mnist example now uses sparse_softmax_cross_entropy_with_logits.

Change: 115636069
This commit is contained in:
Eugene Brevdo 2016-02-25 20:44:34 -08:00 committed by TensorFlower Gardener
parent 00986d48bb
commit 5c5b29adda

View File

@ -93,19 +93,9 @@ def loss(logits, labels):
Returns:
loss: Loss tensor of type float.
"""
# Convert from sparse integer labels in the range [0, NUM_CLASSES)
# to 1-hot dense float vectors (that is we will have batch_size vectors,
# each with NUM_CLASSES values, all of which are 0.0 except there will
# be a 1.0 in the entry corresponding to the label).
batch_size = tf.size(labels)
labels = tf.expand_dims(labels, 1)
indices = tf.expand_dims(tf.range(0, batch_size), 1)
concated = tf.concat(1, [indices, labels])
onehot_labels = tf.sparse_to_dense(
concated, tf.pack([batch_size, NUM_CLASSES]), 1.0, 0.0)
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits,
onehot_labels,
name='xentropy')
labels = tf.to_int64(labels)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits, labels, name='xentropy')
loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
return loss