s/sample_n/sample/ in most unittests.
Change: 138670422
This commit is contained in:
parent
641894039e
commit
56b09d13c8
@ -89,7 +89,7 @@ class BernoulliTest(tf.test.TestCase):
|
||||
def testDtype(self):
|
||||
dist = make_bernoulli([])
|
||||
self.assertEqual(dist.dtype, tf.int32)
|
||||
self.assertEqual(dist.dtype, dist.sample_n(5).dtype)
|
||||
self.assertEqual(dist.dtype, dist.sample(5).dtype)
|
||||
self.assertEqual(dist.dtype, dist.mode().dtype)
|
||||
self.assertEqual(dist.p.dtype, dist.mean().dtype)
|
||||
self.assertEqual(dist.p.dtype, dist.variance().dtype)
|
||||
@ -100,7 +100,7 @@ class BernoulliTest(tf.test.TestCase):
|
||||
|
||||
dist64 = make_bernoulli([], tf.int64)
|
||||
self.assertEqual(dist64.dtype, tf.int64)
|
||||
self.assertEqual(dist64.dtype, dist64.sample_n(5).dtype)
|
||||
self.assertEqual(dist64.dtype, dist64.sample(5).dtype)
|
||||
self.assertEqual(dist64.dtype, dist64.mode().dtype)
|
||||
|
||||
def _testPmf(self, **kwargs):
|
||||
@ -186,7 +186,7 @@ class BernoulliTest(tf.test.TestCase):
|
||||
p = [0.2, 0.6]
|
||||
dist = tf.contrib.distributions.Bernoulli(p=p)
|
||||
n = 100000
|
||||
samples = dist.sample_n(n)
|
||||
samples = dist.sample(n)
|
||||
samples.set_shape([n, 2])
|
||||
self.assertEqual(samples.dtype, tf.int32)
|
||||
sample_values = samples.eval()
|
||||
@ -201,7 +201,7 @@ class BernoulliTest(tf.test.TestCase):
|
||||
# owing to mismatched types. b/30940152
|
||||
dist = tf.contrib.distributions.Bernoulli(np.log([.2, .4]))
|
||||
self.assertAllEqual(
|
||||
(1, 2), dist.sample_n(1, seed=42).get_shape().as_list())
|
||||
(1, 2), dist.sample(1, seed=42).get_shape().as_list())
|
||||
|
||||
def testSampleActsLikeSampleN(self):
|
||||
with self.test_session() as sess:
|
||||
@ -210,12 +210,12 @@ class BernoulliTest(tf.test.TestCase):
|
||||
n = 1000
|
||||
seed = 42
|
||||
self.assertAllEqual(dist.sample(n, seed).eval(),
|
||||
dist.sample_n(n, seed).eval())
|
||||
dist.sample(n, seed).eval())
|
||||
n = tf.placeholder(tf.int32)
|
||||
sample, sample_n = sess.run([dist.sample(n, seed),
|
||||
dist.sample_n(n, seed)],
|
||||
feed_dict={n: 1000})
|
||||
self.assertAllEqual(sample, sample_n)
|
||||
sample, sample = sess.run([dist.sample(n, seed),
|
||||
dist.sample(n, seed)],
|
||||
feed_dict={n: 1000})
|
||||
self.assertAllEqual(sample, sample)
|
||||
|
||||
def testMean(self):
|
||||
with self.test_session():
|
||||
|
@ -228,7 +228,7 @@ class BetaTest(tf.test.TestCase):
|
||||
b = 2.
