Splitting out the memory usage tests into their own test file as that was making the test suite for MultiDeviceIterator too big and timing out.
PiperOrigin-RevId: 235242183
This commit is contained in:
parent
eb741cedf3
commit
61aced4825
@ -444,6 +444,21 @@ cuda_py_test(
|
||||
],
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "memory_cleanup_test",
|
||||
size = "medium",
|
||||
srcs = ["memory_cleanup_test.py"],
|
||||
additional_deps = [
|
||||
":test_base",
|
||||
"@absl_py//absl/testing:parameterized",
|
||||
"//tensorflow/core:protos_all_py",
|
||||
"//tensorflow/python/data/ops:dataset_ops",
|
||||
"//tensorflow/python/data/ops:multi_device_iterator_ops",
|
||||
"//tensorflow/python:client_testlib",
|
||||
"//tensorflow/python:framework_test_lib",
|
||||
],
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "optional_test",
|
||||
size = "small",
|
||||
|
108
tensorflow/python/data/kernel_tests/memory_cleanup_test.py
Normal file
108
tensorflow/python/data/kernel_tests/memory_cleanup_test.py
Normal file
@ -0,0 +1,108 @@
|
||||
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Verify that memory usage is minimal in eager mode."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import time
|
||||
import six
|
||||
|
||||
from tensorflow.core.protobuf import config_pb2
|
||||
from tensorflow.python.data.kernel_tests import test_base
|
||||
from tensorflow.python.data.ops import dataset_ops
|
||||
from tensorflow.python.data.ops import multi_device_iterator_ops
|
||||
from tensorflow.python.eager import context
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.platform import test
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
|
||||
|
||||
# memory_profiler might not be available in the OSS version of TensorFlow.
|
||||
try:
|
||||
import memory_profiler # pylint:disable=g-import-not-at-top
|
||||
except ImportError:
|
||||
memory_profiler = None
|
||||
|
||||
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
class MemoryCleanupTest(test_base.DatasetTestBase):
|
||||
|
||||
def assertNotIncreasingMemory(self,
|
||||
f,
|
||||
num_iters=100000,
|
||||
increase_threshold_absolute_mb=10):
|
||||
"""Assert memory usage doesn't increase beyond given threshold for f."""
|
||||
with context.eager_mode():
|
||||
# Warm up.
|
||||
f()
|
||||
# Wait for background threads to start up and take over memory.
|
||||
# FIXME: The nature of this test leaves few other options. Maybe there
|
||||
# is a better way to do this.
|
||||
time.sleep(4)
|
||||
initial = memory_profiler.memory_usage(-1)[0]
|
||||
for _ in six.moves.range(num_iters):
|
||||
f()
|
||||
increase = memory_profiler.memory_usage(-1)[0] - initial
|
||||
logging.info("Memory increase observed: %f MB" % increase)
|
||||
assert increase < increase_threshold_absolute_mb, (
|
||||
"Increase is too high. Initial memory usage: %f MB. Increase: %f MB. "
|
||||
"Maximum allowed increase: %f") % (initial, increase,
|
||||
increase_threshold_absolute_mb)
|
||||
|
||||
@test_util.run_v1_only("b/121264236")
|
||||
def testEagerMemoryUsageWithReset(self):
|
||||
if not context.executing_eagerly():
|
||||
self.skipTest("Only eager mode test")
|
||||
if memory_profiler is None:
|
||||
self.skipTest("memory_profiler required to run this test")
|
||||
|
||||
dataset = dataset_ops.Dataset.range(10)
|
||||
multi_device_iterator = multi_device_iterator_ops.MultiDeviceIterator(
|
||||
dataset, ["/cpu:1", "/cpu:2"])
|
||||
|
||||
def f():
|
||||
self.evaluate(multi_device_iterator.get_next())
|
||||
multi_device_iterator._eager_reset()
|
||||
|
||||
self.assertNotIncreasingMemory(
|
||||
f, num_iters=100, increase_threshold_absolute_mb=50)
|
||||
|
||||
@test_util.run_v1_only("b/121264236")
|
||||
def testEagerMemoryUsageWithRecreation(self):
|
||||
if not context.executing_eagerly():
|
||||
self.skipTest("Only eager mode test")
|
||||
if memory_profiler is None:
|
||||
self.skipTest("memory_profiler required to run this test")
|
||||
|
||||
dataset = dataset_ops.Dataset.range(10)
|
||||
|
||||
def f():
|
||||
multi_device_iterator = multi_device_iterator_ops.MultiDeviceIterator(
|
||||
dataset, ["/cpu:1", "/cpu:2"])
|
||||
self.evaluate(multi_device_iterator.get_next())
