Use xa_nnlib for svdf for Fusion F1.
The code in this change is the subset of functionality needed for int8
svdf for Hifi4 copied from a737c1e394/tensorflow/lite/micro/kernels/xtensa_hifi/svdf.cc
Note that the current change has not pulled in either the floating point
implementation or the Hifi5 implementation.
Profiled the keryword_benchmark with the following command:
```
make -f tensorflow/lite/micro/tools/make/Makefile TARGET=xtensa OPTIMIZED_KERNEL_DIR=xtensa TARGET_ARCH=fusion_f1 XTENSA_CORE=F1_190305_swupgrade run_keyword_benchmark -j8
```
gives a latency of 38516 ticks with this change vs 152642 ticks without this change.
Per OP latency with this change:
```
KeywordRunNIerations(1) took 38516 ticks (38 ms)
QUANTIZE took 3758 ticks (3 ms).
SVDF took 4753 ticks (4 ms).
FULLY_CONNECTED took 1353 ticks (1 ms).
SVDF took 4211 ticks (4 ms).
FULLY_CONNECTED took 1353 ticks (1 ms).
SVDF took 3145 ticks (3 ms).
FULLY_CONNECTED took 1353 ticks (1 ms).
SVDF took 4211 ticks (4 ms).
FULLY_CONNECTED took 1353 ticks (1 ms).
SVDF took 2890 ticks (2 ms).
SVDF took 3583 ticks (3 ms).
SVDF took 3054 ticks (3 ms).
FULLY_CONNECTED took 1091 ticks (1 ms).
SOFTMAX took 2042 ticks (2 ms).
QUANTIZE took 366 ticks (0 ms).
```
Without this change:
```
KeywordRunNIerations(1) took 152642 ticks (152 ms)
QUANTIZE took 3758 ticks (3 ms).
SVDF took 38003 ticks (38 ms).
FULLY_CONNECTED took 1353 ticks (1 ms).
SVDF took 18803 ticks (18 ms).
FULLY_CONNECTED took 1353 ticks (1 ms).
SVDF took 18803 ticks (18 ms).
FULLY_CONNECTED took 1353 ticks (1 ms).
SVDF took 18803 ticks (18 ms).
FULLY_CONNECTED took 1353 ticks (1 ms).
SVDF took 13907 ticks (13 ms).
SVDF took 15827 ticks (15 ms).
SVDF took 15827 ticks (15 ms).
FULLY_CONNECTED took 1091 ticks (1 ms).
SOFTMAX took 2042 ticks (2 ms).
QUANTIZE took 366 ticks (0 ms).
```
Also confirmed that the kernel_svdf_test passes with:
```
make -f tensorflow/lite/micro/tools/make/Makefile TARGET=xtensa OPTIMIZED_KERNEL_DIR=xtensa TARGET_ARCH=fusion_f1 XTENSA_CORE=F1_190305_swupgrade test_kernel_svdf_test -j8
```
This commit is contained in:
parent
9421ecff2a
commit
55633bf5c1
@ -51,14 +51,14 @@ constexpr int kOutputTensor = 0;
|
||||
* Note: passing OpData by value might seem like an oversight but it helps
|
||||
* reduce the latency. See b/155656675 for more details.
|
||||
*/
|
||||
void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteEvalTensor* input_tensor,
|
||||
const TfLiteEvalTensor* weights_feature_tensor,
|
||||
const TfLiteEvalTensor* weights_time_tensor,
|
||||
const TfLiteEvalTensor* bias_tensor,
|
||||
const TfLiteSVDFParams* params,
|
||||
TfLiteEvalTensor* activation_state_tensor,
|
||||
TfLiteEvalTensor* output_tensor, OpData data) {
|
||||
void EvalIntegerSvdfHifimini(TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteEvalTensor* input_tensor,
|
||||
const TfLiteEvalTensor* weights_feature_tensor,
|
||||
const TfLiteEvalTensor* weights_time_tensor,
|
||||
const TfLiteEvalTensor* bias_tensor,
|
||||
const TfLiteSVDFParams* params,
|
||||
TfLiteEvalTensor* activation_state_tensor,
|
||||
TfLiteEvalTensor* output_tensor, OpData data) {
|
||||
const int n_rank = params->rank;
|
||||
const int n_batch = input_tensor->dims->data[0];
|
||||
const int n_input = input_tensor->dims->data[1];
|
||||
@ -243,7 +243,76 @@ void EvalIntegerSVDF(TfLiteContext* context, TfLiteNode* node,
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#elif defined(FUSION_F1)
|
||||
|
||||
TfLiteStatus EvalIntegerSvdfHifi4(
|
||||
TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteEvalTensor* input_tensor,
|
||||
const TfLiteEvalTensor* weights_feature_tensor,
|
||||
const TfLiteEvalTensor* weights_time_tensor,
|
||||
const TfLiteEvalTensor* bias_tensor, const TfLiteSVDFParams* params,
|
||||
TfLiteEvalTensor* activation_state_tensor, TfLiteEvalTensor* output_tensor,
|
||||
const OpData& data) {
|
||||
const int n_rank = params->rank;
|
||||
const int n_batch = input_tensor->dims->data[0];
|
||||
const int n_input = input_tensor->dims->data[1];
|
||||
const int n_filter = weights_feature_tensor->dims->data[0];
|
||||
const int n_unit = n_filter / n_rank;
|
||||
const int n_memory = weights_time_tensor->dims->data[1];
|
||||
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
TFLITE_DCHECK(context->GetScratchBuffer != nullptr);
|
||||
|
||||
// Shift states.
