Adds integration test for DNNLinearCombined((Classifier)|(Regressor)).
PiperOrigin-RevId: 158278512
This commit is contained in:
parent
cc6c91a9a9
commit
611c82b5be
@ -208,9 +208,20 @@ py_test(
|
||||
deps = [
|
||||
":dnn_linear_combined",
|
||||
":dnn_testing_utils",
|
||||
":export_export",
|
||||
":linear_testing_utils",
|
||||
":numpy_io",
|
||||
":pandas_io",
|
||||
":prediction_keys",
|
||||
"//tensorflow/core:protos_all_py",
|
||||
"//tensorflow/python:client_testlib",
|
||||
"//tensorflow/python:dtypes",
|
||||
"//tensorflow/python:framework_ops",
|
||||
"//tensorflow/python:nn",
|
||||
"//tensorflow/python:parsing_ops",
|
||||
"//tensorflow/python:platform",
|
||||
"//tensorflow/python:training",
|
||||
"//tensorflow/python/feature_column",
|
||||
],
|
||||
)
|
||||
|
||||
|
@ -18,11 +18,39 @@ from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import shutil
|
||||
import tempfile
|
||||
|
||||
import numpy as np
|
||||
import six
|
||||
|
||||
from tensorflow.core.example import example_pb2
|
||||
from tensorflow.core.example import feature_pb2
|
||||
from tensorflow.python.estimator.canned import dnn_linear_combined
|
||||
from tensorflow.python.estimator.canned import dnn_testing_utils
|
||||
from tensorflow.python.estimator.canned import linear_testing_utils
|
||||
from tensorflow.python.estimator.canned import prediction_keys
|
||||
from tensorflow.python.estimator.export import export
|
||||
from tensorflow.python.estimator.inputs import numpy_io
|
||||
from tensorflow.python.estimator.inputs import pandas_io
|
||||
from tensorflow.python.feature_column import feature_column
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.ops import nn
|
||||
from tensorflow.python.ops import parsing_ops
|
||||
from tensorflow.python.platform import gfile
|
||||
from tensorflow.python.platform import test
|
||||
from tensorflow.python.training import input as input_lib
|
||||
|
||||
try:
|
||||
# pylint: disable=g-import-not-at-top
|
||||
import pandas as pd
|
||||
HAS_PANDAS = True
|
||||
except IOError:
|
||||
# Pandas writes a temporary file during import. If it fails, don't use pandas.
|
||||
HAS_PANDAS = False
|
||||
except ImportError:
|
||||
HAS_PANDAS = False
|
||||
|
||||
|
||||
class DNNOnlyModelFnTest(dnn_testing_utils.BaseDNNModelFnTest, test.TestCase):
|
||||
@ -122,5 +150,335 @@ class LinearOnlyRegressorTrainingTest(
|
||||
self, _linear_regressor_fn)
|
||||
|
||||
|
||||
class DNNLinearCombinedRegressorIntegrationTest(test.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
self._model_dir = tempfile.mkdtemp()
|
||||
|
||||
def tearDown(self):
|
||||
if self._model_dir:
|
||||
shutil.rmtree(self._model_dir)
|
||||
|
||||
def _test_complete_flow(
|
||||
self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension,
|
||||
label_dimension, batch_size):
|
||||
linear_feature_columns = [
|
||||
feature_column.numeric_column('x', shape=(input_dimension,))]
|
||||
dnn_feature_columns = [
|
||||
feature_column.numeric_column('x', shape=(input_dimension,))]
|
||||
feature_columns = linear_feature_columns + dnn_feature_columns
|
||||
est = dnn_linear_combined.DNNLinearCombinedRegressor(
|
||||
linear_feature_columns=linear_feature_columns,
|
||||
dnn_hidden_units=(2, 2),
|
||||
dnn_feature_columns=dnn_feature_columns,
|
||||
label_dimension=label_dimension,
|
||||
model_dir=self._model_dir)
|
||||
|
||||
# TRAIN
|
||||
num_steps = 10
|
||||
est.train(train_input_fn, steps=num_steps)
|
||||
|
||||
# EVALUTE
|
||||
scores = est.evaluate(eval_input_fn)
|
||||
self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP])
|
||||
self.assertIn('loss', six.iterkeys(scores))
|
||||
|
||||
# PREDICT
|
||||
predictions = np.array([
|
||||
x[prediction_keys.PredictionKeys.PREDICTIONS]
|
||||
for x in est.predict(predict_input_fn)
|
||||
])
|
||||
self.assertAllEqual((batch_size, label_dimension), predictions.shape)
|
||||
|
||||
# EXPORT
|
||||
feature_spec = feature_column.make_parse_example_spec(feature_columns)
|
||||
serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn(
|
||||
feature_spec)
|
||||
export_dir = est.export_savedmodel(tempfile.mkdtemp(),
|
||||
serving_input_receiver_fn)
|
||||
self.assertTrue(gfile.Exists(export_dir))
|
||||
|
||||
def test_numpy_input_fn(self):
|
||||
"""Tests complete flow with numpy_input_fn."""