|
||||
beta = tf.contrib.distributions.Beta(a, b)
|
||||
n = tf.constant(100000)
|
||||
samples = beta.sample_n(n)
|
||||
samples = beta.sample(n)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(sample_values.shape, (100000,))
|
||||
self.assertFalse(np.any(sample_values < 0.0))
|
||||
@ -254,11 +254,11 @@ class BetaTest(tf.test.TestCase):
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
beta1 = tf.contrib.distributions.Beta(a=a_val, b=b_val, name="beta1")
|
||||
samples1 = beta1.sample_n(n_val, seed=123456).eval()
|
||||
samples1 = beta1.sample(n_val, seed=123456).eval()
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
beta2 = tf.contrib.distributions.Beta(a=a_val, b=b_val, name="beta2")
|
||||
samples2 = beta2.sample_n(n_val, seed=123456).eval()
|
||||
samples2 = beta2.sample(n_val, seed=123456).eval()
|
||||
|
||||
self.assertAllClose(samples1, samples2)
|
||||
|
||||
@ -268,7 +268,7 @@ class BetaTest(tf.test.TestCase):
|
||||
b = np.random.rand(3, 2, 2).astype(np.float32)
|
||||
beta = tf.contrib.distributions.Beta(a, b)
|
||||
n = tf.constant(100000)
|
||||
samples = beta.sample_n(n)
|
||||
samples = beta.sample(n)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(sample_values.shape, (100000, 3, 2, 2))
|
||||
self.assertFalse(np.any(sample_values < 0.0))
|
||||
|
@ -73,11 +73,11 @@ class CategoricalTest(tf.test.TestCase):
|
||||
def testDtype(self):
|
||||
dist = make_categorical([], 5, dtype=tf.int32)
|
||||
self.assertEqual(dist.dtype, tf.int32)
|
||||
self.assertEqual(dist.dtype, dist.sample_n(5).dtype)
|
||||
self.assertEqual(dist.dtype, dist.sample(5).dtype)
|
||||
self.assertEqual(dist.dtype, dist.mode().dtype)
|
||||
dist = make_categorical([], 5, dtype=tf.int64)
|
||||
self.assertEqual(dist.dtype, tf.int64)
|
||||
self.assertEqual(dist.dtype, dist.sample_n(5).dtype)
|
||||
self.assertEqual(dist.dtype, dist.sample(5).dtype)
|
||||
self.assertEqual(dist.dtype, dist.mode().dtype)
|
||||
self.assertEqual(dist.p.dtype, tf.float32)
|
||||
self.assertEqual(dist.logits.dtype, tf.float32)
|
||||
@ -140,7 +140,7 @@ class CategoricalTest(tf.test.TestCase):
|
||||
histograms = [[[0.2, 0.8], [0.4, 0.6]]]
|
||||
dist = tf.contrib.distributions.Categorical(tf.log(histograms) - 50.)
|
||||
n = 10000
|
||||
samples = dist.sample_n(n, seed=123)
|
||||
samples = dist.sample(n, seed=123)
|
||||
samples.set_shape([n, 1, 2])
|
||||
self.assertEqual(samples.dtype, tf.int32)
|
||||
sample_values = samples.eval()
|
||||
|
@ -182,7 +182,7 @@ class DirichletTest(tf.test.TestCase):
|
||||
alpha = [1., 2]
|
||||
dirichlet = tf.contrib.distributions.Dirichlet(alpha)
|
||||
n = tf.constant(100000)
|
||||
samples = dirichlet.sample_n(n)
|
||||
samples = dirichlet.sample(n)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(sample_values.shape, (100000, 2))
|
||||
self.assertTrue(np.all(sample_values > 0.0))
|
||||
|
@ -87,7 +87,7 @@ class ExponentialTest(tf.test.TestCase):
|
||||
n = tf.constant(100000)
|
||||
exponential = tf.contrib.distributions.Exponential(lam=lam)
|
||||
|
||||
samples = exponential.sample_n(n, seed=137)
|
||||
