Canonicalize dense array conditional into tuple conditional with one element.

It's annoying do deal with the fact that conditional can be either tuple or non-tuple. Canonicalize everything into tuple.

PiperOrigin-RevId: 321823386
Change-Id: I8bfe798bd1b4af9c3ffd169fa6b497c8b2f92b4a
This commit is contained in:
Yunxing Dai 2020-07-17 11:49:21 -07:00 committed by TensorFlower Gardener
parent fdf1095dcd
commit 5ca8c1bcb9
8 changed files with 209 additions and 1 deletions

View File

@ -3932,6 +3932,39 @@ tf_cc_test(
],
)
cc_library(
name = "conditional_canonicalizer",
srcs = ["conditional_canonicalizer.cc"],
hdrs = ["conditional_canonicalizer.h"],
deps = [
":hlo",
":hlo_pass",
"//tensorflow/compiler/xla:status_macros",
],
)
tf_cc_test(
name = "conditional_canonicalizer_test",
srcs = ["conditional_canonicalizer_test.cc"],
deps = [
":conditional_canonicalizer",
":hlo",
":hlo_matchers",
":hlo_parser",
"//tensorflow/compiler/xla:literal",
"//tensorflow/compiler/xla:shape_util",
"//tensorflow/compiler/xla:types",
"//tensorflow/compiler/xla:util",
"//tensorflow/compiler/xla:xla_data_proto_cc",
"//tensorflow/compiler/xla/tests:hlo_test_base",
"//tensorflow/compiler/xla/tests:literal_test_util",
"//tensorflow/compiler/xla/tests:test_utils",
"//tensorflow/compiler/xla/tests:xla_internal_test_main",
"//tensorflow/core:lib",
"//tensorflow/core:test",
],
)
cc_library(
name = "hlo_get_dimension_size_rewriter",
srcs = ["hlo_get_dimension_size_rewriter.cc"],

View File

@ -0,0 +1,60 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/xla/service/conditional_canonicalizer.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/hlo_opcode.h"
#include "tensorflow/compiler/xla/status_macros.h"
namespace xla {
namespace {
Status CanonicalizeNonTupleConditional(HloInstruction* conditional) {
TF_RET_CHECK(conditional->opcode() == HloOpcode::kConditional);
for (auto* branch : conditional->called_computations()) {
HloInstruction* root = branch->root_instruction();
TF_RET_CHECK(!root->shape().IsTuple());
HloInstruction* tuple =
branch->AddInstruction(HloInstruction::CreateTuple({root}));
branch->set_root_instruction(tuple, /*accept_different_shape=*/true);
}
auto root_shape = conditional->shape();
*conditional->mutable_shape() = ShapeUtil::MakeTupleShape({root_shape});
auto gte = conditional->parent()->AddInstruction(
HloInstruction::CreateGetTupleElement(root_shape, conditional, 0));
TF_RETURN_IF_ERROR(conditional->ReplaceAllUsesWithDifferentShape(gte));
return Status::OK();
}
} // namespace
StatusOr<bool> ConditionalCanonicalizer::Run(HloModule* module) {
XLA_VLOG_LINES(
2, "ConditionalCanonicalizer::Run(), before:\n" + module->ToString());
bool changed = false;
for (auto* comp : module->MakeNonfusionComputations()) {
for (auto* inst : comp->MakeInstructionPostOrder()) {
if (inst->opcode() == HloOpcode::kConditional &&
!inst->shape().IsTuple()) {
TF_RETURN_IF_ERROR(CanonicalizeNonTupleConditional(inst));
changed = true;
}
}
}
XLA_VLOG_LINES(
2, "ConditionalCanonicalizer::Run(), after:\n" + module->ToString());
return changed;
}
} // namespace xla

View File

@ -0,0 +1,38 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_XLA_SERVICE_CONDITIONAL_CANONICALIZER_H_
#define TENSORFLOW_COMPILER_XLA_SERVICE_CONDITIONAL_CANONICALIZER_H_
#include <utility>
#include "tensorflow/compiler/xla/service/hlo_module.h"
#include "tensorflow/compiler/xla/service/hlo_pass_interface.h"
namespace xla {
// Canonicalize output of conditionals, make non-tuple outputs into tuple with
// single element output. After this pass, all conditional instructions have
// tuple outputs.
class ConditionalCanonicalizer : public HloModulePass {
public:
absl::string_view name() const override {
return "conditional canonicalizer";
}
StatusOr<bool> Run(HloModule* module) override;
};
} // namespace xla
#endif // TENSORFLOW_COMPILER_XLA_SERVICE_CONDITIONAL_CANONICALIZER_H_