|
||||
int16_t* const state_ptr =
|
||||
tflite::micro::GetTensorData<int16_t>(activation_state_tensor);
|
||||
|
||||
// Left shift the activation_state.
|
||||
int num_bytes = sizeof(*state_ptr) * (n_batch * n_filter * n_memory - 1);
|
||||
xa_nn_memmove_16(state_ptr, state_ptr + 1, num_bytes);
|
||||
|
||||
// Note: no need to clear the latest activation, matmul is not accumulative.
|
||||
|
||||
// Feature matmul.
|
||||
const int8_t* input = tflite::micro::GetTensorData<int8_t>(input_tensor);
|
||||
const int8_t* weight_feature =
|
||||
tflite::micro::GetTensorData<int8_t>(weights_feature_tensor);
|
||||
int16_t* result_in_batch = state_ptr + (n_memory - 1);
|
||||
|
||||
for (int b = 0; b < n_batch; b++) {
|
||||
TF_LITE_ENSURE_EQ(context,
|
||||
xa_nn_matXvec_out_stride_sym8sxasym8s_16(
|
||||
&result_in_batch[b * n_filter * n_memory],
|
||||
weight_feature, &input[b * n_input], NULL, n_filter,
|
||||
n_input, n_input, n_memory, -data.input_zero_point,
|
||||
(data.effective_scale_1_a), data.effective_scale_1_b),
|
||||
0);
|
||||
}
|
||||
|
||||
// Time weights dot product + activation
|
||||
for (int b = 0; b < n_batch; ++b) {
|
||||
const int16_t* vector1_ptr =
|
||||
tflite::micro::GetTensorData<int16_t>(weights_time_tensor);
|
||||
const int16_t* vector2_ptr =
|
||||
tflite::micro::GetTensorData<int16_t>(activation_state_tensor) +
|
||||
b * n_memory * n_filter;
|
||||
const int32_t* bias_ptr =
|
||||
tflite::micro::GetTensorData<int32_t>(bias_tensor);
|
||||
int8_t* output_ptr =
|
||||
tflite::micro::GetTensorData<int8_t>(output_tensor) + b * n_unit;
|
||||
|
||||
TF_LITE_ENSURE_EQ(
|
||||
context,
|
||||
xa_nn_dot_prod_16x16_asym8s(
|
||||
output_ptr, vector1_ptr, vector2_ptr, bias_ptr, n_memory * n_rank,
|
||||
(data.effective_scale_2_a), data.effective_scale_2_b,
|
||||
data.output_zero_point, n_unit),
|
||||
0);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
#endif // defined(FUSION_F1) || defined(HIFIMINI)
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context != nullptr);
|
||||
@ -274,11 +343,14 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
const int rank = params->rank;
|
||||
const int input_size = input->dims->data[1];
|
||||
const int batch_size = input->dims->data[0];
|
||||
|
||||
#if defined(HIFIMINI)
|
||||
// Ensure the input size is a multiple of two. This is necessary since
|
||||
// optimized kernels access the memory in chunks of two, and all accesses
|
||||
// must be aligned to 16 bits.
|
||||
// TODO(b/153202598): Remove when padding is allowed in TFLite tensors.
|
||||
TF_LITE_ENSURE_EQ(context, input_size % 2, 0);
|
||||
#endif // defined(HIFIMINI)
|
||||
|
||||
const int num_filters = weights_feature->dims->data[0];
|
||||
TF_LITE_ENSURE_EQ(context, num_filters % rank, 0);
|
||||
@ -339,9 +411,10 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
static_cast<double>(activation_state->params.scale *
|
||||
weights_time->params.scale / output->params.scale);
|
||||
|
||||
TF_LITE_ENSURE_EQ(context, static_cast<double>(bias->params.scale),
|
||||
static_cast<double>(activation_state->params.scale *
|
||||
weights_time->params.scale));
|
||||
TF_LITE_ENSURE_NEAR(context, static_cast<double>(bias->params.scale),
|
||||
static_cast<double>(activation_state->params.scale *
|
||||
weights_time->params.scale),
|
||||
1e-5);
|
||||
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
@ -396,13 +469,18 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||
|
||||
#if defined(HIFIMINI)
|
||||
EvalIntegerSVDF(context, node, input, weights_feature, weights_time, bias,
|
||||
params, activation_state, output, data);
|
||||
EvalIntegerSvdfHifimini(context, node, input, weights_feature, weights_time,
|
||||
bias, params, activation_state, output, data);
|
||||
return kTfLiteOk;
|
||||
#elif defined(FUSION_F1)
|
||||
return EvalIntegerSvdfHifi4(context, node, input, weights_feature,
|
||||
weights_time, bias, params, activation_state,
|
||||
output, data);
|
||||
#else
|
||||
EvalIntegerSvdfReference(context, node, input, weights_feature, weights_time,
|
||||
bias, params, activation_state, output, data);
|
||||
#endif
|
||||
return kTfLiteOk;
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
Loading…
Reference in New Issue
Block a user