samples = exponential.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(sample_values.shape, (100000, 2))
|
||||
self.assertFalse(np.any(sample_values < 0.0))
|
||||
@ -106,7 +106,7 @@ class ExponentialTest(tf.test.TestCase):
|
||||
exponential = tf.contrib.distributions.Exponential(lam=lam)
|
||||
|
||||
n = 100000
|
||||
samples = exponential.sample_n(n, seed=138)
|
||||
samples = exponential.sample(n, seed=138)
|
||||
self.assertEqual(samples.get_shape(), (n, batch_size, 2))
|
||||
|
||||
sample_values = samples.eval()
|
||||
|
@ -185,7 +185,7 @@ class GammaTest(tf.test.TestCase):
|
||||
beta = tf.constant(beta_v)
|
||||
n = 100000
|
||||
gamma = tf.contrib.distributions.Gamma(alpha=alpha, beta=beta)
|
||||
samples = gamma.sample_n(n, seed=137)
|
||||
samples = gamma.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(samples.get_shape(), (n,))
|
||||
self.assertEqual(sample_values.shape, (n,))
|
||||
@ -208,7 +208,7 @@ class GammaTest(tf.test.TestCase):
|
||||
beta = tf.constant(beta_v)
|
||||
n = 100000
|
||||
gamma = tf.contrib.distributions.Gamma(alpha=alpha, beta=beta)
|
||||
samples = gamma.sample_n(n, seed=137)
|
||||
samples = gamma.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(samples.get_shape(), (n,))
|
||||
self.assertEqual(sample_values.shape, (n,))
|
||||
@ -228,7 +228,7 @@ class GammaTest(tf.test.TestCase):
|
||||
beta_v = np.array([np.arange(1, 11, dtype=np.float32)]).T # 10 x 1
|
||||
gamma = tf.contrib.distributions.Gamma(alpha=alpha_v, beta=beta_v)
|
||||
n = 10000
|
||||
samples = gamma.sample_n(n, seed=137)
|
||||
samples = gamma.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(samples.get_shape(), (n, 10, 100))
|
||||
self.assertEqual(sample_values.shape, (n, 10, 100))
|
||||
@ -263,7 +263,7 @@ class GammaTest(tf.test.TestCase):
|
||||
with tf.Session() as sess:
|
||||
gamma = tf.contrib.distributions.Gamma(alpha=[7., 11.], beta=[[5.], [6.]])
|
||||
num = 50000
|
||||
samples = gamma.sample_n(num, seed=137)
|
||||
samples = gamma.sample(num, seed=137)
|
||||
pdfs = gamma.pdf(samples)
|
||||
sample_vals, pdf_vals = sess.run([samples, pdfs])
|
||||
self.assertEqual(samples.get_shape(), (num, 2, 2))
|
||||
|
@ -203,7 +203,7 @@ class InverseGammaTest(tf.test.TestCase):
|
||||
beta = tf.constant(beta_v)
|
||||
n = 100000
|
||||
inv_gamma = tf.contrib.distributions.InverseGamma(alpha=alpha, beta=beta)
|
||||
samples = inv_gamma.sample_n(n, seed=137)
|
||||
samples = inv_gamma.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(samples.get_shape(), (n,))
|
||||
self.assertEqual(sample_values.shape, (n,))
|
||||
@ -222,7 +222,7 @@ class InverseGammaTest(tf.test.TestCase):
|
||||
inv_gamma = tf.contrib.distributions.InverseGamma(alpha=alpha_v,
|
||||
beta=beta_v)
|
||||
n = 10000
|
||||
samples = inv_gamma.sample_n(n, seed=137)
|
||||
samples = inv_gamma.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(samples.get_shape(), (n, 10, 100))
|
||||
self.assertEqual(sample_values.shape, (n, 10, 100))
|
||||
@ -257,7 +257,7 @@ class InverseGammaTest(tf.test.TestCase):
|
||||
inv_gamma = tf.contrib.distributions.InverseGamma(alpha=[7., 11.],
|
||||
beta=[[5.], [6.]])
