Add quantize tests for activation ops: relu, relu1, relu6 fused with conv, and tanh not fused with conv.
PiperOrigin-RevId: 276569841 Change-Id: I3bdda2d46dc75babd61cbebb7fa5dbc6a3abd737
This commit is contained in:
parent
2ed8c4b00d
commit
543f61dcab
@ -243,6 +243,9 @@ def generated_test_models():
|
|||||||
"constant",
|
"constant",
|
||||||
"control_dep",
|
"control_dep",
|
||||||
"conv",
|
"conv",
|
||||||
|
"conv_relu",
|
||||||
|
"conv_relu1",
|
||||||
|
"conv_relu6",
|
||||||
"conv2d_transpose",
|
"conv2d_transpose",
|
||||||
"conv_with_shared_weights",
|
"conv_with_shared_weights",
|
||||||
"conv_to_depthwiseconv_with_shared_weights",
|
"conv_to_depthwiseconv_with_shared_weights",
|
||||||
|
@ -480,26 +480,30 @@ tf_py_wrap_cc(
|
|||||||
tflite_portable_test_suite()
|
tflite_portable_test_suite()
|
||||||
|
|
||||||
edgetpu_ops = [
|
edgetpu_ops = [
|
||||||
"conv", # high error
|
|
||||||
"fully_connected",
|
|
||||||
"softmax",
|
|
||||||
"reshape",
|
|
||||||
"add",
|
"add",
|
||||||
"mul",
|
|
||||||
"sub",
|
|
||||||
"avg_pool",
|
"avg_pool",
|
||||||
"max_pool",
|
|
||||||
"concat",
|
"concat",
|
||||||
"resize_bilinear",
|
"conv", # high error
|
||||||
"l2norm", # high error
|
"conv_relu",
|
||||||
"sum", # high error
|
"conv_relu1",
|
||||||
|
"conv_relu6",
|
||||||
"depthwiseconv", # high error
|
"depthwiseconv", # high error
|
||||||
|
"fully_connected",
|
||||||
|
"l2norm", # high error
|
||||||
|
"max_pool",
|
||||||
|
"mul",
|
||||||
|
"pad", # high error
|
||||||
|
"reshape",
|
||||||
|
"resize_bilinear",
|
||||||
|
"slice",
|
||||||
|
"softmax",
|
||||||
"space_to_depth",
|
"space_to_depth",
|
||||||
"split",
|
"split",
|
||||||
"squeeze",
|
"squeeze",
|
||||||
"pad", # high error
|
|
||||||
"slice",
|
|
||||||
"strided_slice",
|
"strided_slice",
|
||||||
|
"sub",
|
||||||
|
"sum", # high error
|
||||||
|
"tanh",
|
||||||
]
|
]
|
||||||
|
|
||||||
[gen_zipped_test_file(
|
[gen_zipped_test_file(
|
||||||
|
@ -54,6 +54,7 @@ from tensorflow.lite.testing.op_tests.constant import make_constant_tests
|
|||||||
from tensorflow.lite.testing.op_tests.control_dep import make_control_dep_tests
|
from tensorflow.lite.testing.op_tests.control_dep import make_control_dep_tests
|
||||||
from tensorflow.lite.testing.op_tests.conv import make_conv_tests
|
from tensorflow.lite.testing.op_tests.conv import make_conv_tests
|
||||||
from tensorflow.lite.testing.op_tests.conv2d_transpose import make_conv2d_transpose_tests
|
from tensorflow.lite.testing.op_tests.conv2d_transpose import make_conv2d_transpose_tests
|
||||||
|
from tensorflow.lite.testing.op_tests.conv_activation import make_conv_relu_tests, make_conv_relu1_tests, make_conv_relu6_tests
|
||||||
# Note: This is a regression test for a bug (b/112303004) that Toco incorrectly
|
# Note: This is a regression test for a bug (b/112303004) that Toco incorrectly
|
||||||
# transforms Conv into DepthwiseConv when two Conv ops share the same constant
|
# transforms Conv into DepthwiseConv when two Conv ops share the same constant
|
||||||
# weight tensor.
|
# weight tensor.
|
||||||
|
139
tensorflow/lite/testing/op_tests/conv_activation.py
Normal file
139
tensorflow/lite/testing/op_tests/conv_activation.py
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ==============================================================================
|
||||||
|
"""Test configs for conv with activations."""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
from __future__ import division
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
|
||||||
|
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
|
||||||
|
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
|
||||||
|
|
||||||
|
|
||||||
|
def make_conv_activation_tests(activation_op):
|
||||||
|
"""Make a set of tests to do convolution with activation."""
|
||||||
|
|
||||||
|
def f(options):
|
||||||
|
"""Actual function that generates examples."""
