Merge pull request from samikama:GPUNMSFixes

PiperOrigin-RevId: 268115881
This commit is contained in:
TensorFlower Gardener 2019-09-09 18:13:12 -07:00
commit 5d6158e0d4
3 changed files with 564 additions and 175 deletions

View File

@ -15,6 +15,8 @@ limitations under the License.
#if GOOGLE_CUDA
#define EIGEN_USE_GPU
#include <limits>
#include "absl/strings/str_cat.h"
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "third_party/cub/device/device_radix_sort.cuh"
@ -82,10 +84,9 @@ __device__ EIGEN_STRONG_INLINE void Swap(T& a, T& b) {
// Check whether two boxes have an IoU greater than threshold.
template <typename T>
__device__ EIGEN_STRONG_INLINE bool OverThreshold(const Box* __restrict__ a,
const Box* __restrict__ b,
float a_area,
T iou_threshold) {
__device__ EIGEN_STRONG_INLINE bool OverThreshold(const Box* a, const Box* b,
const float a_area,
const T iou_threshold) {
const float b_area = (b->x2 - b->x1) * (b->y2 - b->y1);
if (a_area == 0.0f || b_area == 0.0f) return false;
const float xx1 = fmaxf(a->x1, b->x1);
@ -94,8 +95,8 @@ __device__ EIGEN_STRONG_INLINE bool OverThreshold(const Box* __restrict__ a,
const float yy2 = fminf(a->y2, b->y2);
// fdimf computes the positive difference between xx2+1 and xx1.
const float w = fdimf(xx2 + 1.0f, xx1);
const float h = fdimf(yy2 + 1.0f, yy1);
const float w = fdimf(xx2, xx1);
const float h = fdimf(yy2, yy1);
const float intersection = w * h;
// Testing for aa/bb > t
@ -118,6 +119,47 @@ __device__ EIGEN_STRONG_INLINE void Flipped<true>(Box& box) {
if (box.x1 > box.x2) Swap(box.x1, box.x2);
if (box.y1 > box.y2) Swap(box.y1, box.y2);
}
template <typename T>
__device__ EIGEN_STRONG_INLINE bool CheckBit(T* bit_mask, int bit) {
constexpr int kShiftLen = NumBits(8 * sizeof(T)) - 1;
constexpr int kRemainderMask = 8 * sizeof(T) - 1;
int bin = bit >> kShiftLen;
return (bit_mask[bin] >> (bit & kRemainderMask)) & 1;
}
// Produce a global bitmask (result_mask) of selected boxes from bitmask
// generated by NMSKernel Abort early if max_boxes boxes are selected. Bitmask
// is num_boxes*bit_mask_len bits indicating whether to keep or remove a box.
__global__ void NMSReduce(const int* bitmask, const int bit_mask_len,
const int num_boxes, const int max_boxes,
char* result_mask) {
extern __shared__ int local[];
// set global mask to accept all boxes
for (int box : CudaGridRangeX(bit_mask_len)) {
local[box] = 0xFFFFFFFF;
}
__syncthreads();
int accepted_boxes = 0;
for (int box = 0; box < num_boxes - 1; ++box) {
// if current box is masked by an earlier box, skip it.
if (!CheckBit(local, box)) {
continue;
}
accepted_boxes += 1;
int offset = box * bit_mask_len;
// update global mask with current box's mask
for (int b : CudaGridRangeX(bit_mask_len)) {
local[b] &= ~bitmask[offset + b];
}
__syncthreads();
if (accepted_boxes > max_boxes) break;
}
// copy global mask to result_max char array. char array is needed for
// cub::DeviceSelect later.
for (int box : CudaGridRangeX(num_boxes)) {
result_mask[box] = CheckBit(local, box);
}
}
// For each box, compute a bitmask of boxes which has an overlap with given box
// above threshold.
@ -131,9 +173,9 @@ __device__ EIGEN_STRONG_INLINE void Flipped<true>(Box& box) {
// x1<x2 and y1<y2.
template <bool flip_box>
__launch_bounds__(kNmsBlockDim* kNmsBlockDim, 4) __global__
void NMSKernel(const Box* __restrict__ d_desc_sorted_boxes,
const int num_boxes, const float iou_threshold,
const int bit_mask_len, int* __restrict__ d_delete_mask) {
void NMSKernel(const Box* d_desc_sorted_boxes, const int num_boxes,
const float iou_threshold, const int bit_mask_len,
int* d_delete_mask) {
// Storing boxes used by this CUDA block in the shared memory.
