDef& batch_node, int64 num_workers,
return s.ok() && !drop_remainder;
}
Status RewriteBatchNode(const NodeDef& batch_node, int64 num_workers,
Status RewriteBatchNode(const NodeDef& batch_node, int64 num_replicas,
FunctionLibraryDefinition* flib,
MutableGraphView* graph) {
if (ShouldMutateBatchSizeDirectly(batch_node, num_workers, graph)) {
return MutateBatchSize(batch_node, num_workers, graph);
if (ShouldMutateBatchSizeDirectly(batch_node, num_replicas, graph)) {
return MutateBatchSize(batch_node, num_replicas, graph);
}
return AppendFlatMap(batch_node, num_workers, flib, graph);
return AppendFlatMap(batch_node, num_replicas, flib, graph);
}
Status OptimizeGraph(const GrapplerItem& item, int64 num_workers,
Status OptimizeGraph(const GrapplerItem& item, int64 num_replicas,
bool use_fallback, GraphDef* output);
// Helper function that starts from a node in the graph and recurses into its
@ -567,16 +568,16 @@ Status OptimizeGraph(const GrapplerItem& item, int64 num_workers,
// as they are datasets themselves.
// 3. Core dataset ops + Identity op: Recurses into first input parameter.
// 4. FlatMap type mapping dataset ops: Recurses into the function definition.
Status RecursivelyHandleOp(const NodeDef& node, int64 num_workers,
Status RecursivelyHandleOp(const NodeDef& node, int64 num_replicas,
bool use_fallback, FunctionLibraryDefinition* flib,
MutableGraphView* graph) {
if (IsDatasetNodeOfType(node, kBatchDatasetOps)) {
TF_RETURN_IF_ERROR(RewriteBatchNode(node, num_workers, flib, graph));
TF_RETURN_IF_ERROR(RewriteBatchNode(node, num_replicas, flib, graph));
} else if (IsDatasetNodeOfType(node, kMultipleInputsDatasetOps)) {
// For all multiple input datasets, all inputs are datasets themselves.
for (int i = 0; i < node.input_size(); ++i) {
NodeDef* input_node = graph_utils::GetInputNode(node, *graph, i);
TF_RETURN_IF_ERROR(RecursivelyHandleOp(*input_node, num_workers,
TF_RETURN_IF_ERROR(RecursivelyHandleOp(*input_node, num_replicas,
use_fallback, flib, graph));
}
} else if (IsDatasetNodeOfType(node, kPassThroughOps) || IsRetval(node)) {
@ -584,7 +585,7 @@ Status RecursivelyHandleOp(const NodeDef& node, int64 num_workers,
// function body graph in place of function outputs, the input dataset is
// input 0.
NodeDef* input_node = graph_utils::GetInputNode(node, *graph, 0);
TF_RETURN_IF_ERROR(RecursivelyHandleOp(*input_node, num_workers,
TF_RETURN_IF_ERROR(RecursivelyHandleOp(*input_node, num_replicas,
use_fallback, flib, graph));
} else if (IsDatasetNodeOfType(node, kFuncDatasetOps)) {
const string func_name =
@ -594,7 +595,7 @@ Status RecursivelyHandleOp(const NodeDef& node, int64 num_workers,
TF_RETURN_IF_ERROR(MakeGrapplerFunctionItem(
*fdef, *flib, graph->graph()->versions().producer(), &f_item));
GraphDef optimized_func_graph;
TF_RETURN_IF_ERROR(OptimizeGraph(f_item, num_workers, use_fallback,
TF_RETURN_IF_ERROR(OptimizeGraph(f_item, num_replicas, use_fallback,
&optimized_func_graph));
// Function body optimization might have created new specialized
@ -623,7 +624,7 @@ Status RecursivelyHandleOp(const NodeDef& node, int64 num_workers,
}
// If we've successfully updated the batch size of this node or any nodes
// in the dataset tree rooted in this node, we update the output_shapes attr.
TF_RETURN_IF_ERROR(UpdateOutputShapes(node.name(), num_workers, graph));
TF_RETURN_IF_ERROR(UpdateOutputShapes(node.name(), num_replicas, graph));
return Status::OK();
}
@ -689,7 +690,7 @@ Status CreateFlatMapFnWithReshape(int new_batch_dim,
// For each component of the dataset, we reshape it from shape
// (old_batch_size, ...) to (-1, new_batch_size, ...)
// where new_batch_size = (old_batch_size + num_workers - 1) // num_workers
