Merge pull request #28568 from ROCmSoftwarePlatform:google-upstream-pr-cuda-host-alias

PiperOrigin-RevId: 247976625
This commit is contained in:
TensorFlower Gardener 2019-05-13 12:24:48 -07:00
commit 51b572c7cf
3 changed files with 35 additions and 35 deletions

View File

@ -17,14 +17,14 @@ limitations under the License.
#define TENSORFLOW_CORE_UTIL_GPU_CUDA_ALIAS_H_
// Several forwarding macros are defined in this file to serve for backward
// compatibility usage as we migrating from Cuda prefixed function to Gpu
// prefixed functions. Both Cuda and ROCm can unify under the new Gpu prefix
// naming scheme. In the migration period, we provide equivalent Cuda* and Gpu*
// function. Over time, all Cuda* functions will be deprecated.
// compatibility usage as we migrating from CUDA prefixed function to GPU
// prefixed functions. Both Cuda and ROCm can unify under the new GPU prefix
// naming scheme. In the migration period, we provide equivalent CUDA* and GPU*
// function. Over time, all CUDA* functions will be deprecated.
namespace tensorflow {
// CREATE_CUDA_HOST_FUNCTION_ALIAS forward the host function to its Cuda Alias.
// CREATE_CUDA_HOST_FUNCTION_ALIAS forward the host function to its CUDA Alias.
#ifndef TENSORFLOW_USE_ROCM
#define CREATE_CUDA_HOST_FUNCTION_ALIAS(func, cuda_alias) \
template <typename... Args> \
@ -36,7 +36,7 @@ namespace tensorflow {
#define CREATE_CUDA_HOST_FUNCTION_ALIAS(func, cuda_alias)
#endif
// CREATE_CUDA_DEVICE_FUNCTION_ALIAS forward the device function to its Cuda
// CREATE_CUDA_DEVICE_FUNCTION_ALIAS forward the device function to its CUDA
// Alias.
#ifndef TENSORFLOW_USE_ROCM
#define CREATE_CUDA_DEVICE_FUNCTION_ALIAS(func, cuda_alias) \
@ -49,7 +49,7 @@ namespace tensorflow {
#define CREATE_CUDA_DEVICE_FUNCTION_ALIAS(func, cuda_alias)
#endif
// CREATE_CUDA_TYPE_ALIAS forward the type to its Cuda Alias.
// CREATE_CUDA_TYPE_ALIAS forward the type to its CUDA Alias.
#ifndef TENSORFLOW_USE_ROCM
#define CREATE_CUDA_TYPE_ALIAS(type, cuda_alias) using cuda_alias = type;
#else

View File

@ -41,16 +41,36 @@ limitations under the License.
#define gpuSuccess cudaSuccess
using gpuStream_t = cudaStream_t;
using gpuError_t = cudaError_t;
#elif TENSORFLOW_USE_ROCM
#define gpuSuccess hipSuccess
using gpuStream_t = hipStream_t;
using gpuError_t = hipError_t;
#endif
#define GetGPUStream(context) context->eigen_gpu_device().stream()
namespace tensorflow {
#if GOOGLE_CUDA
// cudaGetErrorString is available to both host and device
__host__ __device__ inline const char* GpuGetErrorString(cudaError_t error) {
return cudaGetErrorString(error);
#elif TENSORFLOW_USE_ROCM
// hipGetErrorString is available on host side only
inline const char* GpuGetErrorString(hipError_t error) {
return hipGetErrorString(error);
#endif
}
inline const gpuStream_t& GetGpuStream(OpKernelContext* context) {
// Returns a raw reference to the current cuda stream. Required by a
// number of kernel calls (for which StreamInterface* does not work),
// i.e. CUB and certain cublas primitives.
const gpuStream_t* ptr = CHECK_NOTNULL(
reinterpret_cast<const gpuStream_t*>(context->op_device_context()
->stream()
->implementation()
->GpuStreamMemberHack()));
return *ptr;
}
__host__ __device__ inline tensorflow::bfloat16 CudaLdg(
const tensorflow::bfloat16* address) {
tensorflow::bfloat16 return_value;

View File

@ -193,14 +193,7 @@ GpuLaunchConfig GetGpuLaunchConfig(int work_element_count,
config.block_count = block_count;
return config;
}
template <typename DeviceFunc>
CudaLaunchConfig GetCudaLaunchConfig(int work_element_count,
const Eigen::GpuDevice& d, DeviceFunc func,
size_t dynamic_shared_memory_size,
int block_size_limit) {
return GetGpuLaunchConfig(work_element_count, d, func,
dynamic_shared_memory_size, block_size_limit);
}
CREATE_CUDA_HOST_FUNCTION_ALIAS(GetGpuLaunchConfig, GetCudaLaunchConfig);
// Calculate the GPU launch config we should use for a kernel launch. This
// variant takes the resource limits of func into account to maximize occupancy.
@ -245,14 +238,8 @@ GpuLaunchConfig GetGpuLaunchConfigFixedBlockSize(
config.block_count = block_count;
return config;
}
template <typename DeviceFunc>
CudaLaunchConfig GetCudaLaunchConfigFixedBlockSize(
int work_element_count, const Eigen::GpuDevice& d, DeviceFunc func,
size_t dynamic_shared_memory_size, int fixed_block_size) {
return GetGpuLaunchConfigFixedBlockSize(work_element_count, d, func,
dynamic_shared_memory_size,
fixed_block_size);
}
CREATE_CUDA_HOST_FUNCTION_ALIAS(GetGpuLaunchConfigFixedBlockSize,
GetCudaLaunchConfigFixedBlockSize);
struct Gpu2DLaunchConfig {
dim3 virtual_thread_count = dim3(0, 0, 0);
@ -369,15 +356,7 @@ Cuda3DLaunchConfig GetGpu3DLaunchConfig(int xdim, int ydim, int zdim,
config.block_count = dim3(blocksx, blocksy, blocksz);
return config;
}
template <typename DeviceFunc>
Cuda3DLaunchConfig GetCuda3DLaunchConfig(int xdim, int ydim, int zdim,
const Eigen::GpuDevice& d,
DeviceFunc func,
size_t dynamic_shared_memory_size,
int block_size_limit) {
return GetGpu3DLaunchConfig(xdim, ydim, zdim, d, func,
dynamic_shared_memory_size, block_size_limit);
}
CREATE_CUDA_HOST_FUNCTION_ALIAS(GetGpu3DLaunchConfig, GetCuda3DLaunchConfig);
template <typename DeviceFunc>
Gpu2DLaunchConfig GetGpu2DLaunchConfig(int xdim, int ydim,
@ -388,6 +367,7 @@ Gpu2DLaunchConfig GetGpu2DLaunchConfig(int xdim, int ydim,
return GetGpu3DLaunchConfig(xdim, ydim, 1, d, func,
dynamic_shared_memory_size, block_size_limit);
}
CREATE_CUDA_HOST_FUNCTION_ALIAS(GetGpu2DLaunchConfig, GetCuda2DLaunchConfig);
#if GOOGLE_CUDA
// Returns a raw reference to the current cuda stream. Required by a