__shared__ Box shared_i_boxes[kNmsBlockDim];
// Same thing with areas
@ -173,8 +215,8 @@ __launch_bounds__(kNmsBlockDim* kNmsBlockDim, 4) __global__
Box j_box = d_desc_sorted_boxes[j];
const Box i_box = shared_i_boxes[threadIdx.x];
Flipped<flip_box>(j_box);
if (OverThreshold(&i_box, &j_box, shared_i_areas[threadIdx.x],
iou_threshold)) {
if (OverThreshold<float>(&i_box, &j_box, shared_i_areas[threadIdx.x],
iou_threshold)) {
// we have score[j] <= score[i].
above_threshold |= (1U << ib);
}
@ -196,8 +238,7 @@ __device__ EIGEN_STRONG_INLINE void SelectHelper(const Index i_selected,
template <typename Index, typename T, typename... Args>
__device__ EIGEN_STRONG_INLINE void SelectHelper(const Index i_selected,
const Index i_original,
const T* __restrict__ original,
T* __restrict__ selected,
const T* original, T* selected,
Args... args) {
selected[i_selected] = original[i_original];
SelectHelper(i_selected, i_original, args...);
@ -210,18 +251,15 @@ __device__ EIGEN_STRONG_INLINE void SelectHelper(const Index i_selected,
// IndexMultiSelect(num_elements, indices, original1 ,selected1, original2,
// selected2).
template <typename Index, typename T, typename... Args>
__global__ void IndexMultiSelect(const int num_elements,
const Index* __restrict__ indices,
const T* __restrict__ original,
T* __restrict__ selected, Args... args) {
__global__ void IndexMultiSelect(const int num_elements, const Index* indices,
const T* original, T* selected, Args... args) {
for (const int idx : CudaGridRangeX(num_elements)) {
SelectHelper(idx, indices[idx], original, selected, args...);
}
}
template <typename T>
__global__ void Iota(const int num_elements, const T offset,
T* __restrict__ to_fill) {
__global__ void Iota(const int num_elements, const T offset, T* to_fill) {
for (int idx : CudaGridRangeX(num_elements)) {
to_fill[idx] = static_cast<T>(idx) + offset;
}
@ -229,7 +267,7 @@ __global__ void Iota(const int num_elements, const T offset,
Status NmsGpu(const float* d_sorted_boxes_float_ptr, const int num_boxes,
const float iou_threshold, int* d_selected_indices, int* h_nkeep,
OpKernelContext* context, bool flip_boxes) {
OpKernelContext* context, const int max_boxes, bool flip_boxes) {
// Making sure we respect the __align(16)__
// we promised to the compiler.
auto iptr = reinterpret_cast<std::uintptr_t>(d_sorted_boxes_float_ptr);
@ -237,7 +275,7 @@ Status NmsGpu(const float* d_sorted_boxes_float_ptr, const int num_boxes,
return errors::InvalidArgument("Boxes should be aligned to 16 Bytes.");
}
// allocate bitmask arrays on host and on device
Tensor h_nms_mask, d_nms_mask;
Tensor h_num_selected, d_nms_mask;
const int bit_mask_len =
(num_boxes + kNmsBoxesPerThread - 1) / kNmsBoxesPerThread;
@ -257,12 +295,11 @@ Status NmsGpu(const float* d_sorted_boxes_float_ptr, const int num_boxes,
alloc_attr.set_gpu_compatible(true);
// Size of this buffer can be reduced to kNmsChunkSize*bit_mask_len*2 and
// using it as a ring buffer. However savings should be a few MB .
TF_RETURN_IF_ERROR(context->allocate_temp(DataType::DT_INT32,
TensorShape({max_nms_mask_size}),
&h_nms_mask, alloc_attr));
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_INT32, TensorShape({1}), &h_num_selected, alloc_attr));
int* d_delete_mask = d_nms_mask.flat<int>().data();
int* h_delete_mask = h_nms_mask.flat<int>().data();
int* h_selected_count = h_num_selected.flat<int>().data();
const Box* d_sorted_boxes =
reinterpret_cast<const Box*>(d_sorted_boxes_float_ptr);
dim3 block_dim, thread_block;
@ -286,58 +323,222 @@ Status NmsGpu(const float* d_sorted_boxes_float_ptr, const int num_boxes,
TF_RETURN_IF_CUDA_ERROR(cudaGetLastError());
// Overlapping CPU computes and D2H memcpy
// both take about the same time
int num_to_copy = std::min(kNmsChunkSize, num_boxes);
config = GetGpuLaunchConfig(num_boxes, device);
Tensor selected_boxes;
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_INT8, TensorShape({num_boxes}), &selected_boxes));
Tensor d_indices;
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_INT32, TensorShape({num_boxes}), &d_indices));
TF_CHECK_OK(GpuLaunchKernel(Iota<int>, config.block_count,
config.thread_per_block, 0, device.stream(),
config.virtual_thread_count, 0,
d_indices.flat<int>().data()));
char* selected = (char*)(selected_boxes.flat<int8>().data());
TF_CHECK_OK(GpuLaunchKernel(NMSReduce, 1, 1024, bit_mask_len * sizeof(int),
device.stream(), d_delete_mask, bit_mask_len,
num_boxes, max_boxes, selected));
TF_RETURN_IF_CUDA_ERROR(cudaGetLastError());
// do Cub::deviceSelect::flagged
size_t flagged_buffer_size = 0;
cub::DeviceSelect::Flagged(static_cast<void*>(nullptr), // temp_storage
flagged_buffer_size,
static_cast<int*>(nullptr), // input
static_cast<char*>(nullptr), // selection flag
static_cast<int*>(nullptr), // selected items
static_cast<int*>(nullptr), // num_selected
num_boxes, device.stream());
Tensor cub_scratch;
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_INT8, TensorShape({(int64)flagged_buffer_size}),
&cub_scratch));
Tensor d_num_selected;
TF_RETURN_IF_ERROR(context->allocate_temp(DataType::DT_INT32,
TensorShape({1}), &d_num_selected));
cub::DeviceSelect::Flagged(
(void*)cub_scratch.flat<int8>().data(), // temp_storage
flagged_buffer_size,
d_indices.flat<int>().data(), // input
selected, // selection flag
d_selected_indices, // selected items
d_num_selected.flat<int>().data(), num_boxes, device.stream());
cudaEvent_t copy_done;
cudaEventCreate(&copy_done);
device.memcpyDeviceToHost(&h_delete_mask[0], &d_delete_mask[0],
num_to_copy * bit_mask_len * sizeof(int));
TF_RETURN_IF_CUDA_ERROR(
cudaEventCreateWithFlags(&copy_done, cudaEventDisableTiming));
device.memcpyDeviceToHost(h_selected_count, d_num_selected.flat<int>().data(),
sizeof(int));
TF_RETURN_IF_CUDA_ERROR(cudaEventRecord(copy_done, device.stream()));
int offset = 0;
std::vector<int> h_selected_indices;
// Reserve worst case scenario. Since box count is not huge, this should have
// negligible footprint.