// where new_batch_size = (old_batch_size + num_replicas - 1) // num_replicas
for (int i = 0; i < types.size(); ++i) {
auto* input_arg = function_utils::AddFunctionInput(
strings::StrCat("args_", i), result, types.at(i));
@ -733,13 +734,13 @@ Status CreateFlatMapFnWithReshape(int new_batch_dim,
// return tf.data.Dataset.from_tensor_slices(
// tf.reshape(
// x,
// tf.concat([[-1, old_batch_dim / num_workers], tf.shape(x)[1:]], 0)
// tf.concat([[-1, old_batch_dim / num_replicas], tf.shape(x)[1:]], 0)
// )
// )
//
// dataset = dataset.flat_map(fn)
// ```
Status RebatchWithFallback(const NodeDef* fetch_node, int64 num_workers,
Status RebatchWithFallback(const NodeDef* fetch_node, int64 num_replicas,
FunctionLibraryDefinition* flib,
MutableGraphView* graph) {
if (IsRetval(*fetch_node) || fetch_node->op() == kIdentityOp) {
@ -762,10 +763,10 @@ Status RebatchWithFallback(const NodeDef* fetch_node, int64 num_workers,
}
int batch_dim;
TF_RETURN_IF_ERROR(GetBatchDim(output_shapes, &batch_dim));
if (batch_dim % num_workers != 0) {
if (batch_dim % num_replicas != 0) {
return errors::InvalidArgument(
"Cannot use rebatching fallback when batch dimension doesn't divide "
"num_workers evenly.");
"num_replicas evenly.");
}
// Create the flat map fn
@ -778,7 +779,7 @@ Status RebatchWithFallback(const NodeDef* fetch_node, int64 num_workers,
DataTypeVector output_types;
TF_RETURN_IF_ERROR(
graph_utils::GetDatasetOutputTypesAttr(*fetch_node, &output_types));
TF_RETURN_IF_ERROR(CreateFlatMapFnWithReshape(batch_dim / num_workers,
TF_RETURN_IF_ERROR(CreateFlatMapFnWithReshape(batch_dim / num_replicas,
output_types, &flat_map_fn));
NodeDef* flat_map_node;
@ -786,7 +787,7 @@ Status RebatchWithFallback(const NodeDef* fetch_node, int64 num_workers,
{}, {}, flat_map_fn, output_shapes,
output_types, flib, graph, &flat_map_node));
TF_RETURN_IF_ERROR(
UpdateOutputShapes(flat_map_node->name(), num_workers, graph));
UpdateOutputShapes(flat_map_node->name(), num_replicas, graph));
TF_RETURN_IF_ERROR(
graph->UpdateFanouts(fetch_node->name(), flat_map_node->name()));
@ -797,7 +798,7 @@ Status RebatchWithFallback(const NodeDef* fetch_node, int64 num_workers,
// Helper function that given a GrapplerItem generates a mutated graph def
// with the batch size changed. The GrapplerItem could be generated from the
// main graph or could be a function graph.
Status OptimizeGraph(const GrapplerItem& item, int64 num_workers,
Status OptimizeGraph(const GrapplerItem& item, int64 num_replicas,
bool use_fallback, GraphDef* output) {
*output = item.graph;
MutableGraphView graph(output);
@ -807,8 +808,8 @@ Status OptimizeGraph(const GrapplerItem& item, int64 num_workers,
NodeDef* sink_node;
TF_RETURN_IF_ERROR(graph_utils::GetFetchNode(graph, item, &sink_node));
Status s =
RecursivelyHandleOp(*sink_node, num_workers, use_fallback, &flib, &graph);
Status s = RecursivelyHandleOp(*sink_node, num_replicas, use_fallback, &flib,
&graph);
if (!s.ok()) {
if (use_fallback) {
VLOG(1) << "Failed to rebatch by rewriting the batch transformation ("
@ -818,7 +819,7 @@ Status OptimizeGraph(const GrapplerItem& item, int64 num_workers,
*output = item.graph;
graph = MutableGraphView(output);
TF_RETURN_IF_ERROR(
RebatchWithFallback(sink_node, num_workers, &flib, &graph));
RebatchWithFallback(sink_node, num_replicas, &flib, &graph));
} else {
// Return the error
return s;
@ -837,7 +838,7 @@ Status RebatchOptimizer::OptimizeAndCollectStats(Cluster* cluster,
*output = item.graph;
MutableGraphView graph(output);
TF_RETURN_IF_ERROR(OptimizeGraph(item, num_workers_, use_fallback_, output));
TF_RETURN_IF_ERROR(OptimizeGraph(item, num_replicas_, use_fallback_, output));
stats->num_changes++;
return Status::OK();
}

