diff --git a/tensorflow/lite/kernels/internal/tensor_utils.h b/tensorflow/lite/kernels/internal/tensor_utils.h index ced55eacc1a..bcf424b31e8 100644 --- a/tensorflow/lite/kernels/internal/tensor_utils.h +++ b/tensorflow/lite/kernels/internal/tensor_utils.h @@ -178,7 +178,7 @@ void MatrixBatchVectorMultiplyAccumulate(const int8_t* input, // - layer_norm_scale_a: multiplier for scale factor. // - layer_norm_scale_b: shift for scale factor. // - variance_limit: the guard to make sure the inverse does not overflow. -// - n_batch: the number of batch. +// - n_batch: the number of batches. // - n_input: the size for input and output. // - output: the 16 bit output void ApplyLayerNorm(const int16_t* input, const int16_t* layer_norm_weights, @@ -189,7 +189,7 @@ void ApplyLayerNorm(const int16_t* input, const int16_t* layer_norm_weights, // Apply Sigmoid to a quantized vector. // Parameters: // - input: batch vector of size n_batch * n_input; 16 bit. -// - n_batch: the number of batch. +// - n_batch: the number of batches. // - n_input: the size for input and output. // - output: the 16 bit output // The input is in Q3.12 format and the output is in Q0.15 format. @@ -199,7 +199,7 @@ void ApplySigmoid(const int16_t* input, int32_t n_batch, int32_t n_input, // Apply Tanh to a quantized vector. // Parameters: // - input: batch vector of size n_batch * n_input; 16 bit. -// - n_batch: the number of batch. +// - n_batch: the number of batches. // - n_input: the size for input and output. // - output: the 16 bit output // The input is in Q0.15 format and the output is in Q0.15 format. @@ -209,7 +209,7 @@ void ApplyTanh0(const int16_t* input, int32_t n_batch, int32_t n_input, // Apply Tanh to a quantized vector. // Parameters: // - input: batch vector of size n_batch * n_input; 16 bit. -// - n_batch: the number of batch. +// - n_batch: the number of batches. // - n_input: the size for input and output. // - output: the 16 bit output // The input is in Q3.12 format and the output is in Q0.15 format. @@ -219,7 +219,7 @@ void ApplyTanh3(const int16_t* input, int32_t n_batch, int32_t n_input, // Apply Tanh to a quantized vector. // Parameters: // - input: batch vector of size n_batch * n_input; 16 bit. -// - n_batch: the number of batch. +// - n_batch: the number of batches. // - n_input: the size for input and output. // - output: the 16 bit output // The input is in Q4.11 format and the output is in Q0.15 format. @@ -230,7 +230,7 @@ void ApplyTanh4(const int16_t* input, int32_t n_batch, int32_t n_input, // Parameters: // - input_1: batch vector of size n_batch * n_input; 16 bit. // - input_2: batch vector of size n_batch * n_input; 16 bit. -// - n_batch: the number of batch. +// - n_batch: the number of batches. // - n_input: the size for input and output. // - shift: the shift needed to produce the output. // - output: the 16 bit output of size n_batch * n_input. @@ -242,7 +242,7 @@ void CwiseMul(const int16_t* input_1, const int16_t* input_2, int n_batch, // Parameters: // - input_1: batch vector of size n_batch * n_input; 16 bit. // - input_2: batch vector of size n_batch * n_input; 16 bit. -// - n_batch: the number of batch. +// - n_batch: the number of batches. // - n_input: the size for input and output. // - shift: the shift needed to produce the output. // - output: the 8 bit output of size n_batch * n_input. @@ -256,7 +256,7 @@ void CwiseMul(const int16_t* input_1, const int16_t* input_2, int n_batch, // - input_2: batch vector of size n_batch * n_input; 16 bit. // - multiplier: the multiplier part of scale. // - shift: the shift part of scale. -// - n_batch: the number of batch. +// - n_batch: the number of batches. // - n_input: the size for input and output. // - output: the 8 bit output of size n_batch * n_input. // - output_zp: the zero point of output. @@ -271,7 +271,7 @@ void CwiseMul(const int16_t* input_1, const int16_t* input_2, // Parameters: // - input_1: batch vector of size n_batch * n_input; 16 bit. // - input_2: batch vector of size n_batch * n_input; 16 bit. -// - n_batch: the number of batch. +// - n_batch: the number of batches. // - n_input: the size for input and output. // - output: the 8 bit output of size n_batch * n_input. // Output does not need to be initialized. @@ -282,11 +282,17 @@ void CwiseAdd(const int16_t* input_1, const int16_t* input_2, int n_batch, // Parameters: // - input: batch vector of size n_batch * n_input; 16 bit. // - clipping_value: the value used for clipping. -// - n_batch: the number of batch. +// - n_batch: the number of batches. // - n_input: the size for input and output. void CwiseClipping(int16_t* input, const int16_t clipping_value, int32_t n_batch, int32_t n_input); +// Element-wise in-place clipping of a quantized vector. +// Parameters: +// - input: batch vector of size n_batch * n_input; 8 bit. +// - clipping_value: the value used for clipping. +// - n_batch: the number of batches. +// - n_input: the size for input and output. void CwiseClipping(int8_t* input, const int8_t clipping_value, int32_t n_batch, int32_t n_input);