h_selected_indices.reserve(num_boxes);
std::vector<int> to_remove(bit_mask_len, 0);
while (offset < num_boxes) {
const int num_copied = num_to_copy;
int next_offset = offset + num_copied;
num_to_copy = std::min(kNmsChunkSize, num_boxes - next_offset);
if (num_to_copy > 0) {
device.memcpyDeviceToHost(&h_delete_mask[next_offset * bit_mask_len],
&d_delete_mask[next_offset * bit_mask_len],
num_to_copy * bit_mask_len * sizeof(int));
}
// Waiting for previous copy
TF_RETURN_IF_CUDA_ERROR(cudaEventSynchronize(copy_done));
if (num_to_copy > 0) {
TF_RETURN_IF_CUDA_ERROR(cudaEventRecord(copy_done, device.stream()));
}
// Starting from highest scoring box, mark any box with iou>threshold and
// lower score for deletion if current box is not marked for deletion. Add
// current box to to_keep list.
for (int i = offset; i < next_offset; ++i) {
// See the comment at the beginning of the file.
// Bit shift and logical And operations are used
// instead of division and modulo operations.
int iblock = i >> kNmsBoxesPerThreadShiftBits;
int inblock = i & kNmsBoxesPerThreadModuloMask;
if (!(to_remove[iblock] & (1 << inblock))) {
h_selected_indices.push_back(i);
int* p = &h_delete_mask[i * bit_mask_len];
for (int ib = 0; ib < bit_mask_len; ++ib) {
to_remove[ib] |= p[ib];
}
}
}
offset = next_offset;
}
TF_RETURN_IF_CUDA_ERROR(cudaEventSynchronize(copy_done));
*h_nkeep = *h_selected_count;
cudaEventDestroy(copy_done);
return Status::OK();
}
const int nkeep = h_selected_indices.size();
device.memcpyHostToDevice(d_selected_indices, &h_selected_indices[0],
nkeep * sizeof(int));
struct GreaterThanCubOp {
float threshold_;
__host__ __device__ __forceinline__ GreaterThanCubOp(float threshold)
: threshold_(threshold) {}
__host__ __device__ __forceinline__ bool operator()(const float& val) const {
return (val > threshold_);
}
};
// Use DeviceSelect::If to count number of elements.
// TODO(sami) Not really a good way. Perhaps consider using thrust?
template <typename Op>
Status CountIf(OpKernelContext* context, const float* dev_array, const Op& op,
int num_elements, int* result) {
Tensor scratch_output;
Tensor workspace;
Tensor element_count;
size_t workspace_size = 0;
auto cuda_stream = tensorflow::GetGpuStream(context);
auto device = context->eigen_gpu_device();
cub::DeviceSelect::If(nullptr, workspace_size, static_cast<float*>(nullptr),
static_cast<float*>(nullptr),
static_cast<int*>(nullptr), num_elements, op);
*h_nkeep = nkeep;
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_FLOAT, TensorShape({num_elements}), &scratch_output));
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_INT8, TensorShape({(int64)workspace_size}), &workspace));
TF_RETURN_IF_ERROR(context->allocate_temp(DataType::DT_INT32,
TensorShape({1}), &element_count));
cudaEvent_t copy_done;
TF_RETURN_IF_CUDA_ERROR(
cudaEventCreateWithFlags(&copy_done, cudaEventDisableTiming));
TF_RETURN_IF_CUDA_ERROR(cub::DeviceSelect::If(
workspace.flat<int8>().data(), workspace_size, dev_array,
scratch_output.flat<float>().data(), element_count.flat<int32>().data(),
num_elements, op, cuda_stream));
device.memcpyDeviceToHost(result, element_count.flat<int32>().data(),
sizeof(int));
TF_RETURN_IF_CUDA_ERROR(cudaEventRecord(copy_done, device.stream()));
TF_RETURN_IF_CUDA_ERROR(cudaEventSynchronize(copy_done));
return Status::OK();
}
Status DoNMS(OpKernelContext* context, const Tensor& boxes,
const Tensor& scores, const int64_t max_output_size,
const float iou_threshold_val, const float score_threshold) {
const int output_size = max_output_size;
int num_boxes = boxes.dim_size(0);
size_t cub_sort_temp_storage_bytes = 0;
auto cuda_stream = GetGpuStream(context);
auto device = context->eigen_gpu_device();
// Calling cub with nullptrs as inputs will make it return
// workspace size needed for the operation instead of doing the operation.