View File

@ -23,7 +23,7 @@ namespace tensorflow {
namespace grappler {
// This optimizer changes the batch size of the output dataset by dividing the
// current batch size by parameter `num_workers`. Currently, this works only
// current batch size by parameter `num_replicas`. Currently, this works only
// for very simple pipelines with a single BatchDatasetV2 transformation.
class RebatchOptimizer : public TFDataOptimizerBase {
public:
@ -43,7 +43,7 @@ class RebatchOptimizer : public TFDataOptimizerBase {
const GraphDef& optimize_output, double result) override;
private:
int64 num_workers_;
int64 num_replicas_;
bool use_fallback_;
};

View File

@ -36,14 +36,15 @@ class RebatchDatasetOp : public UnaryDatasetOpKernel {
protected:
void MakeDataset(OpKernelContext* ctx, DatasetBase* input,
DatasetBase** output) override {
int64 num_workers;
OP_REQUIRES_OK(ctx, ParseScalarArgument(ctx, "num_workers", &num_workers));
int64 num_replicas;
OP_REQUIRES_OK(ctx,
ParseScalarArgument(ctx, "num_replicas", &num_replicas));
OP_REQUIRES(
ctx, num_workers > 0,
errors::InvalidArgument("num_workers must be greater than zero."));
ctx, num_replicas > 0,
errors::InvalidArgument("num_replicas must be greater than zero."));
auto config_factory = [num_workers, this]() {
return CreateConfig(num_workers, this->use_fallback_);
auto config_factory = [num_replicas, this]() {
return CreateConfig(num_replicas, this->use_fallback_);
};
// We only want to optimize functions for some particular datasets like
@ -56,17 +57,17 @@ class RebatchDatasetOp : public UnaryDatasetOpKernel {
}
private:
static RewriterConfig CreateConfig(int64 num_workers, bool use_fallback) {
static RewriterConfig CreateConfig(int64 num_replicas, bool use_fallback) {
RewriterConfig rewriter_config;
rewriter_config.set_fail_on_optimizer_errors(true);
rewriter_config.add_optimizers(kOptimizerName);
rewriter_config.set_meta_optimizer_iterations(RewriterConfig::ONE);
auto custom_optimizer = rewriter_config.add_custom_optimizers();
custom_optimizer->set_name(kOptimizerName);
AttrValue num_workers_attr;
num_workers_attr.set_i(num_workers);
(*custom_optimizer->mutable_parameter_map())["num_workers"] =
num_workers_attr;
AttrValue num_replicas_attr;
num_replicas_attr.set_i(num_replicas);
(*custom_optimizer->mutable_parameter_map())["num_replicas"] =
num_replicas_attr;
AttrValue use_fallback_attr;
use_fallback_attr.set_b(use_fallback);
(*custom_optimizer->mutable_parameter_map())["use_fallback"] =

