Add quantize tests for activation ops: relu, relu1, relu6 fused with conv, and tanh not fused with conv.

PiperOrigin-RevId: 276569841
Change-Id: I3bdda2d46dc75babd61cbebb7fa5dbc6a3abd737
This commit is contained in:
A. Unique TensorFlower 2019-10-24 14:44:53 -07:00 committed by TensorFlower Gardener
parent 2ed8c4b00d
commit 543f61dcab
6 changed files with 169 additions and 15 deletions

View File

@ -243,6 +243,9 @@ def generated_test_models():
"constant",
"control_dep",
"conv",
"conv_relu",
"conv_relu1",
"conv_relu6",
"conv2d_transpose",
"conv_with_shared_weights",
"conv_to_depthwiseconv_with_shared_weights",

View File

@ -480,26 +480,30 @@ tf_py_wrap_cc(
tflite_portable_test_suite()
edgetpu_ops = [
"conv", # high error
"fully_connected",
"softmax",
"reshape",
"add",
"mul",
"sub",
"avg_pool",
"max_pool",
"concat",
"resize_bilinear",
"l2norm", # high error
"sum", # high error
"conv", # high error
"conv_relu",
"conv_relu1",
"conv_relu6",
"depthwiseconv", # high error
"fully_connected",
"l2norm", # high error
"max_pool",
"mul",
"pad", # high error
"reshape",
"resize_bilinear",
"slice",
"softmax",
"space_to_depth",
"split",
"squeeze",
"pad", # high error
"slice",
"strided_slice",
"sub",
"sum", # high error
"tanh",
]
[gen_zipped_test_file(

View File

@ -54,6 +54,7 @@ from tensorflow.lite.testing.op_tests.constant import make_constant_tests
from tensorflow.lite.testing.op_tests.control_dep import make_control_dep_tests
from tensorflow.lite.testing.op_tests.conv import make_conv_tests
from tensorflow.lite.testing.op_tests.conv2d_transpose import make_conv2d_transpose_tests
from tensorflow.lite.testing.op_tests.conv_activation import make_conv_relu_tests, make_conv_relu1_tests, make_conv_relu6_tests
# Note: This is a regression test for a bug (b/112303004) that Toco incorrectly
# transforms Conv into DepthwiseConv when two Conv ops share the same constant
# weight tensor.