// In this specific instance, cub_sort_temp_storage_bytes will contain the
// necessary workspace size for sorting after the call.
if (num_boxes == 0) {
Tensor* output_indices = nullptr;
TF_RETURN_IF_ERROR(
context->allocate_output(0, TensorShape({0}), &output_indices));
return Status::OK();
}
cudaError_t cuda_ret = cub::DeviceRadixSort::SortPairsDescending(
nullptr, cub_sort_temp_storage_bytes,
static_cast<float*>(nullptr), // scores
static_cast<float*>(nullptr), // sorted scores
static_cast<int*>(nullptr), // input indices
static_cast<int*>(nullptr), // sorted indices
num_boxes, // num items
0, 8 * sizeof(float), // sort all bits
cuda_stream);
TF_RETURN_IF_CUDA_ERROR(cuda_ret);
Tensor d_cub_sort_buffer;
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_INT8, TensorShape({(int64)cub_sort_temp_storage_bytes}),
&d_cub_sort_buffer));
Tensor d_indices;
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_INT32, TensorShape({num_boxes}), &d_indices));
Tensor d_sorted_indices;
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_INT32, TensorShape({num_boxes}), &d_sorted_indices));
Tensor d_selected_indices;
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_INT32, TensorShape({num_boxes}), &d_selected_indices));
Tensor d_sorted_scores;
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_FLOAT, TensorShape({num_boxes}), &d_sorted_scores));
Tensor d_sorted_boxes;
TF_RETURN_IF_ERROR(context->allocate_temp(
DataType::DT_FLOAT, TensorShape({num_boxes, 4}), &d_sorted_boxes));
// this will return sorted scores and their indices
auto config = GetGpuLaunchConfig(num_boxes, device);
// initialize box and score indices
TF_CHECK_OK(GpuLaunchKernel(Iota<int>, config.block_count,
config.thread_per_block, 0, device.stream(),
config.virtual_thread_count, 0,
d_indices.flat<int>().data()));
TF_RETURN_IF_CUDA_ERROR(cudaGetLastError());
cuda_ret = cub::DeviceRadixSort::SortPairsDescending(
d_cub_sort_buffer.flat<int8>().data(), cub_sort_temp_storage_bytes,
scores.flat<float>().data(), d_sorted_scores.flat<float>().data(),
d_indices.flat<int>().data(), d_sorted_indices.flat<int>().data(),
num_boxes, 0,
8 * sizeof(float), // sort all bits
cuda_stream);
TF_RETURN_IF_CUDA_ERROR(cuda_ret);
// get pointers for easy access
const float4* original_boxes =
reinterpret_cast<const float4*>(boxes.flat<float>().data());
float4* sorted_boxes =
reinterpret_cast<float4*>(d_sorted_boxes.flat<float>().data());
const int* sorted_indices = d_sorted_indices.flat<int>().data();
// sort boxes using indices
TF_CHECK_OK(GpuLaunchKernel(IndexMultiSelect<int, float4>, config.block_count,
config.thread_per_block, 0, device.stream(),
config.virtual_thread_count, sorted_indices,
original_boxes, sorted_boxes));
int limited_num_boxes = num_boxes;
// filter boxes by scores if nms v3
if (score_threshold > std::numeric_limits<float>::lowest()) {
GreaterThanCubOp score_limit(score_threshold);
TF_RETURN_IF_ERROR(CountIf(context, d_sorted_scores.flat<float>().data(),
score_limit, num_boxes, &limited_num_boxes));
if (limited_num_boxes == 0) {
Tensor* output_indices = nullptr;
VLOG(1) << "Number of boxes above score threshold " << score_threshold
<< " is 0";
TF_RETURN_IF_ERROR(
context->allocate_output(0, TensorShape({0}), &output_indices));
return Status::OK();
} else {
VLOG(2) << "Number of boxes above threshold=" << score_threshold << " is "
<< limited_num_boxes;
}
}
int num_to_keep = 0;
// There is no guarantee that boxes are given in the for x1<x2 and/or y1<y2,
// flip boxes if necessary!
const bool flip_boxes = true;
auto status = NmsGpu(d_sorted_boxes.flat<float>().data(), limited_num_boxes,
iou_threshold_val, d_selected_indices.flat<int>().data(),
&num_to_keep, context, output_size, flip_boxes);
TF_RETURN_IF_CUDA_ERROR(cudaGetLastError());
if (!status.ok()) {
context->SetStatus(status);
return status;
}
Tensor* output_indices = nullptr;
int num_outputs = std::min(num_to_keep, output_size); // no padding!
