[tfdbg2] Remove distributed_callbacks_test
PiperOrigin-RevId: 306554571 Change-Id: I11d7df5958b013572fd084c1b6db65001abce34d
This commit is contained in:
parent
baf2513d4d
commit
5297723009
@ -745,37 +745,6 @@ cuda_py_test(
|
||||
],
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "distributed_callbacks_test",
|
||||
size = "medium",
|
||||
srcs = ["lib/distributed_callbacks_test.py"],
|
||||
python_version = "PY3",
|
||||
shard_count = 4,
|
||||
tags = [
|
||||
"guitar",
|
||||
"multi_and_single_gpu",
|
||||
"no_windows", # TODO(b/142475891): Enable this test on Windows.
|
||||
"no_windows_gpu", # TODO(b/130551176)
|
||||
],
|
||||
xla_enable_strict_auto_jit = False, # Node names are different with autojit
|
||||
deps = [
|
||||
":check_numerics_callback",
|
||||
":debug_events_reader",
|
||||
":debug_events_writer",
|
||||
":dumping_callback",
|
||||
":dumping_callback_test_lib",
|
||||
"//tensorflow/python:framework_test_lib",
|
||||
"//tensorflow/python:math_ops",
|
||||
"//tensorflow/python:platform_test",
|
||||
"//tensorflow/python:variables",
|
||||
"//tensorflow/python/distribute:combinations",
|
||||
"//tensorflow/python/distribute:mirrored_strategy",
|
||||
"//tensorflow/python/distribute:strategy_combinations",
|
||||
"//tensorflow/python/keras",
|
||||
"//third_party/py/numpy",
|
||||
],
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "dumping_callback_test",
|
||||
size = "medium",
|
||||
|
@ -1,308 +0,0 @@
|
||||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Tests for tfdbg op callbacks running with various `DistributionStrategy`s."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import re
|
||||
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.python import keras
|
||||
from tensorflow.python.debug.lib import check_numerics_callback
|
||||
from tensorflow.python.debug.lib import debug_events_reader
|
||||
from tensorflow.python.debug.lib import dumping_callback
|
||||
from tensorflow.python.debug.lib import dumping_callback_test_lib
|
||||
from tensorflow.python.distribute import combinations
|
||||
from tensorflow.python.distribute import strategy_combinations
|
||||
from tensorflow.python.eager import backprop
|
||||
from tensorflow.python.eager import def_function
|
||||
from tensorflow.python.framework import errors
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.platform import googletest
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.training import gradient_descent
|
||||
|
||||
|
||||
class MiniModel(keras.Model):
|
||||
"""Minimal subclassed Keras model."""
|
||||
|
||||
def __init__(self, generate_infinity=False):
|
||||
super(MiniModel, self).__init__(name="")
|
||||
self._generate_infinity = generate_infinity
|
||||
self.fc = keras.layers.Dense(
|
||||
1, kernel_initializer="ones", bias_initializer="ones",
|
||||
activation="linear")
|
||||
|
||||
@def_function.function
|
||||
def call(self, inputs, training=True):
|
||||
y = self.fc(inputs)
|
||||
if self._generate_infinity:
|
||||
y = math_ops.divide(y, array_ops.zeros_like(y))
|
||||
return y
|
||||
|
||||
|
||||
class DistributedDumpingCallbackTest(
|
||||
dumping_callback_test_lib.DumpingCallbackTestBase, parameterized.TestCase):