View File

@ -658,7 +658,7 @@ REGISTER_OP("RandomDataset")
REGISTER_OP("ExperimentalRebatchDataset")
.Input("input_dataset: variant")
.Input("num_workers: int64")
.Input("num_replicas: int64")
.Output("handle: variant")
.Attr("output_types: list(type) >= 1")
.Attr("output_shapes: list(shape) >= 1")
@ -667,7 +667,7 @@ REGISTER_OP("ExperimentalRebatchDataset")
REGISTER_OP("RebatchDataset")
.Input("input_dataset: variant")
.Input("num_workers: int64")
.Input("num_replicas: int64")
.Output("handle: variant")
.Attr("output_types: list(type) >= 1")
.Attr("output_shapes: list(shape) >= 1")

View File

@ -58,7 +58,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
def testBasic(self, drop_remainder):
dataset = dataset_ops.Dataset.range(1024).batch(
32, drop_remainder=drop_remainder)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[8] if drop_remainder else [None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
@ -67,15 +67,15 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
def testScalarInputError(self):
dataset = dataset_ops.Dataset.range(1024)
distribute._RebatchDataset(dataset.batch(4), num_workers=4)
distribute._RebatchDataset(dataset.batch(4), num_replicas=4)
with self.assertRaisesRegexp(ValueError, "at least one dimension"):
distribute._RebatchDataset(dataset, num_workers=4)
distribute._RebatchDataset(dataset, num_replicas=4)
@parameterized.named_parameters(drop_remainder_cases)
def testBatchNotDivisibleByNumWorkers(self, drop_remainder):
def testBatchNotDivisibleByNumReplicas(self, drop_remainder):
dataset = dataset_ops.Dataset.range(1024).batch(
32, drop_remainder=drop_remainder)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=5)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=5)
self.assertEqual([[None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
expected_output = []
@ -92,7 +92,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
def testTupleOutput(self):
dataset = dataset_ops.Dataset.range(1024).map(lambda x: (x, x)).batch(32)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
expected_output = [([k for k in range(i, i + 8)], # pylint: disable=g-complex-comprehension
[k for k in range(i, i + 8)])
for i in range(0, 1024, 8)]
@ -101,7 +101,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
def testNestedDictionaryOutput(self):
dataset = dataset_ops.Dataset.range(1024).map(
lambda x: {"a": x, "b": {"c": x}}).batch(32)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
expected_output = [{"a": [k for k in range(i, i + 8)], # pylint: disable=g-complex-comprehension
"b": {"c": [k for k in range(i, i + 8)]}}
for i in range(0, 1024, 8)]
@ -111,7 +111,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
def testFinalPartialBatch(self, drop_remainder):
dataset = dataset_ops.Dataset.range(1032).batch(
32, drop_remainder=drop_remainder)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[8] if drop_remainder else [None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
@ -126,7 +126,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
def testFinalPartialBatchAfterRebatch(self, drop_remainder):
dataset = dataset_ops.Dataset.range(34).batch(
32, drop_remainder=drop_remainder)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[8] if drop_remainder else [None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
@ -158,7 +158,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
def testMapAndBatch(self):
dataset = dataset_ops.Dataset.range(1024).apply(
batching.map_and_batch(math_ops.square, 32))
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
expected_output = [[k**2 for k in range(i, i + 8)] # pylint: disable=g-complex-comprehension
@ -169,7 +169,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
captured_t = variables.Variable(42)
dataset = dataset_ops.Dataset.range(1024).apply(
batching.map_and_batch(lambda x: captured_t, 32))
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
expected_output = [[42 for _ in range(i, i + 8)] # pylint: disable=g-complex-comprehension
@ -182,7 +182,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
dataset = dataset_ops.Dataset.range(128).batch(
4, drop_remainder=True).padded_batch(
8, padded_shapes=[5])
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