TF_RETURN_IF_ERROR(
context->allocate_output(0, TensorShape({num_outputs}), &output_indices));
if (num_outputs == 0) return Status::OK();
config = GetGpuLaunchConfig(num_outputs, device);
TF_CHECK_OK(GpuLaunchKernel(
IndexMultiSelect<int, int>, config.block_count, config.thread_per_block,
0, device.stream(), config.virtual_thread_count,
d_selected_indices.flat<int>().data(), sorted_indices,
(*output_indices).flat<int>().data()));
TF_RETURN_IF_CUDA_ERROR(cudaGetLastError());
return Status::OK();
}
@ -384,112 +585,84 @@ class NonMaxSuppressionV2GPUOp : public OpKernel {
&output_indices));
return;
}
const int output_size = max_output_size.scalar<int>()();
size_t cub_sort_temp_storage_bytes = 0;
auto cuda_stream = GetGpuStream(context);
auto device = context->eigen_gpu_device();
// Calling cub with nullptrs as inputs will make it return
// workspace size needed for the operation instead of doing the operation.
// In this specific instance, cub_sort_temp_storage_bytes will contain the
// necessary workspace size for sorting after the call.
cudaError_t cuda_ret = cub::DeviceRadixSort::SortPairsDescending(
nullptr, cub_sort_temp_storage_bytes,
static_cast<float*>(nullptr), // scores
static_cast<float*>(nullptr), // sorted scores
static_cast<int*>(nullptr), // input indices
static_cast<int*>(nullptr), // sorted indices
num_boxes, // num items
0, 8 * sizeof(float), // sort all bits
cuda_stream);
TF_OP_REQUIRES_CUDA_SUCCESS(context, cuda_ret);
Tensor d_cub_sort_buffer;
OP_REQUIRES_OK(context,
context->allocate_temp(
DataType::DT_INT8,
TensorShape({(int64)cub_sort_temp_storage_bytes}),
&d_cub_sort_buffer));
Tensor d_indices;
const int64_t output_size = max_output_size.scalar<int>()();
OP_REQUIRES_OK(
context, context->allocate_temp(DataType::DT_INT32,
TensorShape({num_boxes}), &d_indices));
Tensor d_sorted_indices;
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_INT32,
TensorShape({num_boxes}),
&d_sorted_indices));
Tensor d_selected_indices;
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_INT32,
TensorShape({num_boxes}),
&d_selected_indices));
Tensor d_sorted_scores;
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_FLOAT,
TensorShape({num_boxes}),
&d_sorted_scores));
Tensor d_sorted_boxes;
OP_REQUIRES_OK(context, context->allocate_temp(DataType::DT_FLOAT,
TensorShape({num_boxes, 4}),
&d_sorted_boxes));
// this will return sorted scores and their indices
auto config = GetGpuLaunchConfig(num_boxes, device);
// initialize box and score indices
TF_CHECK_OK(GpuLaunchKernel(Iota<int>, config.block_count,
config.thread_per_block, 0, device.stream(),
config.virtual_thread_count, 0,
d_indices.flat<int>().data()));
TF_OP_REQUIRES_CUDA_SUCCESS(context, cudaGetLastError());
cuda_ret = cub::DeviceRadixSort::SortPairsDescending(
d_cub_sort_buffer.flat<int8>().data(), cub_sort_temp_storage_bytes,
scores.flat<float>().data(), d_sorted_scores.flat<float>().data(),
d_indices.flat<int>().data(), d_sorted_indices.flat<int>().data(),
num_boxes, 0,
8 * sizeof(float), // sort all bits
cuda_stream);
TF_OP_REQUIRES_CUDA_SUCCESS(context, cuda_ret);
// get pointers for easy access
const float4* original_boxes =
reinterpret_cast<const float4*>(boxes.flat<float>().data());
float4* sorted_boxes =
reinterpret_cast<float4*>(d_sorted_boxes.flat<float>().data());
const int* sorted_indices = d_sorted_indices.flat<int>().data();
// sort boxes using indices
TF_CHECK_OK(GpuLaunchKernel(IndexMultiSelect<int, float4>,
config.block_count, config.thread_per_block, 0,
device.stream(), config.virtual_thread_count,
sorted_indices, original_boxes, sorted_boxes));
int num_to_keep = 0;
// There is no guarantee that boxes are given in the for x1<x2 and/or y1<y2,
// flip boxes if necessary!
const bool flip_boxes = true;
auto status =
NmsGpu(d_sorted_boxes.flat<float>().data(), num_boxes,
iou_threshold_val, d_selected_indices.flat<int>().data(),
&num_to_keep, context, flip_boxes);
TF_OP_REQUIRES_CUDA_SUCCESS(context, cudaGetLastError());
if (!status.ok()) {
context->SetStatus(status);
return;
}
Tensor* output_indices = nullptr;
int num_outputs = std::min(num_to_keep, output_size); // no padding!