|
||||||
|
test_parameters = [
|
||||||
|
{
|
||||||
|
"input_shape": [[1, 3, 4, 3], [4, 6, 6, 1]],
|
||||||
|
"filter_shape": [[1, 1], [2, 3], [3, 3]],
|
||||||
|
"strides": [[1, 1, 1, 1], [1, 2, 3, 1]],
|
||||||
|
"dilations": [[1, 1, 1, 1], [1, 3, 2, 1], [1, 2, 2, 1]],
|
||||||
|
"padding": ["SAME", "VALID"],
|
||||||
|
"data_format": ["NHWC"], # TODO(aselle): NCHW would be good
|
||||||
|
"constant_filter": [True, False],
|
||||||
|
"channel_multiplier": [1, 2],
|
||||||
|
"fully_quantize": [False],
|
||||||
|
},
|
||||||
|
# TODO(b/134702301): The fully_quantize param is just ignored by the
|
||||||
|
# MLIR testing path now, resulting in duplicate tests. Either ignore
|
||||||
|
# these tests or handle it properly in the mlir_convert() function.
|
||||||
|
{
|
||||||
|
"input_shape": [[1, 3, 4, 3], [4, 6, 6, 1]],
|
||||||
|
"filter_shape": [[1, 1], [2, 3], [3, 3]],
|
||||||
|
"strides": [[1, 1, 1, 1], [1, 2, 3, 1]],
|
||||||
|
"dilations": [[1, 1, 1, 1], [1, 3, 2, 1], [1, 2, 2, 1]],
|
||||||
|
"padding": ["SAME", "VALID"],
|
||||||
|
"data_format": ["NHWC"], # TODO(aselle): NCHW would be good
|
||||||
|
"constant_filter": [True],
|
||||||
|
"channel_multiplier": [1, 2],
|
||||||
|
"fully_quantize": [True],
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
def get_tensor_shapes(parameters):
|
||||||
|
input_shape = parameters["input_shape"]
|
||||||
|
filter_size = parameters["filter_shape"]
|
||||||
|
filter_shape = filter_size + [
|
||||||
|
input_shape[3], parameters["channel_multiplier"]
|
||||||
|
]
|
||||||
|
return [input_shape, filter_shape]
|
||||||
|
|
||||||
|
def build_graph(parameters):
|
||||||
|
"""Build a conv graph given `parameters`."""
|
||||||
|
input_shape, filter_shape = get_tensor_shapes(parameters)
|
||||||
|
input_tensor = tf.compat.v1.placeholder(
|
||||||
|
dtype=tf.float32, name="input", shape=input_shape)
|
||||||
|
|
||||||
|
# Get filter input either as a placeholder or constants. Also get a list
|
||||||
|
# of the input tensors that are represented as placeholders.
|
||||||
|
if parameters["constant_filter"]:
|
||||||
|
filter_input = create_tensor_data(
|
||||||
|
np.float32, filter_shape, min_value=-10, max_value=10)
|
||||||
|
input_tensors = [input_tensor]
|
||||||
|
else:
|
||||||
|
filter_input = tf.compat.v1.placeholder(
|
||||||
|
dtype=tf.float32, name="filter", shape=filter_shape)
|
||||||
|
input_tensors = [input_tensor, filter_input]
|
||||||
|
|
||||||
|
out = tf.nn.conv2d(
|
||||||
|
input_tensor,
|
||||||
|
filter_input,
|
||||||
|
strides=parameters["strides"],
|
||||||
|
dilations=parameters["dilations"],
|
||||||
|
padding=parameters["padding"],
|
||||||
|
data_format=parameters["data_format"])
|
||||||
|
out = activation_op(out)
|
||||||
|
return input_tensors, [out]
|
||||||
|
|
||||||
|
def build_inputs(parameters, sess, inputs, outputs):
|
||||||
|
"""Build inputs for conv with activation."""
|
||||||
|
|
||||||
|
input_shape, filter_shape = get_tensor_shapes(parameters)
|
||||||
|
values = [
|
||||||
|
create_tensor_data(
|
||||||
|
np.float32, input_shape, min_value=-1, max_value=1)
|
||||||
|
]
|
||||||
|
if not parameters["constant_filter"]:
|
||||||
|
values.append(create_tensor_data(np.float32, filter_shape))
|
||||||
|
return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
|
||||||
|
|
||||||
|
make_zip_of_tests(
|
||||||
|
options,
|
||||||
|
test_parameters,
|
||||||
|
build_graph,
|
||||||
|
build_inputs,
|
||||||
|
expected_tf_failures=60)
|
||||||
|
|
||||||
|
return f
|
||||||
|
|
||||||
|
|
||||||
|
@register_make_test_function()
|
||||||
|
def make_conv_relu6_tests(options):
|
||||||
|
"""Make a set of tests to do conv_relu6."""
