Add quantize tests for activation ops: relu, relu1, relu6 fused with conv, and tanh not fused with conv.
PiperOrigin-RevId: 276569841 Change-Id: I3bdda2d46dc75babd61cbebb7fa5dbc6a3abd737
This commit is contained in:
parent
2ed8c4b00d
commit
543f61dcab
@ -243,6 +243,9 @@ def generated_test_models():
|
||||
"constant",
|
||||
"control_dep",
|
||||
"conv",
|
||||
"conv_relu",
|
||||
"conv_relu1",
|
||||
"conv_relu6",
|
||||
"conv2d_transpose",
|
||||
"conv_with_shared_weights",
|
||||
"conv_to_depthwiseconv_with_shared_weights",
|
||||
|
@ -480,26 +480,30 @@ tf_py_wrap_cc(
|
||||
tflite_portable_test_suite()
|
||||
|
||||
edgetpu_ops = [
|
||||
"conv", # high error
|
||||
"fully_connected",
|
||||
"softmax",
|
||||
"reshape",
|
||||
"add",
|
||||
"mul",
|
||||
"sub",
|
||||
"avg_pool",
|
||||
"max_pool",
|
||||
"concat",
|
||||
"resize_bilinear",
|
||||
"l2norm", # high error
|
||||
"sum", # high error
|
||||
"conv", # high error
|
||||
"conv_relu",
|
||||
"conv_relu1",
|
||||
"conv_relu6",
|
||||
"depthwiseconv", # high error
|
||||
"fully_connected",
|
||||
"l2norm", # high error
|
||||
"max_pool",
|
||||
"mul",
|
||||
"pad", # high error
|
||||
"reshape",
|
||||
"resize_bilinear",
|
||||
"slice",
|
||||
"softmax",
|
||||
"space_to_depth",
|
||||
"split",
|
||||
"squeeze",
|
||||
"pad", # high error
|
||||
"slice",
|
||||
"strided_slice",
|
||||
"sub",
|
||||
"sum", # high error
|
||||
"tanh",
|
||||
]
|
||||
|
||||
[gen_zipped_test_file(
|
||||
|
@ -54,6 +54,7 @@ from tensorflow.lite.testing.op_tests.constant import make_constant_tests
|
||||
from tensorflow.lite.testing.op_tests.control_dep import make_control_dep_tests
|
||||
from tensorflow.lite.testing.op_tests.conv import make_conv_tests
|
||||
from tensorflow.lite.testing.op_tests.conv2d_transpose import make_conv2d_transpose_tests
|
||||
from tensorflow.lite.testing.op_tests.conv_activation import make_conv_relu_tests, make_conv_relu1_tests, make_conv_relu6_tests
|
||||
# Note: This is a regression test for a bug (b/112303004) that Toco incorrectly
|
||||
# transforms Conv into DepthwiseConv when two Conv ops share the same constant
|
||||
# weight tensor.
|
||||
|
139
tensorflow/lite/testing/op_tests/conv_activation.py
Normal file
139
tensorflow/lite/testing/op_tests/conv_activation.py
Normal file
@ -0,0 +1,139 @@
|
||||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Test configs for conv with activations."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
|
||||
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
|
||||
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
|
||||
|
||||
|
||||
def make_conv_activation_tests(activation_op):
|
||||
"""Make a set of tests to do convolution with activation."""
|
||||
|
||||
def f(options):
|
||||
"""Actual function that generates examples."""
|
||||
test_parameters = [
|
||||
{
|
||||
"input_shape": [[1, 3, 4, 3], [4, 6, 6, 1]],
|
||||
"filter_shape": [[1, 1], [2, 3], [3, 3]],
|
||||
"strides": [[1, 1, 1, 1], [1, 2, 3, 1]],
|
||||
"dilations": [[1, 1, 1, 1], [1, 3, 2, 1], [1, 2, 2, 1]],
|
||||
"padding": ["SAME", "VALID"],
|
||||
"data_format": ["NHWC"], # TODO(aselle): NCHW would be good
|
||||
"constant_filter": [True, False],
|
||||
"channel_multiplier": [1, 2],
|
||||
"fully_quantize": [False],
|
||||
},
|
||||
# TODO(b/134702301): The fully_quantize param is just ignored by the
|
||||
# MLIR testing path now, resulting in duplicate tests. Either ignore
|
||||
# these tests or handle it properly in the mlir_convert() function.
|
||||
{
|
||||
"input_shape": [[1, 3, 4, 3], [4, 6, 6, 1]],
|
||||
"filter_shape": [[1, 1], [2, 3], [3, 3]],
|
||||
"strides": [[1, 1, 1, 1], [1, 2, 3, 1]],
|
||||
"dilations": [[1, 1, 1, 1], [1, 3, 2, 1], [1, 2, 2, 1]],
|
||||
"padding": ["SAME", "VALID"],
|
||||
"data_format": ["NHWC"], # TODO(aselle): NCHW would be good
|
||||
"constant_filter": [True],
|
||||
"channel_multiplier": [1, 2],
|
||||
"fully_quantize": [True],
|
||||
}
|
||||
]
|
||||
|
||||
def get_tensor_shapes(parameters):
|
||||
input_shape = parameters["input_shape"]
|
||||
filter_size = parameters["filter_shape"]
|
||||
filter_shape = filter_size + [
|
||||
input_shape[3], parameters["channel_multiplier"]
|
||||
]
|
||||
return [input_shape, filter_shape]
|
||||
|
||||
def build_graph(parameters):
|
||||
"""Build a conv graph given `parameters`."""