|
||||
label_dimension = 2
|
||||
batch_size = 10
|
||||
data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32)
|
||||
data = data.reshape(batch_size, label_dimension)
|
||||
# learn y = x
|
||||
train_input_fn = numpy_io.numpy_input_fn(
|
||||
x={'x': data},
|
||||
y=data,
|
||||
batch_size=batch_size,
|
||||
num_epochs=None,
|
||||
shuffle=True)
|
||||
eval_input_fn = numpy_io.numpy_input_fn(
|
||||
x={'x': data},
|
||||
y=data,
|
||||
batch_size=batch_size,
|
||||
shuffle=False)
|
||||
predict_input_fn = numpy_io.numpy_input_fn(
|
||||
x={'x': data},
|
||||
batch_size=batch_size,
|
||||
shuffle=False)
|
||||
|
||||
self._test_complete_flow(
|
||||
train_input_fn=train_input_fn,
|
||||
eval_input_fn=eval_input_fn,
|
||||
predict_input_fn=predict_input_fn,
|
||||
input_dimension=label_dimension,
|
||||
label_dimension=label_dimension,
|
||||
batch_size=batch_size)
|
||||
|
||||
def test_pandas_input_fn(self):
|
||||
"""Tests complete flow with pandas_input_fn."""
|
||||
if not HAS_PANDAS:
|
||||
return
|
||||
label_dimension = 1
|
||||
batch_size = 10
|
||||
data = np.linspace(0., 2., batch_size, dtype=np.float32)
|
||||
x = pd.DataFrame({'x': data})
|
||||
y = pd.Series(data)
|
||||
train_input_fn = pandas_io.pandas_input_fn(
|
||||
x=x,
|
||||
y=y,
|
||||
batch_size=batch_size,
|
||||
num_epochs=None,
|
||||
shuffle=True)
|
||||
eval_input_fn = pandas_io.pandas_input_fn(
|
||||
x=x,
|
||||
y=y,
|
||||
batch_size=batch_size,
|
||||
shuffle=False)
|
||||
predict_input_fn = pandas_io.pandas_input_fn(
|
||||
x=x,
|
||||
batch_size=batch_size,
|
||||
shuffle=False)
|
||||
|
||||
self._test_complete_flow(
|
||||
train_input_fn=train_input_fn,
|
||||
eval_input_fn=eval_input_fn,
|
||||
predict_input_fn=predict_input_fn,
|
||||
input_dimension=label_dimension,
|
||||
label_dimension=label_dimension,
|
||||
batch_size=batch_size)
|
||||
|
||||
def test_input_fn_from_parse_example(self):
|
||||
"""Tests complete flow with input_fn constructed from parse_example."""