|
||||
num = 50000
|
||||
samples = inv_gamma.sample_n(num, seed=137)
|
||||
samples = inv_gamma.sample(num, seed=137)
|
||||
pdfs = inv_gamma.pdf(samples)
|
||||
sample_vals, pdf_vals = sess.run([samples, pdfs])
|
||||
self.assertEqual(samples.get_shape(), (num, 2, 2))
|
||||
|
@ -161,7 +161,7 @@ class LaplaceTest(tf.test.TestCase):
|
||||
scale = tf.constant(scale_v)
|
||||
n = 100000
|
||||
laplace = tf.contrib.distributions.Laplace(loc=loc, scale=scale)
|
||||
samples = laplace.sample_n(n, seed=137)
|
||||
samples = laplace.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(samples.get_shape(), (n,))
|
||||
self.assertEqual(sample_values.shape, (n,))
|
||||
@ -179,7 +179,7 @@ class LaplaceTest(tf.test.TestCase):
|
||||
scale_v = np.array([np.arange(1, 11, dtype=np.float32)]).T # 10 x 1
|
||||
laplace = tf.contrib.distributions.Laplace(loc=loc_v, scale=scale_v)
|
||||
n = 10000
|
||||
samples = laplace.sample_n(n, seed=137)
|
||||
samples = laplace.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(samples.get_shape(), (n, 10, 100))
|
||||
self.assertEqual(sample_values.shape, (n, 10, 100))
|
||||
@ -214,7 +214,7 @@ class LaplaceTest(tf.test.TestCase):
|
||||
laplace = tf.contrib.distributions.Laplace(
|
||||
loc=[7., 11.], scale=[[5.], [6.]])
|
||||
num = 50000
|
||||
samples = laplace.sample_n(num, seed=137)
|
||||
samples = laplace.sample(num, seed=137)
|
||||
pdfs = laplace.pdf(samples)
|
||||
sample_vals, pdf_vals = sess.run([samples, pdfs])
|
||||
self.assertEqual(samples.get_shape(), (num, 2, 2))
|
||||
|
@ -111,7 +111,7 @@ class MultivariateNormalDiagTest(tf.test.TestCase):
|
||||
diag = [1.0, 2.0]
|
||||
with self.test_session():
|
||||
dist = distributions.MultivariateNormalDiag(mu, diag)
|
||||
samps = dist.sample_n(1000, seed=0).eval()
|
||||
samps = dist.sample(1000, seed=0).eval()
|
||||
cov_mat = tf.matrix_diag(diag).eval()**2
|
||||
|
||||
self.assertAllClose(mu, samps.mean(axis=0), atol=0.1)
|
||||
@ -122,7 +122,7 @@ class MultivariateNormalDiagTest(tf.test.TestCase):
|
||||
diag = [-1.0, -2.0]
|
||||
with self.test_session():
|
||||
dist = distributions.MultivariateNormalDiagWithSoftplusStDev(mu, diag)
|
||||
samps = dist.sample_n(1000, seed=0).eval()
|
||||
samps = dist.sample(1000, seed=0).eval()
|
||||
cov_mat = tf.matrix_diag(tf.nn.softplus(diag)).eval()**2
|
||||
|
||||
self.assertAllClose(mu, samps.mean(axis=0), atol=0.1)
|
||||
@ -177,7 +177,7 @@ class MultivariateNormalDiagPlusVDVTTest(tf.test.TestCase):
|
||||
with self.test_session():
|
||||
dist = distributions.MultivariateNormalDiagPlusVDVT(mu, diag_large, v)
|
||||
|
||||
samps = dist.sample_n(1000, seed=0).eval()
|
||||
samps = dist.sample(1000, seed=0).eval()
|
||||
cov_mat = dist.sigma.eval()
|
||||
|
||||
self.assertAllClose(mu, samps.mean(axis=0), atol=0.1)
|
||||
@ -318,7 +318,7 @@ class MultivariateNormalCholeskyTest(tf.test.TestCase):
|
||||
|
||||
n = tf.constant(100000)
|
||||
mvn = distributions.MultivariateNormalCholesky(mu, chol)
|
||||
samples = mvn.sample_n(n, seed=137)
|
||||
samples = mvn.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(samples.get_shape(), (100000, 2))
|
||||
self.assertAllClose(sample_values.mean(axis=0), mu, atol=1e-2)
|
||||
@ -355,7 +355,7 @@ class MultivariateNormalCholeskyTest(tf.test.TestCase):
|
||||
|
||||
mvn = distributions.MultivariateNormalCholesky(mu, chol)
|
||||
n = tf.constant(100000)
|
||||
samples = mvn.sample_n(n, seed=137)
|
||||
samples = mvn.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
|
||||
self.assertEqual(samples.get_shape(), (100000, 3, 5, 2))
|
||||
|
@ -290,7 +290,7 @@ class NormalTest(tf.test.TestCase):
|
||||
sigma_v = np.sqrt(3.0)
|
||||
n = tf.constant(100000)
|
||||
normal = tf.contrib.distributions.Normal(mu=mu, sigma=sigma)
|
||||
samples = normal.sample_n(n)
|
||||
samples = normal.sample(n)
|
||||
sample_values = samples.eval()