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=[
|
||||
strategy_combinations.one_device_strategy,
|
||||
strategy_combinations.one_device_strategy_gpu,
|
||||
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
|
||||
strategy_combinations.mirrored_strategy_with_two_gpus,
|
||||
],
|
||||
inside_scope=[False, True],
|
||||
# TODO(cais): Investigate that under V1 graph mode (mode="graph"),
|
||||
# occasionally (~1-2% of time) the test runs into the following error:
|
||||
# CancelledError: [_Derived_] Function was cancelled before it was
|
||||
# started.
|
||||
mode=["eager"],
|
||||
))
|
||||
def testCheckingInfinityInMiniModelOnOneOrTwoDevices(
|
||||
self, distribution, inside_scope):
|
||||
if not inside_scope:
|
||||
check_numerics_callback.enable_check_numerics()
|
||||
with distribution.scope():
|
||||
if inside_scope:
|
||||
check_numerics_callback.enable_check_numerics()
|
||||
|
||||
mini_model = MiniModel(generate_infinity=True)
|
||||
def train_step():
|
||||
with backprop.GradientTape() as tape:
|
||||
loss = mini_model(array_ops.ones([1, 10]))
|
||||
return tape.gradient(loss, mini_model.weights)
|
||||
|
||||
caught_error = None
|
||||
try:
|
||||
distribution.run(train_step)
|
||||
except errors.InvalidArgumentError as error:
|
||||
caught_error = error
|
||||
self.assertTrue(caught_error)
|
||||
self.assertTrue(re.search(
|
||||
r"Detected Infinity or NaN.*\"RealDiv\"", caught_error.message))
|
||||
self.assertIn(
|
||||
"-> | y = math_ops.divide(y, array_ops.zeros_like(y))",
|
||||
caught_error.message)
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=[
|
||||
strategy_combinations.one_device_strategy,
|
||||
strategy_combinations.one_device_strategy_gpu,
|
||||
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
|
||||
strategy_combinations.mirrored_strategy_with_two_gpus,
|
||||
],
|
||||
mode=["eager"],
|
||||
tensor_debug_mode=["NO_TENSOR", "FULL_TENSOR"],
|
||||
))
|
||||
def testDumpingMiniModel(self, distribution, tensor_debug_mode):
|
||||
with distribution.scope():
|
||||
writer = dumping_callback.enable_dump_debug_info(
|
||||
self.dump_root, tensor_debug_mode=tensor_debug_mode)
|
||||
|
||||
mini_model = MiniModel()
|
||||
optimizer = gradient_descent.GradientDescentOptimizer(0.25)
|
||||
|
||||
def train_step():
|
||||
with backprop.GradientTape() as tape:
|
||||
loss = mini_model(array_ops.ones([1, 10]))
|
||||
grads = tape.gradient(loss, mini_model.weights)
|
||||
grads_and_vars = zip(grads, mini_model.weights)
|
||||
optimizer.apply_gradients(grads_and_vars)
|
||||
|
||||
distribution.run(train_step)
|
||||
|
||||
updated_var_values = self.evaluate(mini_model.variables)
|
||||
num_devices = len(distribution.extended.worker_devices)
|
||||
assert num_devices in (1, 2)
|
||||
if num_devices == 1:
|
||||
self.assertAllEqual(0.75 * np.ones([10, 1]), updated_var_values[0])
|
||||
self.assertAllEqual([0.75], updated_var_values[1])
|
||||
else:
|
||||
self.assertAllEqual(0.5 * np.ones([10, 1]), updated_var_values[0])
|
||||
self.assertAllEqual([0.5], updated_var_values[1])
|
||||
|
||||
writer.FlushNonExecutionFiles()
|
||||
writer.FlushExecutionFiles()
|
||||
|
||||
device_name_0 = distribution.extended.worker_devices[0]
|
||||
logging.info("device_name_0 = %s", device_name_0)
|
||||
if num_devices > 1:
|
||||
device_name_1 = distribution.extended.worker_devices[1]
|
||||
logging.info("device_name_1 = %s", device_name_1)
|
||||
|
||||
with debug_events_reader.DebugDataReader(self.dump_root) as reader:
|
||||
reader.update()
|
||||
traces = reader.graph_execution_traces()