View File

@ -0,0 +1,139 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test configs for conv with activations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from tensorflow.lite.testing.zip_test_utils import create_tensor_data
from tensorflow.lite.testing.zip_test_utils import make_zip_of_tests
from tensorflow.lite.testing.zip_test_utils import register_make_test_function
def make_conv_activation_tests(activation_op):
"""Make a set of tests to do convolution with activation."""
def f(options):
"""Actual function that generates examples."""
test_parameters = [
{
"input_shape": [[1, 3, 4, 3], [4, 6, 6, 1]],
"filter_shape": [[1, 1], [2, 3], [3, 3]],
"strides": [[1, 1, 1, 1], [1, 2, 3, 1]],
"dilations": [[1, 1, 1, 1], [1, 3, 2, 1], [1, 2, 2, 1]],
"padding": ["SAME", "VALID"],
"data_format": ["NHWC"], # TODO(aselle): NCHW would be good
"constant_filter": [True, False],
"channel_multiplier": [1, 2],
"fully_quantize": [False],
},
# TODO(b/134702301): The fully_quantize param is just ignored by the
# MLIR testing path now, resulting in duplicate tests. Either ignore
# these tests or handle it properly in the mlir_convert() function.
{
"input_shape": [[1, 3, 4, 3], [4, 6, 6, 1]],
"filter_shape": [[1, 1], [2, 3], [3, 3]],
"strides": [[1, 1, 1, 1], [1, 2, 3, 1]],
"dilations": [[1, 1, 1, 1], [1, 3, 2, 1], [1, 2, 2, 1]],
"padding": ["SAME", "VALID"],
"data_format": ["NHWC"], # TODO(aselle): NCHW would be good
"constant_filter": [True],
"channel_multiplier": [1, 2],
"fully_quantize": [True],
}
]
def get_tensor_shapes(parameters):
input_shape = parameters["input_shape"]
filter_size = parameters["filter_shape"]
filter_shape = filter_size + [
input_shape[3], parameters["channel_multiplier"]
]
return [input_shape, filter_shape]
def build_graph(parameters):
"""Build a conv graph given `parameters`."""
input_shape, filter_shape = get_tensor_shapes(parameters)
input_tensor = tf.compat.v1.placeholder(
dtype=tf.float32, name="input", shape=input_shape)
# Get filter input either as a placeholder or constants. Also get a list
# of the input tensors that are represented as placeholders.
if parameters["constant_filter"]:
filter_input = create_tensor_data(
np.float32, filter_shape, min_value=-10, max_value=10)
input_tensors = [input_tensor]
else:
filter_input = tf.compat.v1.placeholder(
dtype=tf.float32, name="filter", shape=filter_shape)
input_tensors = [input_tensor, filter_input]
out = tf.nn.conv2d(
input_tensor,
filter_input,
strides=parameters["strides"],
dilations=parameters["dilations"],
padding=parameters["padding"],
data_format=parameters["data_format"])
out = activation_op(out)
return input_tensors, [out]
def build_inputs(parameters, sess, inputs, outputs):
"""Build inputs for conv with activation."""
input_shape, filter_shape = get_tensor_shapes(parameters)
values = [
create_tensor_data(
np.float32, input_shape, min_value=-1, max_value=1)
]
if not parameters["constant_filter"]:
values.append(create_tensor_data(np.float32, filter_shape))
return values, sess.run(outputs, feed_dict=dict(zip(inputs, values)))
make_zip_of_tests(
options,
test_parameters,
build_graph,
build_inputs,
expected_tf_failures=60)
return f
@register_make_test_function()
def make_conv_relu6_tests(options):
"""Make a set of tests to do conv_relu6."""
return make_conv_activation_tests(tf.nn.relu6)(options)
@register_make_test_function()
def make_conv_relu_tests(options):
"""Make a set of tests to do conv_relu."""
return make_conv_activation_tests(tf.nn.relu)(options)
def relu1(input_tensor):
# Note that the following is not supported:
# out = tf.maximum(-1.0, tf.minimum(input_tensor, 1.0))
out = tf.minimum(1.0, tf.maximum(input_tensor, -1.0))
return out
@register_make_test_function()
def make_conv_relu1_tests(options):
"""Make a set of tests to do conv_relu1."""
return make_conv_activation_tests(relu1)(options)

View File

@ -32,6 +32,8 @@ def make_tanh_tests(options):
test_parameters = [{
"input_shape": [[], [1], [2, 3], [1, 1, 1, 1], [1, 3, 4, 3],
[3, 15, 14, 3], [3, 1, 2, 4, 6], [2, 2, 3, 4, 5, 6]],
"fully_quantize": [True, False],
"input_range": [(-4, 10)]
}]
def build_graph(parameters):
@ -41,8 +43,9 @@ def make_tanh_tests(options):
return [input_tensor], [out]
def build_inputs(parameters, sess, inputs, outputs):
input_values = create_tensor_data(
np.float32, parameters["input_shape"], min_value=-4, max_value=10)
min_value, max_value = parameters["input_range"]
input_values = create_tensor_data(np.float32, parameters["input_shape"],
min_value, max_value)
return [input_values], sess.run(
outputs, feed_dict=dict(zip(inputs, [input_values])))

View File

@ -104,6 +104,9 @@ def toco_convert(options, graph_def, input_tensors, output_tensors, **kwargs):
data_types = [zip_test_utils.TF_TYPE_INFO[x[2]][1] for x in input_tensors]
if test_params.get("fully_quantize", False):
# Read the input range for the representative dataset from parameters.
min_value, max_value = test_params.get("input_range", (-1, 1))
with tempfile.NamedTemporaryFile() as graphdef_file:
graphdef_file.write(graph_def_str)
graphdef_file.flush()
@ -118,7 +121,8 @@ def toco_convert(options, graph_def, input_tensors, output_tensors, **kwargs):
if shape:
dims = [dim.value for dim in shape.dims]
calibration_inputs.append(
np.random.uniform(-1, 1, tuple(dims)).astype(np.float32))
np.random.uniform(min_value, max_value,
tuple(dims)).astype(np.float32))
return calibration_inputs
def representative_dataset_gen():