|
||||
# Note that the standard error for the sample mean is ~ sigma / sqrt(n).
|
||||
# The sample variance similarly is dependent on sigma and n.
|
||||
@ -323,7 +323,7 @@ class NormalTest(tf.test.TestCase):
|
||||
sigma_v = [np.sqrt(2.0), np.sqrt(3.0)]
|
||||
n = tf.constant(100000)
|
||||
normal = tf.contrib.distributions.Normal(mu=mu, sigma=sigma)
|
||||
samples = normal.sample_n(n)
|
||||
samples = normal.sample(n)
|
||||
sample_values = samples.eval()
|
||||
# Note that the standard error for the sample mean is ~ sigma / sqrt(n).
|
||||
# The sample variance similarly is dependent on sigma and n.
|
||||
|
@ -110,7 +110,7 @@ class StudentTTest(tf.test.TestCase):
|
||||
sigma_v = np.sqrt(10.0)
|
||||
n = tf.constant(200000)
|
||||
student = tf.contrib.distributions.StudentT(df=df, mu=mu, sigma=sigma)
|
||||
samples = student.sample_n(n)
|
||||
samples = student.sample(n)
|
||||
sample_values = samples.eval()
|
||||
n_val = 200000
|
||||
self.assertEqual(sample_values.shape, (n_val,))
|
||||
@ -134,12 +134,12 @@ class StudentTTest(tf.test.TestCase):
|
||||
tf.set_random_seed(654321)
|
||||
student = tf.contrib.distributions.StudentT(
|
||||
df=df, mu=mu, sigma=sigma, name="student_t1")
|
||||
samples1 = student.sample_n(n, seed=123456).eval()
|
||||
samples1 = student.sample(n, seed=123456).eval()
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
student2 = tf.contrib.distributions.StudentT(
|
||||
df=df, mu=mu, sigma=sigma, name="student_t2")
|
||||
samples2 = student2.sample_n(n, seed=123456).eval()
|
||||
samples2 = student2.sample(n, seed=123456).eval()
|
||||
|
||||
self.assertAllClose(samples1, samples2)
|
||||
|
||||
@ -149,7 +149,7 @@ class StudentTTest(tf.test.TestCase):
|
||||
df = tf.constant(df_v)
|
||||
n = tf.constant(200000)
|
||||
student = tf.contrib.distributions.StudentT(df=df, mu=1.0, sigma=1.0)
|
||||
samples = student.sample_n(n)
|
||||
samples = student.sample(n)
|
||||
sample_values = samples.eval()
|
||||
n_val = 200000
|
||||
self.assertEqual(sample_values.shape, (n_val, 4))
|
||||
@ -166,7 +166,7 @@ class StudentTTest(tf.test.TestCase):
|
||||
sigma_v = [np.sqrt(10.0), np.sqrt(15.0)]
|
||||
n = tf.constant(200000)
|
||||
student = tf.contrib.distributions.StudentT(df=df, mu=mu, sigma=sigma)
|
||||
samples = student.sample_n(n)
|
||||
samples = student.sample(n)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(samples.get_shape(), (200000, batch_size, 2))
|
||||
self.assertAllClose(
|
||||
@ -208,7 +208,7 @@ class StudentTTest(tf.test.TestCase):
|
||||
self.assertEqual(student.entropy().get_shape(), (3,))
|
||||
self.assertEqual(student.log_pdf(2.).get_shape(), (3,))
|
||||
self.assertEqual(student.pdf(2.).get_shape(), (3,))
|
||||
self.assertEqual(student.sample_n(37).get_shape(), (37, 3,))
|
||||
self.assertEqual(student.sample(37).get_shape(), (37, 3,))
|
||||
|
||||
_check(tf.contrib.distributions.StudentT(df=[2., 3., 4.,], mu=2., sigma=1.))