View File

@ -0,0 +1,72 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/xla/service/conditional_canonicalizer.h"
#include "tensorflow/compiler/xla/service/hlo_computation.h"
#include "tensorflow/compiler/xla/service/hlo_instruction.h"
#include "tensorflow/compiler/xla/service/hlo_matchers.h"
#include "tensorflow/compiler/xla/service/hlo_module.h"
#include "tensorflow/compiler/xla/service/hlo_opcode.h"
#include "tensorflow/compiler/xla/service/hlo_parser.h"
#include "tensorflow/compiler/xla/shape_util.h"
#include "tensorflow/compiler/xla/tests/hlo_test_base.h"
#include "tensorflow/compiler/xla/tests/literal_test_util.h"
#include "tensorflow/compiler/xla/tests/test_utils.h"
#include "tensorflow/compiler/xla/types.h"
#include "tensorflow/compiler/xla/util.h"
#include "tensorflow/core/lib/core/status_test_util.h"
#include "tensorflow/core/platform/types.h"
namespace xla {
namespace {
namespace op = xla::testing::opcode_matchers;
class ConditionalCanonicalizerTest : public HloTestBase {
protected:
ConditionalCanonicalizerTest() {}
};
TEST_F(ConditionalCanonicalizerTest, DenseArrayConditionalRewrite) {
auto module = ParseAndReturnVerifiedModule(R"(
HloModule _
true_branch {
true_param = (s32[3,2]) parameter(0)
ROOT root = s32[] constant(0)
}
false_branch {
false_param = (s32[3,2]) parameter(0)
ROOT root = s32[] constant(1)
}
ENTRY entry {
param0 = s32[3,2] parameter(0)
branch = pred[] constant(false)
param_tuple = (s32[3 ,2]) tuple(param0)
ROOT conditional = s32[] conditional(branch, param_tuple, param_tuple),
true_computation=true_branch, false_computation=false_branch
}
)")
.ValueOrDie();
ConditionalCanonicalizer pass;
EXPECT_TRUE(pass.Run(module.get()).ValueOrDie());
EXPECT_THAT(module->entry_computation()->root_instruction(),
op::GetTupleElement(op::Conditional()));
}
} // namespace
} // namespace xla

View File

@ -138,6 +138,7 @@ cc_library(
"//tensorflow/compiler/xla/service:rng_bit_generator_expander",
"//tensorflow/compiler/xla/service:tree_reduction_rewriter",
"//tensorflow/compiler/xla/service:hlo_get_dimension_size_rewriter",
"//tensorflow/compiler/xla/service:conditional_canonicalizer",
"//tensorflow/compiler/xla/service:conditional_to_select",
"//tensorflow/compiler/xla/service:slow_operation_alarm",
"//tensorflow/compiler/xla/service:scatter_expander",

View File

@ -54,6 +54,7 @@ limitations under the License.
#include "tensorflow/compiler/xla/service/buffer_assignment.h"
#include "tensorflow/compiler/xla/service/call_inliner.h"
#include "tensorflow/compiler/xla/service/cholesky_expander.h"
#include "tensorflow/compiler/xla/service/conditional_canonicalizer.h"
#include "tensorflow/compiler/xla/service/conditional_simplifier.h"
#include "tensorflow/compiler/xla/service/conditional_to_select.h"
#include "tensorflow/compiler/xla/service/convolution_group_converter.h"
@ -284,6 +285,7 @@ Status CpuCompiler::RunHloPassesThroughLayoutAssn(
/*rewrite_grad_op=*/true);
pipeline.AddPass<LogisticExpander>(
/*expansion_type=*/LogisticExpansionType::kExp);
pipeline.AddPass<ConditionalCanonicalizer>();
pipeline.AddPass<DynamicPadder>();
pipeline.AddPass<ScatterExpander>();
pipeline.AddPass<HloGetDimensionSizeRewriter>();

View File

@ -1168,6 +1168,7 @@ cc_library(
"//tensorflow/compiler/xla/service:batchnorm_expander",
"//tensorflow/compiler/xla/service:buffer_assignment",
"//tensorflow/compiler/xla/service:call_inliner",
"//tensorflow/compiler/xla/service:conditional_canonicalizer",
"//tensorflow/compiler/xla/service:conditional_simplifier",
"//tensorflow/compiler/xla/service:convolution_4d_expander",
"//tensorflow/compiler/xla/service:dot_decomposer",

View File

@ -35,6 +35,7 @@ limitations under the License.
#include "tensorflow/compiler/xla/service/batchnorm_expander.h"
#include "tensorflow/compiler/xla/service/buffer_assignment.h"
#include "tensorflow/compiler/xla/service/call_inliner.h"
#include "tensorflow/compiler/xla/service/conditional_canonicalizer.h"
#include "tensorflow/compiler/xla/service/conditional_simplifier.h"
#include "tensorflow/compiler/xla/service/convolution_4d_expander.h"
#include "tensorflow/compiler/xla/service/dot_decomposer.h"
@ -179,7 +180,7 @@ Status GpuCompiler::OptimizeHloModule(
pipeline.AddPass<LogisticExpander>(
/*expansion_type=*/LogisticExpansionType::kExp);
pipeline.AddPass<ConditionalCanonicalizer>();
pipeline.AddPass<DynamicPadder>();
{