From 5522bfa37f967a3e7414a453227ea5d8d119a4d3 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" Date: Mon, 23 Mar 2020 19:11:07 -0700 Subject: [PATCH] Updated reduce_sum description to include comments in code sample PiperOrigin-RevId: 302570920 Change-Id: I21f2967ee52cd22c72b727e5a01af0ef50da7dc2 --- tensorflow/python/ops/math_ops.py | 39 ++++++++++++++++++++++++------- 1 file changed, 30 insertions(+), 9 deletions(-) diff --git a/tensorflow/python/ops/math_ops.py b/tensorflow/python/ops/math_ops.py index 9395016bd20..bf725b34e0b 100644 --- a/tensorflow/python/ops/math_ops.py +++ b/tensorflow/python/ops/math_ops.py @@ -1712,20 +1712,41 @@ def reduce_sum(input_tensor, axis=None, keepdims=False, name=None): For example: - ```python - x = tf.constant([[1, 1, 1], [1, 1, 1]]) - tf.reduce_sum(x) # 6 - tf.reduce_sum(x, 0) # [2, 2, 2] - tf.reduce_sum(x, 1) # [3, 3] - tf.reduce_sum(x, 1, keepdims=True) # [[3], [3]] - tf.reduce_sum(x, [0, 1]) # 6 - ``` + >>> # x has a shape of (2, 3) (two rows and three columns): + >>> x = tf.constant([[1, 1, 1], [1, 1, 1]]) + >>> x.numpy() + array([[1, 1, 1], + [1, 1, 1]], dtype=int32) + >>> # sum all the elements + >>> # 1 + 1 + 1 + 1 + 1+ 1 = 6 + >>> tf.reduce_sum(x).numpy() + 6 + >>> # reduce along the first dimension + >>> # the result is [1, 1, 1] + [1, 1, 1] = [2, 2, 2] + >>> tf.reduce_sum(x, 0).numpy() + array([2, 2, 2], dtype=int32) + >>> # reduce along the second dimension + >>> # the result is [1, 1] + [1, 1] + [1, 1] = [3, 3] + >>> tf.reduce_sum(x, 1).numpy() + array([3, 3], dtype=int32) + >>> # keep the original dimensions + >>> tf.reduce_sum(x, 1, keepdims=True).numpy() + array([[3], + [3]], dtype=int32) + >>> # reduce along both dimensions + >>> # the result is 1 + 1 + 1 + 1 + 1 + 1 = 6 + >>> # or, equivalently, reduce along rows, then reduce the resultant array + >>> # [1, 1, 1] + [1, 1, 1] = [2, 2, 2] + >>> # 2 + 2 + 2 = 6 + >>> tf.reduce_sum(x, [0, 1]).numpy() + 6 + Args: input_tensor: The tensor to reduce. Should have numeric type. axis: The dimensions to reduce. If `None` (the default), reduces all dimensions. Must be in the range `[-rank(input_tensor), - rank(input_tensor))`. + rank(input_tensor)]`. keepdims: If true, retains reduced dimensions with length 1. name: A name for the operation (optional).