# Each element is a list of 8 elements in which each element is a list of 5
# elements, first four are numbers and the last one is a padded zero.
expected_output = [[[j, j + 1, j + 2, j + 3, 0] # pylint: disable=g-complex-comprehension
@ -202,7 +202,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
dataset1 = dataset_ops.Dataset.range(64).batch(8)
dataset2 = dataset_ops.Dataset.range(32).batch(8)
dataset = dataset1.concatenate(dataset2)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
expected_output = ([[i, i + 1] for i in range(0, 64, 2)] +
@ -213,7 +213,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
dataset1 = dataset_ops.Dataset.range(64).batch(16)
dataset2 = dataset_ops.Dataset.range(32).batch(8)
dataset = dataset1.concatenate(dataset2)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual(
[[None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
@ -225,7 +225,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
dataset1 = dataset_ops.Dataset.range(64).batch(8)
dataset2 = dataset_ops.Dataset.range(32).batch(8)
dataset = dataset_ops.Dataset.zip((dataset1, dataset2))
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[None], [None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
expected_output = [([i, i + 1], [i, i + 1]) for i in range(0, 32, 2)]
@ -235,7 +235,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
dataset1 = dataset_ops.Dataset.range(64).batch(16)
dataset2 = dataset_ops.Dataset.range(32).batch(8)
dataset = dataset_ops.Dataset.zip((dataset1, dataset2))
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[None], [None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
expected_output = [([2 * i, 2 * i + 1, 2 * i + 2, 2 * i + 3], [i, i + 1])
@ -246,7 +246,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
dataset = dataset_ops.Dataset.range(1024).batch(32).apply(sleep.sleep(10))
with self.assertRaises(errors.InvalidArgumentError):
rebatched_dataset = distribute._RebatchDataset(
dataset, num_workers=4, use_fallback=False)
dataset, num_replicas=4, use_fallback=False)
next_element = self.getNext(rebatched_dataset)
self.evaluate(next_element())
@ -256,7 +256,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
32).apply(sleep.sleep(10)))
with self.assertRaises(errors.InvalidArgumentError):
rebatched_dataset = distribute._RebatchDataset(
dataset, num_workers=4, use_fallback=False)
dataset, num_replicas=4, use_fallback=False)
next_element = self.getNext(rebatched_dataset)
self.evaluate(next_element())
@ -268,7 +268,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
expected_output = [[k for k in range(32)] for _ in range(2)] # pylint: disable=g-complex-comprehension
self.assertDatasetProduces(dataset, expected_output)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
# Two elements where each element is a list of 4 elements where each element
@ -287,7 +287,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
expected_output = [[k for k in range(32)] for _ in range(2)] # pylint: disable=g-complex-comprehension
self.assertDatasetProduces(dataset, expected_output)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
# List of 4 elements where each element is a list of 8 numbering from 0 to
@ -307,7 +307,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
expected_output = [[k for k in range(32)] for _ in range(2)] # pylint: disable=g-complex-comprehension
self.assertDatasetProduces(dataset, expected_output)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
# List of 4 elements where each element is a list of 8 numbering from 0 to
@ -325,7 +325,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
dataset = dataset.apply(
grouping.group_by_window(
key_func=lambda x: x[0] % 4, reduce_func=reduce_fn, window_size=10))
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=2)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=2)
self.assertEqual([[None, 3]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
@ -348,7 +348,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
dataset = dataset.apply(
grouping.group_by_window(
key_func=lambda x: x, reduce_func=reduce_fn, window_size=10))
dataset = distribute._RebatchDataset(dataset, num_workers=2)
dataset = distribute._RebatchDataset(dataset, num_replicas=2)
self.assertEqual([[None]],
[ts.as_list() for ts in _flat_shapes(dataset)])
@ -373,7 +373,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
dataset = dataset.apply(
