From 6016e8009ff8d9b3afa5ae5bafd052ed51d22f74 Mon Sep 17 00:00:00 2001
From: Yash Katariya <yashkatariya@google.com>
Date: Thu, 5 Sep 2019 12:10:55 -0700
Subject: [PATCH] Fix more docstrings to be compatible with the doctest format.

PiperOrigin-RevId: 267424383
---
 tensorflow/python/ops/init_ops.py             | 34 ++++++--------
 .../ragged_batch_gather_with_default_op.py    | 16 +++----
 .../python/ops/ragged/ragged_string_ops.py    | 44 +++++++++----------
 tensorflow/python/ops/ragged/ragged_tensor.py | 19 ++------
 4 files changed, 45 insertions(+), 68 deletions(-)

diff --git a/tensorflow/python/ops/init_ops.py b/tensorflow/python/ops/init_ops.py
index f300a331e1f..d418fa64c52 100644
--- a/tensorflow/python/ops/init_ops.py
+++ b/tensorflow/python/ops/init_ops.py
@@ -173,12 +173,8 @@ class Constant(Initializer):
     of the `value` list, even reshaped, as shown in the two commented lines
     below the `value` list initialization.
 
-  ```
   >>> value = [0, 1, 2, 3, 4, 5, 6, 7]
-  >>> # value = np.array(value)
-  >>> # value = value.reshape([2, 4])
   >>> init = tf.compat.v1.constant_initializer(value)
-  >>>
   >>> # fitting shape
   >>> with tf.compat.v1.Session():
   ...   x = tf.compat.v1.get_variable('x', shape=[2, 4], initializer=init)
@@ -186,30 +182,28 @@ class Constant(Initializer):
   ...   print(x.eval())
   [[0. 1. 2. 3.]
    [4. 5. 6. 7.]]
-  >>>
   >>> # Larger shape
   >>> with tf.compat.v1.Session():
-  ...   x = tf.compat.v1.get_variable('x', shape=[3, 4], initializer=init)
-  ...   x.initializer.run()
-  ...   print(x.eval())
-  [[ 0.  1.  2.  3.]
-   [ 4.  5.  6.  7.]
-   [ 7.  7.  7.  7.]]
-  >>>
+  ...   y = tf.compat.v1.get_variable('y', shape=[3, 4], initializer=init)
+  ...   y.initializer.run()
+  ...   print(y.eval())
+  [[0.  1.  2.  3.]
+   [4.  5.  6.  7.]
+   [7.  7.  7.  7.]]
   >>> # Smaller shape
   >>> with tf.compat.v1.Session():
-  ...   x = tf.compat.v1.get_variable('x', shape=[2, 3], initializer=init)
+  ...   z = tf.compat.v1.get_variable('z', shape=[2, 3], initializer=init)
+  Traceback (most recent call last):
+  ...
   ValueError: Too many elements provided. Needed at most 6, but received 8
-  >>>
   >>> # Shape verification
-  >>> init_verify = tf.compat.v1.constant_initializer(value,
-  verify_shape=True)
+  >>> init_verify = tf.compat.v1.constant_initializer(value, verify_shape=True)
   >>> with tf.compat.v1.Session():
-  ...  x = tf.compat.v1.get_variable('x', shape=[3, 4],
-  ...                                 initializer=init_verify)
+  ...  u = tf.compat.v1.get_variable('u', shape=[3, 4],
+  ...                                initializer=init_verify)
+  Traceback (most recent call last):
+  ...
   TypeError: Expected Tensor's shape: (3, 4), got (8,).
-  >>>
-  ```
   """
 
   @deprecated_args(None,
diff --git a/tensorflow/python/ops/ragged/ragged_batch_gather_with_default_op.py b/tensorflow/python/ops/ragged/ragged_batch_gather_with_default_op.py
index b10524c39ad..377fd84f96e 100644
--- a/tensorflow/python/ops/ragged/ragged_batch_gather_with_default_op.py
+++ b/tensorflow/python/ops/ragged/ragged_batch_gather_with_default_op.py
@@ -59,16 +59,12 @@ def batch_gather_with_default(params,
     `result.ragged_rank = max(indices.ragged_rank, params.ragged_rank)`.
 