|
||||
|
||||
# Verify graph-execution traces are available for both devices.
|
||||
# We don't assert MatMul occurs exactly once because the gradient of
|
||||
# MatMul involves MatMul.
|
||||
device_0_executed_op_types = [
|
||||
trace.op_type for trace in traces
|
||||
if trace.device_name.endswith(device_name_0)]
|
||||
if num_devices > 1:
|
||||
device_1_executed_op_types = [
|
||||
trace.op_type for trace in traces
|
||||
if trace.device_name.endswith(device_name_1)]
|
||||
self.assertIn("MatMul", device_0_executed_op_types)
|
||||
self.assertEqual(device_0_executed_op_types.count("BiasAdd"), 1)
|
||||
if num_devices > 1:
|
||||
self.assertIn("MatMul", device_1_executed_op_types)
|
||||
self.assertEqual(device_1_executed_op_types.count("BiasAdd"), 1)
|
||||
|
||||
if tensor_debug_mode == "NO_TENSOR":
|
||||
for trace in traces:
|
||||
self.assertIsNone(trace.debug_tensor_value)
|
||||
elif tensor_debug_mode == "FULL_TENSOR":
|
||||
device_0_matmul_values = [
|
||||
reader.graph_execution_trace_to_tensor_value(trace)
|
||||
for trace in traces if trace.op_type == "MatMul" and
|
||||
trace.device_name.endswith(device_name_0)]
|
||||
device_0_bias_add_values = [
|
||||
reader.graph_execution_trace_to_tensor_value(trace)
|
||||
for trace in traces if trace.op_type == "BiasAdd" and
|
||||
trace.device_name.endswith(device_name_0)]
|
||||
self.assertAllClose(device_0_matmul_values[0], [[10.0]])
|
||||
self.assertAllClose(device_0_bias_add_values[0], [[11.0]])
|
||||
if num_devices > 1:
|
||||
device_1_matmul_values = [
|
||||
reader.graph_execution_trace_to_tensor_value(trace)
|
||||
for trace in traces if trace.op_type == "MatMul" and
|
||||
trace.device_name.endswith(device_name_1)]
|
||||
device_1_bias_add_values = [
|
||||
reader.graph_execution_trace_to_tensor_value(trace)
|
||||
for trace in traces if trace.op_type == "BiasAdd" and
|
||||
trace.device_name.endswith(device_name_1)]
|
||||
self.assertAllClose(device_1_matmul_values[0], [[10.0]])
|
||||
self.assertAllClose(device_1_bias_add_values[0], [[11.0]])
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=[
|
||||
strategy_combinations.one_device_strategy,
|
||||
strategy_combinations.one_device_strategy_gpu,
|
||||
strategy_combinations.mirrored_strategy_with_gpu_and_cpu,
|
||||
strategy_combinations.mirrored_strategy_with_two_gpus,
|
||||
],
|
||||
mode=["eager"],
|
||||
tensor_debug_mode=["NO_TENSOR", "FULL_TENSOR"],
|
||||
))
|
||||
def testKerasModelFitOnOneOrTwoDevices(self, distribution, tensor_debug_mode):
|
||||
writer = dumping_callback.enable_dump_debug_info(
|
||||
self.dump_root, tensor_debug_mode=tensor_debug_mode)
|
||||
|
||||
with distribution.scope():
|
||||
model = keras.Sequential()
|
||||
model.add(keras.layers.Dense(
|
||||
units=10, input_shape=[5], activation="relu"))
|
||||
model.add(keras.layers.Dense(units=1))
|
||||
model.compile(loss="mse", optimizer="sgd")
|
||||
|
||||
batch_size = 20
|
||||
x = np.ones([batch_size, 5])
|
||||
y = np.ones([batch_size, 1])
|
||||
epochs = 1
|
||||
history = model.fit(x, y, epochs=epochs, verbose=0)
|
||||
self.assertLen(history.history["loss"], epochs)
|
||||
|
||||
writer.FlushNonExecutionFiles()
|
||||
writer.FlushExecutionFiles()
|
||||
|
||||
with debug_events_reader.DebugDataReader(self.dump_root) as reader:
|
||||
reader.update()
|
||||