grouping.group_by_window(
key_func=lambda x: x, reduce_func=reduce_fn, window_size=11))
dataset = distribute._RebatchDataset(dataset, num_workers=2)
dataset = distribute._RebatchDataset(dataset, num_replicas=2)
self.assertEqual([[None]], [ts.as_list() for ts in _flat_shapes(dataset)])
@ -398,7 +398,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
dataset = dataset.apply(
grouping.group_by_window(
key_func=lambda x: x, reduce_func=reduce_fn, window_size=11))
dataset = distribute._RebatchDataset(dataset, num_workers=2)
dataset = distribute._RebatchDataset(dataset, num_replicas=2)
self.assertEqual([[None]], [ts.as_list() for ts in _flat_shapes(dataset)])
@ -412,7 +412,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
def testScanAfterBatch(self):
dataset = dataset_ops.Dataset.range(40).batch(10).apply(
scan_ops.scan(np.int64(2), lambda state, value: (state, value * state)))
dataset = distribute._RebatchDataset(dataset, num_workers=2)
dataset = distribute._RebatchDataset(dataset, num_replicas=2)
self.assertEqual([[None]],
[ts.as_list() for ts in _flat_shapes(dataset)])
@ -442,7 +442,7 @@ class RebatchDatasetTest(test_base.DatasetTestBase, parameterized.TestCase):
num_epochs=1,
drop_final_batch=False)
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[None]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
@ -459,7 +459,7 @@ class RebatchDatasetFallbackTest(test_base.DatasetTestBase):
def testWithNoBatchDataset(self):
dataset = dataset_ops.Dataset.from_tensor_slices(
[[k for k in range(i, i + 32)] for i in range(0, 1024, 32)]) # pylint: disable=g-complex-comprehension
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[32]], [ts.as_list() for ts in _flat_shapes(dataset)])
self.assertEqual([[8]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
@ -470,7 +470,7 @@ class RebatchDatasetFallbackTest(test_base.DatasetTestBase):
def testWithUnhandledTransformation(self):
dataset = dataset_ops.Dataset.range(1024).batch(
32, drop_remainder=True).apply(sleep.sleep(10))
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[32]], [ts.as_list() for ts in _flat_shapes(dataset)])
self.assertEqual([[8]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
@ -482,7 +482,7 @@ class RebatchDatasetFallbackTest(test_base.DatasetTestBase):
dataset = dataset_ops.Dataset.range(2).flat_map(
lambda _: dataset_ops.Dataset.range(32).batch( # pylint: disable=g-long-lambda
32, drop_remainder=True).apply(sleep.sleep(10)))
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
self.assertEqual([[8]],
[ts.as_list() for ts in _flat_shapes(rebatched_dataset)])
@ -500,7 +500,7 @@ class RebatchDatasetFallbackTest(test_base.DatasetTestBase):
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"Cannot use rebatching fallback"):
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
next_element = self.getNext(rebatched_dataset)
self.evaluate(next_element())
@ -512,11 +512,11 @@ class RebatchDatasetFallbackTest(test_base.DatasetTestBase):
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"Cannot use rebatching fallback"):
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=4)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=4)
next_element = self.getNext(rebatched_dataset)
self.evaluate(next_element())
def testBatchSizeIndivisibleByNumWorkers(self):
def testBatchSizeNotDivisibleByNumReplicas(self):
# This doesn't work; reshape requires tensor shape to be exactly divisible
# by the second dim.
dataset = dataset_ops.Dataset.range(64).batch(
@ -524,7 +524,7 @@ class RebatchDatasetFallbackTest(test_base.DatasetTestBase):
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"Cannot use rebatching fallback"):
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=5)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=5)
next_element = self.getNext(rebatched_dataset)
self.evaluate(next_element())
@ -532,7 +532,7 @@ class RebatchDatasetFallbackTest(test_base.DatasetTestBase):
dataset = dataset_ops.Dataset.from_tensors((np.arange(10), np.arange(5)))
with self.assertRaisesRegexp(errors.InvalidArgumentError,
"Cannot use rebatching fallback"):
rebatched_dataset = distribute._RebatchDataset(dataset, num_workers=5)
rebatched_dataset = distribute._RebatchDataset(dataset, num_replicas=5)
next_element = self.getNext(rebatched_dataset)
self.evaluate(next_element())