   #### Example:
-    ```python
-    >>> params = tf.ragged.constant([
-          ['a', 'b', 'c'],
-          ['d'],
-          [],
-          ['e']])
-    >>> indices = tf.ragged.constant([[1, 2, -1], [], [], [0, 10]])
-    >>> batch_gather_with_default(params, indices, 'FOO')
-    [['b', 'c', 'FOO'], [], [], ['e', 'FOO']]
-  ```
+
+  >>> params = tf.ragged.constant([['a', 'b', 'c'], ['d'], [], ['e']])
+  >>> indices = tf.ragged.constant([[1, 2, -1], [], [], [0, 10]])
+  >>> batch_gather_with_default(params, indices, 'FOO')
+  <tf.RaggedTensor [[b'b', b'c', b'FOO'], [], [], [b'e', b'FOO']]>
+
   """
   with ops.name_scope(name, 'RaggedBatchGatherWithDefault'):
     params = ragged_tensor.convert_to_tensor_or_ragged_tensor(
diff --git a/tensorflow/python/ops/ragged/ragged_string_ops.py b/tensorflow/python/ops/ragged/ragged_string_ops.py
index b93b02bc12c..8088e7f0e66 100644
--- a/tensorflow/python/ops/ragged/ragged_string_ops.py
+++ b/tensorflow/python/ops/ragged/ragged_string_ops.py
@@ -112,11 +112,11 @@ def unicode_encode(input,
     A `N` dimensional `string` tensor with shape `[D1...DN]`.
 
   #### Example:
-    ```python
-      >>> input = [[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]
-      >>> unicode_encode(input, 'UTF-8')
-      ['G\xc3\xb6\xc3\xb6dnight', '\xf0\x9f\x98\x8a']
-    ```
+
+  >>> input = [[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]
+  >>> unicode_encode(input, 'UTF-8')
+  ['G\xc3\xb6\xc3\xb6dnight', '\xf0\x9f\x98\x8a']
+
   """
   with ops.name_scope(name, "UnicodeEncode", [input]):
     input_tensor = ragged_tensor.convert_to_tensor_or_ragged_tensor(input)
@@ -269,14 +269,14 @@ def unicode_decode_with_offsets(input,
     `tf.RaggedTensor`s otherwise.
 
   #### Example:
-    ```python
-    >>> input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')]
-    >>> result = tf.strings.unicode_decode_with_offsets(input, 'UTF-8')
-    >>> result[0].tolist()  # codepoints
-    [[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]
-    >>> result[1].tolist()  # offsets
-   [[0, 1, 3, 5, 6, 7, 8, 9, 10], [0]]
-    ```
+
+  >>> input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')]
+  >>> result = tf.strings.unicode_decode_with_offsets(input, 'UTF-8')
+  >>> result[0].tolist()  # codepoints
+  [[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]
+  >>> result[1].tolist()  # offsets
+  [[0, 1, 3, 5, 6, 7, 8, 9, 10], [0]]
+
   """
   with ops.name_scope(name, "UnicodeDecodeWithOffsets", [input]):
     return _unicode_decode(input, input_encoding, errors, replacement_char,
@@ -374,15 +374,15 @@ def unicode_split_with_offsets(input,
     `tf.RaggedTensor`s otherwise.
 
   #### Example:
-    ```python
-    >>> input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')]
-    >>> result = tf.strings.unicode_split_with_offsets(input, 'UTF-8')
-    >>> result[0].tolist()  # character substrings
-    [['G', '\xc3\xb6', '\xc3\xb6', 'd', 'n', 'i', 'g', 'h', 't'],
-     ['\xf0\x9f\x98\x8a']]
-    >>> result[1].tolist()  # offsets
-   [[0, 1, 3, 5, 6, 7, 8, 9, 10], [0]]
-    ```
+
+  >>> input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')]
+  >>> result = tf.strings.unicode_split_with_offsets(input, 'UTF-8')
+  >>> result[0].tolist()  # character substrings
+  [['G', '\xc3\xb6', '\xc3\xb6', 'd', 'n', 'i', 'g', 'h', 't'],
+   ['\xf0\x9f\x98\x8a']]
+  >>> result[1].tolist()  # offsets
+  [[0, 1, 3, 5, 6, 7, 8, 9, 10], [0]]
+
   """
   with ops.name_scope(name, "UnicodeSplitWithOffsets", [input]):
     codepoints, offsets = _unicode_decode(input, input_encoding, errors,
diff --git a/tensorflow/python/ops/ragged/ragged_tensor.py b/tensorflow/python/ops/ragged/ragged_tensor.py
index b5ea9b0145f..07ea19902f9 100644
--- a/tensorflow/python/ops/ragged/ragged_tensor.py
+++ b/tensorflow/python/ops/ragged/ragged_tensor.py
@@ -104,12 +104,10 @@ class RaggedTensor(composite_tensor.CompositeTensor):
 
   Example:
 
-  ```python
   >>> print(tf.RaggedTensor.from_row_splits(
-  ...     values=[3, 1, 4, 1, 5, 9, 2, 6],
-  ...     row_splits=[0, 4, 4, 7, 8, 8]))
+  ...       values=[3, 1, 4, 1, 5, 9, 2, 6],
+  ...       row_splits=[0, 4, 4, 7, 8, 8]))
   <tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], []]>
-  ```
 