|
||||
del multi_device_iterator
|
||||
|
||||
# TODO(b/123316347): Reduce threshold once bug is fixed.
|
||||
self.assertNotIncreasingMemory(
|
||||
f, num_iters=100, increase_threshold_absolute_mb=500)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
ops.enable_eager_execution(
|
||||
config=config_pb2.ConfigProto(device_count={"CPU": 3, "GPU": 1}))
|
||||
test.main()
|
@ -18,9 +18,7 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import time
|
||||
from absl.testing import parameterized
|
||||
import six
|
||||
|
||||
from tensorflow.core.protobuf import config_pb2
|
||||
from tensorflow.python.data.experimental.ops import optimization
|
||||
@ -34,44 +32,12 @@ from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.platform import test
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
|
||||
|
||||
# memory_profiler might not be available in the OSS version of TensorFlow.
|
||||
try:
|
||||
import memory_profiler # pylint:disable=g-import-not-at-top
|
||||
except ImportError:
|
||||
memory_profiler = None
|
||||
|
||||
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
class MultiDeviceIteratorTest(test_base.DatasetTestBase,
|
||||
parameterized.TestCase):
|
||||
|
||||
def assertNotIncreasingMemory(self,
|
||||
f,
|
||||
num_iters=100000,
|
||||
increase_threshold_absolute_mb=10):
|
||||
"""Assert memory usage doesn't increase beyond given threshold for f."""
|
||||
|
||||
with context.eager_mode():
|
||||
# Warm up.
|
||||
f()
|
||||
|
||||
# Wait for background threads to start up and take over memory.
|
||||
# FIXME: The nature of this test leaves few other options. Maybe there
|
||||
# is a better way to do this.
|
||||
time.sleep(4)
|
||||
initial = memory_profiler.memory_usage(-1)[0]
|
||||
for _ in six.moves.range(num_iters):
|
||||
f()
|
||||
increase = memory_profiler.memory_usage(-1)[0] - initial
|
||||
logging.info("Memory increase observed: %f MB" % increase)
|
||||
assert increase < increase_threshold_absolute_mb, (
|
||||
"Increase is too high. Initial memory usage: %f MB. Increase: %f MB. "
|
||||
"Maximum allowed increase: %f") % (initial, increase,
|
||||
increase_threshold_absolute_mb)
|
||||
|
||||
@parameterized.parameters(0, 1, 42,)
|
||||
@test_util.run_v1_only("b/121264236")
|
||||
def testInitOnly(self, num_inits):
|
||||
@ -102,43 +68,6 @@ class MultiDeviceIteratorTest(test_base.DatasetTestBase,
|
||||
self.evaluate(elem_on_1)
|
||||
self.evaluate(elem_on_2)
|
||||
|
||||
@test_util.run_v1_only("b/121264236")
|
||||
def testEagerMemoryUsageWithReset(self):
|
||||
if not context.executing_eagerly():
|
||||
self.skipTest("Only eager mode test")
|
||||
if memory_profiler is None:
|
||||
self.skipTest("memory_profiler required to run this test")
|
||||
|
||||
dataset = dataset_ops.Dataset.range(10)
|
||||
multi_device_iterator = multi_device_iterator_ops.MultiDeviceIterator(
|
||||
dataset, ["/cpu:1", "/cpu:2"])
|
||||
|
||||
def f():
|
||||
self.evaluate(multi_device_iterator.get_next())
|
||||
multi_device_iterator._eager_reset()
|
||||
|
||||
self.assertNotIncreasingMemory(
|
||||
f, num_iters=100, increase_threshold_absolute_mb=50)
|
||||
|
||||
@test_util.run_v1_only("b/121264236")
|
||||
def testEagerMemoryUsageWithRecreation(self):
|
||||
if not context.executing_eagerly():
|
||||
self.skipTest("Only eager mode test")
|
||||
if memory_profiler is None:
|
||||
self.skipTest("memory_profiler required to run this test")
|
||||
|
||||
dataset = dataset_ops.Dataset.range(10)
|
||||
|
||||
def f():
|
||||
multi_device_iterator = multi_device_iterator_ops.MultiDeviceIterator(
|
||||
dataset, ["/cpu:1", "/cpu:2"])
|
||||
self.evaluate(multi_device_iterator.get_next())
|
||||
del multi_device_iterator
|
||||
|
||||
# TODO(b/123316347): Reduce threshold once bug is fixed.
|
||||
self.assertNotIncreasingMemory(
|
||||
f, num_iters=100, increase_threshold_absolute_mb=500)
|
||||
|
||||
@test_util.run_v1_only("b/121264236")
|
||||
def testOneOnSameDevice(self):
|
||||
with ops.device("/cpu:0"):
|
||||
|
Loading…
Reference in New Issue
Block a user