View File

@ -32,7 +32,7 @@ class RebatchDatasetSerializationTest(
return distribute._RebatchDataset(
dataset_ops.Dataset.range(num_elements).batch(
4 * batch_size, drop_remainder=True),
num_workers=4)
num_replicas=4)
self.run_core_tests(lambda: build_dataset(200, 10), 20)

View File

@ -67,28 +67,28 @@ def _AutoShardDatasetV1(input_dataset, num_workers, index): # pylint: disable=i
class _RebatchDataset(dataset_ops.UnaryDataset):
"""A `Dataset` that divides the batch size by `num_workers`.
"""A `Dataset` that divides the batch size by `num_replicas`.
For each batch in the input dataset, the resulting dataset will produce
`num_replicas` minibatches whose sizes add up to the original batch size.
"""
def __init__(self, input_dataset, num_workers, use_fallback=True):
def __init__(self, input_dataset, num_replicas, use_fallback=True):
self._input_dataset = input_dataset
def recalculate_output_shapes(output_shapes):
"""Recalculates the output_shapes after dividing it by num_workers."""
"""Recalculates the output_shapes after dividing it by num_replicas."""
if len(output_shapes) < 1:
raise ValueError(
"Input shape should have at least one dimension. "
"Perhaps your input dataset is not batched?")
output_dims = [d.value for d in output_shapes.dims]
if output_dims[0] is not None and output_dims[0] % num_workers == 0:
output_dims[0] = output_dims[0] // num_workers
if output_dims[0] is not None and output_dims[0] % num_replicas == 0:
output_dims[0] = output_dims[0] // num_replicas
else:
# Set the batch dimension to unknown. If the global batch size does not
# divide num_workers evenly, the minibatches may have different sizes.
# divide num_replicas evenly, the minibatches may have different sizes.
output_dims[0] = None
return tensor_shape.TensorShape(output_dims)
@ -102,13 +102,13 @@ class _RebatchDataset(dataset_ops.UnaryDataset):
if compat.forward_compatible(2019, 8, 13) or not use_fallback:
variant_tensor = ged_ops.rebatch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
num_workers=num_workers,
num_replicas=num_replicas,
use_fallback=use_fallback,
**self._flat_structure)
else:
variant_tensor = ged_ops.rebatch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
num_workers=num_workers,
num_replicas=num_replicas,
**self._flat_structure)
super(_RebatchDataset, self).__init__(input_dataset, variant_tensor)

View File

@ -1286,7 +1286,7 @@ tf_module {
}
member_method {
name: "ExperimentalRebatchDataset"
argspec: "args=[\'input_dataset\', \'num_workers\', \'output_types\', \'output_shapes\', \'use_fallback\', \'name\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], "
argspec: "args=[\'input_dataset\', \'num_replicas\', \'output_types\', \'output_shapes\', \'use_fallback\', \'name\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], "
}
member_method {
name: "ExperimentalScanDataset"
@ -3010,7 +3010,7 @@ tf_module {
}
member_method {
name: "RebatchDataset"
argspec: "args=[\'input_dataset\', \'num_workers\', \'output_types\', \'output_shapes\', \'use_fallback\', \'name\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], "
argspec: "args=[\'input_dataset\', \'num_replicas\', \'output_types\', \'output_shapes\', \'use_fallback\', \'name\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], "
}
member_method {
name: "Reciprocal"

View File

@ -1286,7 +1286,7 @@ tf_module {
}
member_method {
name: "ExperimentalRebatchDataset"
argspec: "args=[\'input_dataset\', \'num_workers\', \'output_types\', \'output_shapes\', \'use_fallback\', \'name\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], "
argspec: "args=[\'input_dataset\', \'num_replicas\', \'output_types\', \'output_shapes\', \'use_fallback\', \'name\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], "
}
member_method {
name: "ExperimentalScanDataset"
@ -3010,7 +3010,7 @@ tf_module {
}
member_method {
name: "RebatchDataset"
argspec: "args=[\'input_dataset\', \'num_workers\', \'output_types\', \'output_shapes\', \'use_fallback\', \'name\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], "
argspec: "args=[\'input_dataset\', \'num_replicas\', \'output_types\', \'output_shapes\', \'use_fallback\', \'name\'], varargs=None, keywords=None, defaults=[\'True\', \'None\'], "
}
member_method {
name: "Reciprocal"