|
||||
_check(tf.contrib.distributions.StudentT(df=7., mu=[2., 3., 4.,], sigma=1.))
|
||||
@ -377,7 +377,7 @@ class StudentTTest(tf.test.TestCase):
|
||||
with self.test_session() as sess:
|
||||
student = tf.contrib.distributions.StudentT(df=3., mu=np.pi, sigma=1.)
|
||||
num = 20000
|
||||
samples = student.sample_n(num)
|
||||
samples = student.sample(num)
|
||||
pdfs = student.pdf(samples)
|
||||
mean = student.mean()
|
||||
mean_pdf = student.pdf(student.mean())
|
||||
@ -398,7 +398,7 @@ class StudentTTest(tf.test.TestCase):
|
||||
mu=[[5.], [6.]],
|
||||
sigma=3.)
|
||||
num = 50000
|
||||
samples = student.sample_n(num)
|
||||
samples = student.sample(num)
|
||||
pdfs = student.pdf(samples)
|
||||
sample_vals, pdf_vals = sess.run([samples, pdfs])
|
||||
self.assertEqual(samples.get_shape(), (num, 2, 2))
|
||||
|
@ -70,7 +70,7 @@ class TransformedDistributionTest(tf.test.TestCase):
|
||||
sp_dist = stats.lognorm(s=sigma, scale=np.exp(mu))
|
||||
|
||||
# sample
|
||||
sample = log_normal.sample_n(100000, seed=235)
|
||||
sample = log_normal.sample(100000, seed=235)
|
||||
with self.test_session(graph=g):
|
||||
self.assertAllClose(sp_dist.mean(), np.mean(sample.eval()),
|
||||
atol=0.0, rtol=0.05)
|
||||
@ -98,7 +98,7 @@ class TransformedDistributionTest(tf.test.TestCase):
|
||||
distribution=distributions.Normal(mu=mu, sigma=sigma),
|
||||
bijector=bijectors.Exp(event_ndims=0))
|
||||
|
||||
sample = log_normal.sample_n(1)
|
||||
sample = log_normal.sample(1)
|
||||
sample_val, log_pdf_val = sess.run([sample, log_normal.log_pdf(sample)])
|
||||
self.assertAllClose(
|
||||
stats.lognorm.logpdf(sample_val, s=sigma,
|
||||
@ -113,7 +113,7 @@ class TransformedDistributionTest(tf.test.TestCase):
|
||||
bijector=_ChooseLocation(loc=[-100., 100.]))
|
||||
z = [-1, +1, -1, -1, +1]
|
||||
self.assertAllClose(
|
||||
np.sign(conditional_normal.sample_n(
|
||||
np.sign(conditional_normal.sample(
|
||||
5, bijector_kwargs={"z": z}).eval()), z)
|
||||
|
||||
def testShapeChangingBijector(self):
|
||||
|
@ -135,7 +135,7 @@ class UniformTest(tf.test.TestCase):
|
||||
n = tf.constant(100000)
|
||||
uniform = tf.contrib.distributions.Uniform(a=a, b=b)
|
||||
|
||||
samples = uniform.sample_n(n, seed=137)
|
||||
samples = uniform.sample(n, seed=137)
|
||||
sample_values = samples.eval()
|
||||
self.assertEqual(sample_values.shape, (100000, 2))
|
||||
self.assertAllClose(sample_values[::, 0].mean(), (b_v + a1_v) / 2,
|
||||
@ -160,7 +160,7 @@ class UniformTest(tf.test.TestCase):
|
||||
|
||||
n_v = 100000
|
||||
n = tf.constant(n_v)
|
||||
samples = uniform.sample_n(n)
|
||||
samples = uniform.sample(n)
|
||||
self.assertEqual(samples.get_shape(), (n_v, batch_size, 2))
|
||||
|
||||
sample_values = samples.eval()
|
||||
@ -221,7 +221,7 @@ class UniformTest(tf.test.TestCase):
|
||||
a = 10.0
|
||||
b = [11.0, 100.0]
|
||||
uniform = tf.contrib.distributions.Uniform(a, b)
|
||||