|
||||
input_shape, filter_shape = get_tensor_shapes(parameters)
|
||||
input_tensor = tf.compat.v1.placeholder(
|
||||
dtype=tf.float32, name="input", shape=input_shape)
|
||||
|
||||
# Get filter input either as a placeholder or constants. Also get a list
|
||||
# of the input tensors that are represented as placeholders.
|
||||
if parameters["constant_filter"]:
|
||||
filter_input = create_tensor_data(
|
||||
np.float32, filter_shape, min_value=-10, max_value=10)
|
||||
input_tensors = [input_tensor]
|
||||
else:
|
||||
filter_input = tf.compat.v1.placeholder(
|
||||
dtype=tf.float32, name="filter", shape=filter_shape)
|
||||
input_tensors = [input_tensor, filter_input]
|
||||
|
||||
out = tf.nn.conv2d(
|
||||
input_tensor,
|
||||
filter_input,
|
||||
strides=parameters["strides"],
|
||||
dilations=parameters["dilations"],
|
||||
padding=parameters["padding"],
|
||||
data_format=parameters["data_format"])
|
||||
out = activation_op(out)
|
||||
return input_tensors, [out]
|
||||
|
||||
def build_inputs(parameters, sess, inputs, outputs):
|
||||
"""Build inputs for conv with activation."""
|
||||
|
||||
input_shape, filter_shape = get_tensor_shapes(parameters)
|
||||
values = [
|
||||
create_tensor_data(
|
||||
np.float32, input_shape, min_value=-1, max_value=1)
|
||||
]
|
||||
if not parameters["constant_filter"]:
|
||||
values.append(create_tensor_data(np.float32, filter_shape))
|
||||
return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
|
||||
|
||||
make_zip_of_tests(
|
||||
options,
|
||||
test_parameters,
|
||||
build_graph,
|
||||
build_inputs,
|
||||
expected_tf_failures=60)
|
||||
|
||||
return f
|
||||
|
||||
|
||||
@register_make_test_function()
|
||||
def make_conv_relu6_tests(options):
|
||||
"""Make a set of tests to do conv_relu6."""
|
||||
return make_conv_activation_tests(tf.nn.relu6)(options)
|
||||
|
||||
|
||||
@register_make_test_function()
|
||||
def make_conv_relu_tests(options):
|
||||
"""Make a set of tests to do conv_relu."""
|
||||
return make_conv_activation_tests(tf.nn.relu)(options)
|
||||
|
||||
|
||||
def relu1(input_tensor):
|
||||
# Note that the following is not supported:
|
||||
# out = tf.maximum(-1.0, tf.minimum(input_tensor, 1.0))
|
||||
out = tf.minimum(1.0, tf.maximum(input_tensor, -1.0))
|
||||
return out
|
||||
|
||||
|
||||
@register_make_test_function()
|
||||
def make_conv_relu1_tests(options):
|
||||
"""Make a set of tests to do conv_relu1."""
|
||||
return make_conv_activation_tests(relu1)(options)
|
@ -32,6 +32,8 @@ def make_tanh_tests(options):
|
||||
test_parameters = [{
|
||||
"input_shape": [[], [1], [2, 3], [1, 1, 1, 1], [1, 3, 4, 3],
|
||||
[3, 15, 14, 3], [3, 1, 2, 4, 6], [2, 2, 3, 4, 5, 6]],
|
||||
"fully_quantize": [True, False],
|
||||
"input_range": [(-4, 10)]
|
||||
}]
|
||||
|
||||
def build_graph(parameters):
|
||||
@ -41,8 +43,9 @@ def make_tanh_tests(options):
|
||||
return [input_tensor], [out]
|
||||
|
||||
def build_inputs(parameters, sess, inputs, outputs):
|
||||
input_values = create_tensor_data(
|
||||
np.float32, parameters["input_shape"], min_value=-4, max_value=10)
|
||||
min_value, max_value = parameters["input_range"]
|
||||
input_values = create_tensor_data(np.float32, parameters["input_shape"],
|
||||
min_value, max_value)
|
||||
return [input_values], sess.run(
|
||||
outputs, feed_dict=dict(zip(inputs, [input_values])))
|
||||
|
||||
|
@ -104,6 +104,9 @@ def toco_convert(options, graph_def, input_tensors, output_tensors, **kwargs):
|
||||
data_types = [zip_test_utils.TF_TYPE_INFO[x[2]][1] for x in input_tensors]
|
||||
|
||||
if test_params.get("fully_quantize", False):
|
||||
# Read the input range for the representative dataset from parameters.
|
||||
min_value, max_value = test_params.get("input_range", (-1, 1))
|
||||
|
||||
with tempfile.NamedTemporaryFile() as graphdef_file:
|
||||
graphdef_file.write(graph_def_str)
|
||||
graphdef_file.flush()
|
||||
@ -118,7 +121,8 @@ def toco_convert(options, graph_def, input_tensors, output_tensors, **kwargs):
|
||||
if shape:
|
||||
dims = [dim.value for dim in shape.dims]
|
||||
calibration_inputs.append(
|
||||
np.random.uniform(-1, 1, tuple(dims)).astype(np.float32))
|
||||
np.random.uniform(min_value, max_value,
|
||||
tuple(dims)).astype(np.float32))
|
||||
return calibration_inputs
|
||||
|
||||
def representative_dataset_gen():
|
||||
|
Loading…
Reference in New Issue
Block a user