   ### Alternative Row-Partitioning Schemes
 
@@ -139,7 +137,6 @@ class RaggedTensor(composite_tensor.CompositeTensor):
   Example: The following ragged tensors are equivalent, and all represent the
   nested list `[[3, 1, 4, 1], [], [5, 9, 2], [6], []]`.
 
-  ```python
   >>> values = [3, 1, 4, 1, 5, 9, 2, 6]
   >>> rt1 = RaggedTensor.from_row_splits(values, row_splits=[0, 4, 4, 7, 8, 8])
   >>> rt2 = RaggedTensor.from_row_lengths(values, row_lengths=[4, 0, 3, 1, 0])
@@ -147,7 +144,6 @@ class RaggedTensor(composite_tensor.CompositeTensor):
   ...     values, value_rowids=[0, 0, 0, 0, 2, 2, 2, 3], nrows=5)
   >>> rt4 = RaggedTensor.from_row_starts(values, row_starts=[0, 4, 4, 7, 8])
   >>> rt5 = RaggedTensor.from_row_limits(values, row_limits=[4, 4, 7, 8, 8])
-  ```
 
   ### Multiple Ragged Dimensions
 
@@ -155,7 +151,6 @@ class RaggedTensor(composite_tensor.CompositeTensor):
   a nested `RaggedTensor` for the `values` tensor.  Each nested `RaggedTensor`
   adds a single ragged dimension.
 
-  ```python
   >>> inner_rt = RaggedTensor.from_row_splits(  # =rt1 from above
   ...     values=[3, 1, 4, 1, 5, 9, 2, 6], row_splits=[0, 4, 4, 7, 8, 8])
   >>> outer_rt = RaggedTensor.from_row_splits(
@@ -164,25 +159,21 @@ class RaggedTensor(composite_tensor.CompositeTensor):
   [[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]
   >>> print outer_rt.ragged_rank
   2
-  ```
 
   The factory function `RaggedTensor.from_nested_row_splits` may be used to
   construct a `RaggedTensor` with multiple ragged dimensions directly, by
   providing a list of `row_splits` tensors:
 
-  ```python
   >>> RaggedTensor.from_nested_row_splits(
   ...     flat_values=[3, 1, 4, 1, 5, 9, 2, 6],
   ...     nested_row_splits=([0, 3, 3, 5], [0, 4, 4, 7, 8, 8])).to_list()
   [[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]
-  ```
 
   ### Uniform Inner Dimensions
 
   `RaggedTensor`s with uniform inner dimensions can be defined
   by using a multidimensional `Tensor` for `values`.
 
-  ```python
   >>> rt = RaggedTensor.from_row_splits(values=tf.ones([5, 3]),
   ..                                    row_splits=[0, 2, 5])
   >>> print rt.to_list()
@@ -190,7 +181,6 @@ class RaggedTensor(composite_tensor.CompositeTensor):
    [[1, 1, 1], [1, 1, 1], [1, 1, 1]]]
    >>> print rt.shape
    (2, ?, 3)
-  ```
 
   ### Uniform Outer Dimensions
 
@@ -200,7 +190,6 @@ class RaggedTensor(composite_tensor.CompositeTensor):
   constructed with this method from a `RaggedTensor` values with shape
   `[4, None]`:
 
-  ```python
   >>> values = tf.ragged.constant([[1, 2, 3], [4], [5, 6], [7, 8, 9, 10]])
   >>> print values.shape
   (4, None)
@@ -209,17 +198,14 @@ class RaggedTensor(composite_tensor.CompositeTensor):
   <tf.RaggedTensor [[[1, 2, 3], [4]], [[5, 6], [7, 8, 9, 10]]])>
   >>> print rt1.shape
   (2, 2, None)
-  ```
 
   Note that `rt1` only contains one ragged dimension (the innermost
   dimension). In contrast, if `from_row_splits` is used to construct a similar
   `RaggedTensor`, then that `RaggedTensor` will have two ragged dimensions:
 
-  ```python
   >>> rt2 = tf.RaggedTensor.from_row_splits(values, [0, 2, 4])
   >>> print rt2.shape
   (2, None, None)
-  ```
 
   Uniform and ragged outer dimensions may be interleaved, meaning that a
   tensor with any combination of ragged and uniform dimensions may be created.
@@ -232,6 +218,7 @@ class RaggedTensor(composite_tensor.CompositeTensor):
   t2 = RaggedTensor.from_uniform_row_length(t1, 8)   #         [20, 8, None, 2]
   t3 = RaggedTensor.from_uniform_row_length(t2, 4)   #       [5, 4, 8, None, 2]
   t4 = RaggedTensor.from_row_lengths(t3, [...])      # [3, None, 4, 8, None, 2]
+  ```
   """
 
   #=============================================================================