|
||||
label_dimension = 2
|
||||
batch_size = 10
|
||||
data = np.linspace(0., 2., batch_size * label_dimension, dtype=np.float32)
|
||||
data = data.reshape(batch_size, label_dimension)
|
||||
|
||||
serialized_examples = []
|
||||
for datum in data:
|
||||
example = example_pb2.Example(features=feature_pb2.Features(
|
||||
feature={
|
||||
'x': feature_pb2.Feature(
|
||||
float_list=feature_pb2.FloatList(value=datum)),
|
||||
'y': feature_pb2.Feature(
|
||||
float_list=feature_pb2.FloatList(value=datum)),
|
||||
}))
|
||||
serialized_examples.append(example.SerializeToString())
|
||||
|
||||
feature_spec = {
|
||||
'x': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32),
|
||||
'y': parsing_ops.FixedLenFeature([label_dimension], dtypes.float32),
|
||||
}
|
||||
def _train_input_fn():
|
||||
feature_map = parsing_ops.parse_example(serialized_examples, feature_spec)
|
||||
features = linear_testing_utils.queue_parsed_features(feature_map)
|
||||
labels = features.pop('y')
|
||||
return features, labels
|
||||
def _eval_input_fn():
|
||||
feature_map = parsing_ops.parse_example(
|
||||
input_lib.limit_epochs(serialized_examples, num_epochs=1),
|
||||
feature_spec)
|
||||
features = linear_testing_utils.queue_parsed_features(feature_map)
|
||||
labels = features.pop('y')
|
||||
return features, labels
|
||||
def _predict_input_fn():
|
||||
feature_map = parsing_ops.parse_example(
|
||||
input_lib.limit_epochs(serialized_examples, num_epochs=1),
|
||||
feature_spec)
|
||||
features = linear_testing_utils.queue_parsed_features(feature_map)
|
||||
features.pop('y')
|
||||
return features, None
|
||||
|
||||
self._test_complete_flow(
|
||||
train_input_fn=_train_input_fn,
|
||||
eval_input_fn=_eval_input_fn,
|
||||
predict_input_fn=_predict_input_fn,
|
||||
input_dimension=label_dimension,
|
||||
label_dimension=label_dimension,
|
||||
batch_size=batch_size)
|
||||
|
||||
|
||||
class DNNLinearCombinedClassifierIntegrationTest(test.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
self._model_dir = tempfile.mkdtemp()
|
||||
|
||||
def tearDown(self):
|
||||
if self._model_dir:
|
||||
shutil.rmtree(self._model_dir)
|
||||
|
||||
def _test_complete_flow(
|
||||
self, train_input_fn, eval_input_fn, predict_input_fn, input_dimension,
|
||||
n_classes, batch_size):
|
||||
linear_feature_columns = [
|
||||
feature_column.numeric_column('x', shape=(input_dimension,))]
|
||||
dnn_feature_columns = [
|
||||
feature_column.numeric_column('x', shape=(input_dimension,))]
|
||||
feature_columns = linear_feature_columns + dnn_feature_columns
|
||||
est = dnn_linear_combined.DNNLinearCombinedClassifier(
|
||||
linear_feature_columns=linear_feature_columns,
|
||||
dnn_hidden_units=(2, 2),
|
||||
dnn_feature_columns=dnn_feature_columns,
|
||||
n_classes=n_classes,
|
||||
model_dir=self._model_dir)
|
||||
|
||||
# TRAIN
|
||||
num_steps = 10
|
||||
est.train(train_input_fn, steps=num_steps)
|
||||
|
||||
# EVALUTE
|
||||
scores = est.evaluate(eval_input_fn)
|
||||
self.assertEqual(num_steps, scores[ops.GraphKeys.GLOBAL_STEP])
|
||||
self.assertIn('loss', six.iterkeys(scores))
|
||||
|
||||
# PREDICT
|
||||
predicted_proba = np.array([
|
||||
x[prediction_keys.PredictionKeys.PROBABILITIES]
|
||||
for x in est.predict(predict_input_fn)
|
||||
])
|
||||
self.assertAllEqual((batch_size, n_classes), predicted_proba.shape)
|
||||
|
||||
# EXPORT
|
||||
feature_spec = feature_column.make_parse_example_spec(feature_columns)
|
||||
serving_input_receiver_fn = export.build_parsing_serving_input_receiver_fn(
|
||||
feature_spec)
|
||||
export_dir = est.export_savedmodel(tempfile.mkdtemp(),
|
||||
serving_input_receiver_fn)
|
||||
self.assertTrue(gfile.Exists(export_dir))
|
||||
|
||||
def test_numpy_input_fn(self):
|
||||
"""Tests complete flow with numpy_input_fn."""
|
||||
n_classes = 2
|
||||
input_dimension = 2
|
||||
batch_size = 10
|
||||
data = np.linspace(0., 2., batch_size * input_dimension, dtype=np.float32)
|
||||
x_data = data.reshape(batch_size, input_dimension)
|
||||
y_data = np.reshape(data[:batch_size], (batch_size, 1))
|
||||
# learn y = x
|
||||
train_input_fn = numpy_io.numpy_input_fn(
|
||||
x={'x': x_data},
|
||||
y=y_data,
|
||||
batch_size=batch_size,
|
||||
num_epochs=None,
|
||||
shuffle=True)
|
||||
eval_input_fn = numpy_io.numpy_input_fn(
|
||||
x={'x': x_data},
|
||||
y=y_data,
|
||||
batch_size=batch_size,
|
||||
shuffle=False)
|
||||
predict_input_fn = numpy_io.numpy_input_fn(
|
||||
x={'x': x_data},
|
||||
batch_size=batch_size,
|
||||
shuffle=False)
|
||||
|
||||
self._test_complete_flow(
|
||||
train_input_fn=train_input_fn,
|
||||
eval_input_fn=eval_input_fn,
|
||||
predict_input_fn=predict_input_fn,
|
||||
input_dimension=input_dimension,
|
||||
n_classes=n_classes,
|
||||
batch_size=batch_size)
|
||||
|
||||
def test_pandas_input_fn(self):
|
||||
"""Tests complete flow with pandas_input_fn."""