|
||||||
|
return make_conv_activation_tests(tf.nn.relu6)(options)
|
||||||
|
|
||||||
|
|
||||||
|
@register_make_test_function()
|
||||||
|
def make_conv_relu_tests(options):
|
||||||
|
"""Make a set of tests to do conv_relu."""
|
||||||
|
return make_conv_activation_tests(tf.nn.relu)(options)
|
||||||
|
|
||||||
|
|
||||||
|
def relu1(input_tensor):
|
||||||
|
# Note that the following is not supported:
|
||||||
|
# out = tf.maximum(-1.0, tf.minimum(input_tensor, 1.0))
|
||||||
|
out = tf.minimum(1.0, tf.maximum(input_tensor, -1.0))
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
@register_make_test_function()
|
||||||
|
def make_conv_relu1_tests(options):
|
||||||
|
"""Make a set of tests to do conv_relu1."""
|
||||||
|
return make_conv_activation_tests(relu1)(options)
|
@ -32,6 +32,8 @@ def make_tanh_tests(options):
|
|||||||
test_parameters = [{
|
test_parameters = [{
|
||||||
"input_shape": [[], [1], [2, 3], [1, 1, 1, 1], [1, 3, 4, 3],
|
"input_shape": [[], [1], [2, 3], [1, 1, 1, 1], [1, 3, 4, 3],
|
||||||
[3, 15, 14, 3], [3, 1, 2, 4, 6], [2, 2, 3, 4, 5, 6]],
|
[3, 15, 14, 3], [3, 1, 2, 4, 6], [2, 2, 3, 4, 5, 6]],
|
||||||
|
"fully_quantize": [True, False],
|
||||||
|
"input_range": [(-4, 10)]
|
||||||
}]
|
}]
|
||||||
|
|
||||||
def build_graph(parameters):
|
def build_graph(parameters):
|
||||||
@ -41,8 +43,9 @@ def make_tanh_tests(options):
|
|||||||
return [input_tensor], [out]
|
return [input_tensor], [out]
|
||||||
|
|
||||||
def build_inputs(parameters, sess, inputs, outputs):
|
def build_inputs(parameters, sess, inputs, outputs):
|
||||||
input_values = create_tensor_data(
|
min_value, max_value = parameters["input_range"]
|
||||||
np.float32, parameters["input_shape"], min_value=-4, max_value=10)
|
input_values = create_tensor_data(np.float32, parameters["input_shape"],
|
||||||
|
min_value, max_value)
|
||||||
return [input_values], sess.run(
|
return [input_values], sess.run(
|
||||||
outputs, feed_dict=dict(zip(inputs, [input_values])))
|
outputs, feed_dict=dict(zip(inputs, [input_values])))
|
||||||
|
|
||||||
|
@ -104,6 +104,9 @@ def toco_convert(options, graph_def, input_tensors, output_tensors, **kwargs):
|
|||||||
data_types = [zip_test_utils.TF_TYPE_INFO[x[2]][1] for x in input_tensors]
|
data_types = [zip_test_utils.TF_TYPE_INFO[x[2]][1] for x in input_tensors]
|
||||||
|
|
||||||
if test_params.get("fully_quantize", False):
|
if test_params.get("fully_quantize", False):
|
||||||
|
# Read the input range for the representative dataset from parameters.
|
||||||
|
min_value, max_value = test_params.get("input_range", (-1, 1))
|
||||||
|
|
||||||
with tempfile.NamedTemporaryFile() as graphdef_file:
|
with tempfile.NamedTemporaryFile() as graphdef_file:
|
||||||
graphdef_file.write(graph_def_str)
|
graphdef_file.write(graph_def_str)
|
||||||
graphdef_file.flush()
|
graphdef_file.flush()
|
||||||
@ -118,7 +121,8 @@ def toco_convert(options, graph_def, input_tensors, output_tensors, **kwargs):
|
|||||||
if shape:
|
if shape:
|
||||||
dims = [dim.value for dim in shape.dims]
|
dims = [dim.value for dim in shape.dims]
|
||||||
calibration_inputs.append(
|
calibration_inputs.append(
|
||||||
np.random.uniform(-1, 1, tuple(dims)).astype(np.float32))
|
np.random.uniform(min_value, max_value,
|
||||||
|
tuple(dims)).astype(np.float32))
|
||||||
return calibration_inputs
|
return calibration_inputs
|
||||||
|
|
||||||
def representative_dataset_gen():
|
def representative_dataset_gen():
|
||||||
|
Loading…
x
Reference in New Issue
Block a user