OP_REQUIRES_OK(context,
context->allocate_output(0, TensorShape({num_outputs}),
&output_indices));
if (num_outputs == 0) return;
config = GetGpuLaunchConfig(num_outputs, device);
TF_CHECK_OK(GpuLaunchKernel(
IndexMultiSelect<int, int>, config.block_count, config.thread_per_block,
0, device.stream(), config.virtual_thread_count,
d_selected_indices.flat<int>().data(), sorted_indices,
(*output_indices).flat<int>().data()));
TF_OP_REQUIRES_CUDA_SUCCESS(context, cudaGetLastError());
context,
DoNMS(context, boxes, scores, output_size, iou_threshold_val,
/*score_threshold is float min if score threshold is disabled*/
std::numeric_limits<float>::lowest()));
}
};
REGISTER_KERNEL_BUILDER(
Name("NonMaxSuppressionV2").TypeConstraint<float>("T").Device(DEVICE_GPU),
NonMaxSuppressionV2GPUOp);
class NonMaxSuppressionV3GPUOp : public OpKernel {
public:
explicit NonMaxSuppressionV3GPUOp(OpKernelConstruction* context)
: OpKernel(context) {}
void Compute(OpKernelContext* context) override {
// boxes: [num_boxes, 4]
const Tensor& boxes = context->input(0);
// scores: [num_boxes]
const Tensor& scores = context->input(1);
// max_output_size: scalar
const Tensor& max_output_size = context->input(2);
OP_REQUIRES(
context, TensorShapeUtils::IsScalar(max_output_size.shape()),
errors::InvalidArgument("max_output_size must be 0-D, got shape ",
max_output_size.shape().DebugString()));
// iou_threshold: scalar
const Tensor& iou_threshold = context->input(3);
OP_REQUIRES(context, TensorShapeUtils::IsScalar(iou_threshold.shape()),
errors::InvalidArgument("iou_threshold must be 0-D, got shape ",
iou_threshold.shape().DebugString()));
const float iou_threshold_val = iou_threshold.scalar<float>()();
const Tensor& score_threshold = context->input(4);
OP_REQUIRES(
context, TensorShapeUtils::IsScalar(score_threshold.shape()),
errors::InvalidArgument("score_threshold must be 0-D, got shape ",
score_threshold.shape().DebugString()));
const float score_threshold_val = score_threshold.scalar<float>()();
OP_REQUIRES(context, iou_threshold_val >= 0 && iou_threshold_val <= 1,
errors::InvalidArgument("iou_threshold must be in [0, 1]"));
OP_REQUIRES(context, boxes.dims() == 2,
errors::InvalidArgument("boxes must be a rank 2 tensor!"));
int num_boxes = boxes.dim_size(0);
OP_REQUIRES(context, boxes.dim_size(1) == 4,
errors::InvalidArgument("boxes must be Nx4"));
OP_REQUIRES(context, scores.dims() == 1,
errors::InvalidArgument("scores must be a vector!"));
OP_REQUIRES(
context, scores.dim_size(0) == num_boxes,
errors::InvalidArgument(
"scores has incompatible shape")); // message must be exactly this
// otherwise tests fail!
if (num_boxes == 0) {
Tensor* output_indices = nullptr;
OP_REQUIRES_OK(context, context->allocate_output(0, TensorShape({0}),
&output_indices));
return;
}
const int output_size = max_output_size.scalar<int>()();
OP_REQUIRES_OK(context, DoNMS(context, boxes, scores, output_size,
iou_threshold_val, score_threshold_val));
}
};
REGISTER_KERNEL_BUILDER(Name("NonMaxSuppressionV2")
.TypeConstraint<float>("T")
.Device(DEVICE_GPU)
.HostMemory("iou_threshold")
.HostMemory("max_output_size"),
NonMaxSuppressionV2GPUOp);
REGISTER_KERNEL_BUILDER(Name("NonMaxSuppressionV3")
.TypeConstraint<float>("T")
.Device(DEVICE_GPU)
.HostMemory("iou_threshold")
.HostMemory("max_output_size")
.HostMemory("score_threshold"),
NonMaxSuppressionV3GPUOp);
} // namespace tensorflow
#endif

View File

@ -54,7 +54,7 @@ extern const int kNmsBoxesPerTread;
Status NmsGpu(const float* d_sorted_boxes_float_ptr, const int num_boxes,
const float iou_threshold, int* d_selected_indices,
int* h_num_boxes_to_keep, OpKernelContext* context,
bool flip_boxes = false);
const int max_boxes, bool flip_boxes = false);
#endif
} // namespace tensorflow

View File