|
||||
if not HAS_PANDAS:
|
||||
return
|
||||
input_dimension = 1
|
||||
n_classes = 2
|
||||
batch_size = 10
|
||||
data = np.linspace(0., 2., batch_size, dtype=np.float32)
|
||||
x = pd.DataFrame({'x': data})
|
||||
y = pd.Series(data)
|
||||
train_input_fn = pandas_io.pandas_input_fn(
|
||||
x=x,
|
||||
y=y,
|
||||
batch_size=batch_size,
|
||||
num_epochs=None,
|
||||
shuffle=True)
|
||||
eval_input_fn = pandas_io.pandas_input_fn(
|
||||
x=x,
|
||||
y=y,
|
||||
batch_size=batch_size,
|
||||
shuffle=False)
|
||||
predict_input_fn = pandas_io.pandas_input_fn(
|
||||
x=x,
|
||||
batch_size=batch_size,
|
||||
shuffle=False)
|
||||
|
||||
self._test_complete_flow(
|
||||
train_input_fn=train_input_fn,
|
||||
eval_input_fn=eval_input_fn,
|
||||
predict_input_fn=predict_input_fn,
|
||||
input_dimension=input_dimension,
|
||||
n_classes=n_classes,
|
||||
batch_size=batch_size)
|
||||
|
||||
def test_input_fn_from_parse_example(self):
|
||||
"""Tests complete flow with input_fn constructed from parse_example."""
|
||||
input_dimension = 2
|
||||
n_classes = 2
|
||||
batch_size = 10
|
||||
data = np.linspace(0., 2., batch_size * input_dimension, dtype=np.float32)
|
||||
data = data.reshape(batch_size, input_dimension)
|
||||
|
||||
serialized_examples = []
|
||||
for datum in data:
|
||||
example = example_pb2.Example(features=feature_pb2.Features(
|
||||
feature={
|
||||
'x': feature_pb2.Feature(
|
||||
float_list=feature_pb2.FloatList(value=datum)),
|
||||
'y': feature_pb2.Feature(
|
||||
float_list=feature_pb2.FloatList(value=datum[:1])),
|
||||
}))
|
||||
serialized_examples.append(example.SerializeToString())
|
||||
|
||||
feature_spec = {
|
||||
'x': parsing_ops.FixedLenFeature([input_dimension], dtypes.float32),
|
||||
'y': parsing_ops.FixedLenFeature([1], dtypes.float32),
|
||||
}
|
||||
def _train_input_fn():
|
||||
feature_map = parsing_ops.parse_example(serialized_examples, feature_spec)
|
||||
features = linear_testing_utils.queue_parsed_features(feature_map)
|
||||
labels = features.pop('y')
|
||||
return features, labels
|
||||
def _eval_input_fn():
|
||||
feature_map = parsing_ops.parse_example(
|
||||
input_lib.limit_epochs(serialized_examples, num_epochs=1),
|
||||
feature_spec)
|
||||
features = linear_testing_utils.queue_parsed_features(feature_map)
|
||||
labels = features.pop('y')
|
||||
return features, labels
|
||||
def _predict_input_fn():
|
||||
feature_map = parsing_ops.parse_example(
|
||||
input_lib.limit_epochs(serialized_examples, num_epochs=1),
|
||||
feature_spec)
|
||||
features = linear_testing_utils.queue_parsed_features(feature_map)
|
||||
features.pop('y')
|
||||
return features, None
|
||||
|
||||
self._test_complete_flow(
|
||||
train_input_fn=_train_input_fn,
|
||||
eval_input_fn=_eval_input_fn,
|
||||
predict_input_fn=_predict_input_fn,
|
||||
input_dimension=input_dimension,
|
||||
n_classes=n_classes,
|
||||
batch_size=batch_size)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test.main()
|
||||
|
Loading…
Reference in New Issue
Block a user