executions = reader.executions()
|
||||
fit_executions = [
|
||||
execution.op_type
|
||||
for execution in executions
|
||||
if dumping_callback.is_op_type_function(execution.op_type)
|
||||
]
|
||||
self.assertLen(fit_executions, epochs)
|
||||
|
||||
traces = reader.graph_execution_traces()
|
||||
num_devices = len(distribution.extended.worker_devices)
|
||||
device_name_0 = distribution.extended.worker_devices[0]
|
||||
if num_devices > 1:
|
||||
device_name_1 = distribution.extended.worker_devices[1]
|
||||
device_0_executed_op_types = [
|
||||
trace.op_type for trace in traces
|
||||
if trace.device_name.endswith(device_name_0)]
|
||||
if num_devices > 1:
|
||||
device_1_executed_op_types = [
|
||||
trace.op_type for trace in traces
|
||||
if trace.device_name.endswith(device_name_1)]
|
||||
|
||||
self.assertIn("MatMul", device_0_executed_op_types)
|
||||
self.assertIn("BiasAdd", device_0_executed_op_types)
|
||||
self.assertIn("Relu", device_0_executed_op_types)
|
||||
self.assertIn("ReluGrad", device_0_executed_op_types)
|
||||
if num_devices > 1:
|
||||
# If there are two devices involved, assert the ops inside tf.functions
|
||||
# are executed and recorded for the equal numbers of times by the
|
||||
# dumping op-callback.
|
||||
self.assertEqual(
|
||||
device_0_executed_op_types.count("MatMul"),
|
||||
device_1_executed_op_types.count("MatMul"))
|
||||
self.assertEqual(
|
||||
device_0_executed_op_types.count("BiasAdd"),
|
||||
device_1_executed_op_types.count("BiasAdd"))
|
||||
self.assertEqual(
|
||||
device_0_executed_op_types.count("Relu"),
|
||||
device_1_executed_op_types.count("Relu"))
|
||||
self.assertEqual(
|
||||
device_0_executed_op_types.count("ReluGrad"),
|
||||
device_1_executed_op_types.count("ReluGrad"))
|
||||
|
||||
if tensor_debug_mode == "NO_TENSOR":
|
||||
for trace in traces:
|
||||
self.assertIsNone(trace.debug_tensor_value)
|
||||
elif tensor_debug_mode == "FULL_TENSOR":
|
||||
gpu_0_relu_values = [
|
||||
reader.graph_execution_trace_to_tensor_value(trace)
|
||||
for trace in traces if trace.op_type == "Relu" and
|
||||
trace.device_name.endswith(device_name_0)]
|
||||
self.assertTrue(gpu_0_relu_values)
|
||||
gpu_0_relu_grad_values = [
|
||||
reader.graph_execution_trace_to_tensor_value(trace)
|
||||
for trace in traces if trace.op_type == "ReluGrad" and
|
||||
trace.device_name.endswith(device_name_0)]
|
||||
self.assertTrue(gpu_0_relu_grad_values)
|
||||
if num_devices > 1:
|
||||
gpu_1_relu_values = [
|
||||
reader.graph_execution_trace_to_tensor_value(trace)
|
||||
for trace in traces if trace.op_type == "Relu" and
|
||||
trace.device_name.endswith(device_name_1)]
|
||||
self.assertTrue(gpu_1_relu_values)
|
||||
for i in range(len(gpu_0_relu_values)):
|
||||
self.assertEqual(gpu_0_relu_values[i].shape,
|
||||
gpu_1_relu_values[i].shape)
|
||||
gpu_1_relu_grad_values = [
|
||||
reader.graph_execution_trace_to_tensor_value(trace)
|
||||
for trace in traces if trace.op_type == "ReluGrad" and
|
||||
trace.device_name.endswith(device_name_1)]
|
||||
self.assertTrue(gpu_1_relu_grad_values)
|
||||
for i in range(len(gpu_0_relu_grad_values)):
|
||||
self.assertEqual(gpu_0_relu_grad_values[i].shape,
|
||||
gpu_1_relu_grad_values[i].shape)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
googletest.main()
|
Loading…
Reference in New Issue
Block a user