@ -203,6 +203,222 @@ TEST_F(NonMaxSuppressionV2GPUOpTest, TestEmptyInput) {
test::ExpectTensorEqual<int>(expected, *GetOutput(0));
}
//
// NonMaxSuppressionV3GPUOp Tests
// Copied from CPU tests
class NonMaxSuppressionV3GPUOpTest : public OpsTestBase {
protected:
void MakeOp() {
SetDevice(DEVICE_GPU,
std::unique_ptr<tensorflow::Device>(DeviceFactory::NewDevice(
"GPU", {}, "/job:a/replica:0/task:0")));
TF_EXPECT_OK(NodeDefBuilder("non_max_suppression_op", "NonMaxSuppressionV3")
.Input(FakeInput(DT_FLOAT))
.Input(FakeInput(DT_FLOAT))
.Input(FakeInput(DT_INT32))
.Input(FakeInput(DT_FLOAT))
.Input(FakeInput(DT_FLOAT))
.Finalize(node_def()));
TF_EXPECT_OK(InitOp());
}
};
TEST_F(NonMaxSuppressionV3GPUOpTest, TestSelectFromThreeClusters) {
MakeOp();
AddInputFromArray<float>(
TensorShape({6, 4}),
{0, 0, 1, 1, 0, 0.1f, 1, 1.1f, 0, -0.1f, 1, 0.9f,
0, 10, 1, 11, 0, 10.1f, 1, 11.1f, 0, 100, 1, 101});
AddInputFromArray<float>(TensorShape({6}), {.9f, .75f, .6f, .95f, .5f, .3f});
AddInputFromArray<int>(TensorShape({}), {3});
AddInputFromArray<float>(TensorShape({}), {.5f});
AddInputFromArray<float>(TensorShape({}), {0.0f});
TF_ASSERT_OK(RunOpKernel());
Tensor expected(allocator(), DT_INT32, TensorShape({3}));
test::FillValues<int>(&expected, {3, 0, 5});
test::ExpectTensorEqual<int>(expected, *GetOutput(0));
}
TEST_F(NonMaxSuppressionV3GPUOpTest,
TestSelectFromThreeClustersWithScoreThreshold) {
MakeOp();
AddInputFromArray<float>(
TensorShape({6, 4}),
{0, 0, 1, 1, 0, 0.1f, 1, 1.1f, 0, -0.1f, 1, 0.9f,
0, 10, 1, 11, 0, 10.1f, 1, 11.1f, 0, 100, 1, 101});
AddInputFromArray<float>(TensorShape({6}), {.9f, .75f, .6f, .95f, .5f, .3f});
AddInputFromArray<int>(TensorShape({}), {3});
AddInputFromArray<float>(TensorShape({}), {0.5f});
AddInputFromArray<float>(TensorShape({}), {0.4f});
TF_ASSERT_OK(RunOpKernel());
Tensor expected(allocator(), DT_INT32, TensorShape({2}));
test::FillValues<int>(&expected, {3, 0});
test::ExpectTensorEqual<int>(expected, *GetOutput(0));
}
TEST_F(NonMaxSuppressionV3GPUOpTest,
TestSelectFromThreeClustersWithScoreThresholdZeroScores) {
MakeOp();
AddInputFromArray<float>(
TensorShape({6, 4}),
{0, 0, 1, 1, 0, 0.1f, 1, 1.1f, 0, -0.1f, 1, 0.9f,
0, 10, 1, 11, 0, 10.1f, 1, 11.1f, 0, 100, 1, 101});
AddInputFromArray<float>(TensorShape({6}), {.1, 0, 0, .3, .2, -5.0});
// If we ask for more boxes than we actually expect to get back;
// should still only get 2 boxes back.
AddInputFromArray<int>(TensorShape({}), {6});
AddInputFromArray<float>(TensorShape({}), {0.5f});
AddInputFromArray<float>(TensorShape({}), {-3.0f});
TF_ASSERT_OK(RunOpKernel());
Tensor expected(allocator(), DT_INT32, TensorShape({2}));
test::FillValues<int>(&expected, {3, 0});
test::ExpectTensorEqual<int>(expected, *GetOutput(0));
}
TEST_F(NonMaxSuppressionV3GPUOpTest,
TestSelectFromThreeClustersFlippedCoordinates) {
MakeOp();
AddInputFromArray<float>(TensorShape({6, 4}),
{1, 1, 0, 0, 0, 0.1f, 1, 1.1f, 0, .9f, 1, -0.1f,
0, 10, 1, 11, 1, 10.1f, 0, 11.1f, 1, 101, 0, 100});
AddInputFromArray<float>(TensorShape({6}), {.9f, .75f, .6f, .95f, .5f, .3f});
AddInputFromArray<int>(TensorShape({}), {3});
AddInputFromArray<float>(TensorShape({}), {.5f});
AddInputFromArray<float>(TensorShape({}), {0.0f});
TF_ASSERT_OK(RunOpKernel());
Tensor expected(allocator(), DT_INT32, TensorShape({3}));
test::FillValues<int>(&expected, {3, 0, 5});
test::ExpectTensorEqual<int>(expected, *GetOutput(0));
}
TEST_F(NonMaxSuppressionV3GPUOpTest,
TestSelectAtMostTwoBoxesFromThreeClusters) {
MakeOp();
AddInputFromArray<float>(
TensorShape({6, 4}),
{0, 0, 1, 1, 0, 0.1f, 1, 1.1f, 0, -0.1f, 1, 0.9f,
0, 10, 1, 11, 0, 10.1f, 1, 11.1f, 0, 100, 1, 101});
AddInputFromArray<float>(TensorShape({6}), {.9f, .75f, .6f, .95f, .5f, .3f});
AddInputFromArray<int>(TensorShape({}), {2});
AddInputFromArray<float>(TensorShape({}), {.5f});