self.assertTrue(tf.reduce_all(uniform.pdf(uniform.sample_n(10)) > 0).eval(
|
||||
self.assertTrue(tf.reduce_all(uniform.pdf(uniform.sample(10)) > 0).eval(
|
||||
))
|
||||
|
||||
def testUniformBroadcasting(self):
|
||||
|
@ -106,23 +106,23 @@ class WishartCholeskyTest(tf.test.TestCase):
|
||||
chol_w = distributions.WishartCholesky(
|
||||
df, chol(scale), cholesky_input_output_matrices=False)
|
||||
|
||||
x = chol_w.sample_n(1, seed=42).eval()
|
||||
x = chol_w.sample(1, seed=42).eval()
|
||||
chol_x = [chol(x[0])]
|
||||
|
||||
full_w = distributions.WishartFull(
|
||||
df, scale, cholesky_input_output_matrices=False)
|
||||
self.assertAllClose(x, full_w.sample_n(1, seed=42).eval())
|
||||
self.assertAllClose(x, full_w.sample(1, seed=42).eval())
|
||||
|
||||
chol_w_chol = distributions.WishartCholesky(
|
||||
df, chol(scale), cholesky_input_output_matrices=True)
|
||||
self.assertAllClose(chol_x, chol_w_chol.sample_n(1, seed=42).eval())
|
||||
eigen_values = tf.matrix_diag_part(chol_w_chol.sample_n(1000, seed=42))
|
||||
self.assertAllClose(chol_x, chol_w_chol.sample(1, seed=42).eval())
|
||||
eigen_values = tf.matrix_diag_part(chol_w_chol.sample(1000, seed=42))
|
||||
np.testing.assert_array_less(0., eigen_values.eval())
|
||||
|
||||
full_w_chol = distributions.WishartFull(
|
||||
df, scale, cholesky_input_output_matrices=True)
|
||||
self.assertAllClose(chol_x, full_w_chol.sample_n(1, seed=42).eval())
|
||||
eigen_values = tf.matrix_diag_part(full_w_chol.sample_n(1000, seed=42))
|
||||
self.assertAllClose(chol_x, full_w_chol.sample(1, seed=42).eval())
|
||||
eigen_values = tf.matrix_diag_part(full_w_chol.sample(1000, seed=42))
|
||||
np.testing.assert_array_less(0., eigen_values.eval())
|
||||
|
||||
# Check first and second moments.
|
||||
@ -131,7 +131,7 @@ class WishartCholeskyTest(tf.test.TestCase):
|
||||
df=df,
|
||||
scale=chol(make_pd(1., 3)),
|
||||
cholesky_input_output_matrices=False)
|
||||
x = chol_w.sample_n(10000, seed=42)
|
||||
x = chol_w.sample(10000, seed=42)
|
||||
self.assertAllEqual((10000, 3, 3), x.get_shape())
|
||||
|
||||
moment1_estimate = tf.reduce_mean(x, reduction_indices=[0]).eval()
|
||||
@ -161,7 +161,7 @@ class WishartCholeskyTest(tf.test.TestCase):
|
||||
scale=chol(make_pd(1., 3)),
|
||||
cholesky_input_output_matrices=False,
|
||||
name="wishart1")
|
||||
samples1 = chol_w1.sample_n(n_val, seed=123456).eval()
|
||||
samples1 = chol_w1.sample(n_val, seed=123456).eval()
|
||||
|
||||
tf.set_random_seed(654321)
|
||||
chol_w2 = distributions.WishartCholesky(
|
||||
@ -169,7 +169,7 @@ class WishartCholeskyTest(tf.test.TestCase):
|
||||
scale=chol(make_pd(1., 3)),
|
||||
cholesky_input_output_matrices=False,
|
||||
name="wishart2")
|
||||
samples2 = chol_w2.sample_n(n_val, seed=123456).eval()
|
||||
samples2 = chol_w2.sample(n_val, seed=123456).eval()
|
||||
|
||||
self.assertAllClose(samples1, samples2)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user