AddInputFromArray<float>(TensorShape({}), {0.0f});
TF_ASSERT_OK(RunOpKernel());
Tensor expected(allocator(), DT_INT32, TensorShape({2}));
test::FillValues<int>(&expected, {3, 0});
test::ExpectTensorEqual<int>(expected, *GetOutput(0));
}
TEST_F(NonMaxSuppressionV3GPUOpTest,
TestSelectAtMostThirtyBoxesFromThreeClusters) {
MakeOp();
AddInputFromArray<float>(
TensorShape({6, 4}),
{0, 0, 1, 1, 0, 0.1f, 1, 1.1f, 0, -0.1f, 1, 0.9f,
0, 10, 1, 11, 0, 10.1f, 1, 11.1f, 0, 100, 1, 101});
AddInputFromArray<float>(TensorShape({6}), {.9f, .75f, .6f, .95f, .5f, .3f});
AddInputFromArray<int>(TensorShape({}), {30});
AddInputFromArray<float>(TensorShape({}), {.5f});
AddInputFromArray<float>(TensorShape({}), {0.0f});
TF_ASSERT_OK(RunOpKernel());
Tensor expected(allocator(), DT_INT32, TensorShape({3}));
test::FillValues<int>(&expected, {3, 0, 5});
test::ExpectTensorEqual<int>(expected, *GetOutput(0));
}
TEST_F(NonMaxSuppressionV3GPUOpTest, TestSelectSingleBox) {
MakeOp();
AddInputFromArray<float>(TensorShape({1, 4}), {0, 0, 1, 1});
AddInputFromArray<float>(TensorShape({1}), {.9f});
AddInputFromArray<int>(TensorShape({}), {3});
AddInputFromArray<float>(TensorShape({}), {.5f});
AddInputFromArray<float>(TensorShape({}), {0.0f});
TF_ASSERT_OK(RunOpKernel());
Tensor expected(allocator(), DT_INT32, TensorShape({1}));
test::FillValues<int>(&expected, {0});
test::ExpectTensorEqual<int>(expected, *GetOutput(0));
}
TEST_F(NonMaxSuppressionV3GPUOpTest, TestSelectFromTenIdenticalBoxes) {
MakeOp();
int num_boxes = 10;
std::vector<float> corners(num_boxes * 4);
std::vector<float> scores(num_boxes);
for (int i = 0; i < num_boxes; ++i) {
corners[i * 4 + 0] = 0;
corners[i * 4 + 1] = 0;
corners[i * 4 + 2] = 1;
corners[i * 4 + 3] = 1;
scores[i] = .9;
}
AddInputFromArray<float>(TensorShape({num_boxes, 4}), corners);
AddInputFromArray<float>(TensorShape({num_boxes}), scores);
AddInputFromArray<int>(TensorShape({}), {3});
AddInputFromArray<float>(TensorShape({}), {.5f});
AddInputFromArray<float>(TensorShape({}), {0.0f});
TF_ASSERT_OK(RunOpKernel());
Tensor expected(allocator(), DT_INT32, TensorShape({1}));
test::FillValues<int>(&expected, {0});
test::ExpectTensorEqual<int>(expected, *GetOutput(0));
}
TEST_F(NonMaxSuppressionV3GPUOpTest, TestInconsistentBoxAndScoreShapes) {
MakeOp();
AddInputFromArray<float>(
TensorShape({6, 4}),
{0, 0, 1, 1, 0, 0.1f, 1, 1.1f, 0, -0.1f, 1, 0.9f,
0, 10, 1, 11, 0, 10.1f, 1, 11.1f, 0, 100, 1, 101});
AddInputFromArray<float>(TensorShape({5}), {.9f, .75f, .6f, .95f, .5f});
AddInputFromArray<int>(TensorShape({}), {30});
AddInputFromArray<float>(TensorShape({}), {.5f});
AddInputFromArray<float>(TensorShape({}), {0.0f});
Status s = RunOpKernel();
ASSERT_FALSE(s.ok());
EXPECT_TRUE(absl::StrContains(s.ToString(), "scores has incompatible shape"))
<< s;
}
TEST_F(NonMaxSuppressionV3GPUOpTest, TestInvalidIOUThreshold) {
MakeOp();
AddInputFromArray<float>(TensorShape({1, 4}), {0, 0, 1, 1});
AddInputFromArray<float>(TensorShape({1}), {.9f});
AddInputFromArray<int>(TensorShape({}), {3});
AddInputFromArray<float>(TensorShape({}), {1.2f});
AddInputFromArray<float>(TensorShape({}), {0.0f});
Status s = RunOpKernel();
ASSERT_FALSE(s.ok());
EXPECT_TRUE(
absl::StrContains(s.ToString(), "iou_threshold must be in [0, 1]"))
<< s;
}
TEST_F(NonMaxSuppressionV3GPUOpTest, TestEmptyInput) {
MakeOp();
AddInputFromArray<float>(TensorShape({0, 4}), {});
AddInputFromArray<float>(TensorShape({0}), {});
AddInputFromArray<int>(TensorShape({}), {30});
AddInputFromArray<float>(TensorShape({}), {.5f});
AddInputFromArray<float>(TensorShape({}), {0.0f});
TF_ASSERT_OK(RunOpKernel());
Tensor expected(allocator(), DT_INT32, TensorShape({0}));
test::FillValues<int>(&expected, {});
test::ExpectTensorEqual<int>(expected, *GetOutput(0));
}
#endif
} // namespace tensorflow