diff --git a/tensorflow/core/ops/compat/ops_history.v0.pbtxt b/tensorflow/core/ops/compat/ops_history.v0.pbtxt index 2dc59179b82..2dba61efe78 100644 --- a/tensorflow/core/ops/compat/ops_history.v0.pbtxt +++ b/tensorflow/core/ops/compat/ops_history.v0.pbtxt @@ -23173,115 +23173,6 @@ op { } } } -op { - name: "SparseSparseMaximum" - input_arg { - name: "a_indices" - type: DT_INT64 - } - input_arg { - name: "a_values" - type_attr: "T" - } - input_arg { - name: "a_shape" - type: DT_INT64 - } - input_arg { - name: "b_indices" - type: DT_INT64 - } - input_arg { - name: "b_values" - type_attr: "T" - } - input_arg { - name: "b_shape" - type: DT_INT64 - } - output_arg { - name: "output_indices" - type: DT_INT64 - } - output_arg { - name: "output_values" - type_attr: "T" - } - attr { - name: "T" - type: "type" - allowed_values { - list { - type: DT_FLOAT - type: DT_DOUBLE - type: DT_INT32 - type: DT_INT64 - type: DT_UINT8 - type: DT_INT16 - type: DT_INT8 - type: DT_UINT16 - type: DT_HALF - } - } - } -} -op { - name: "SparseSparseMinimum" - input_arg { - name: "a_indices" - type: DT_INT64 - } - input_arg { - name: "a_values" - type_attr: "T" - } - input_arg { - name: "a_shape" - type: DT_INT64 - } - input_arg { - name: "b_indices" - type: DT_INT64 - } - input_arg { - name: "b_values" - type_attr: "T" - } - input_arg { - name: "b_shape" - type: DT_INT64 - } - output_arg { - name: "output_indices" - type: DT_INT64 - } - output_arg { - name: "output_values" - type_attr: "T" - } - attr { - name: "T" - type: "type" - allowed_values { - list { - type: DT_FLOAT - type: DT_DOUBLE - type: DT_INT64 - type: DT_INT32 - type: DT_UINT8 - type: DT_UINT16 - type: DT_INT16 - type: DT_INT8 - type: DT_COMPLEX64 - type: DT_COMPLEX128 - type: DT_QINT8 - type: DT_QUINT8 - type: DT_QINT32 - type: DT_HALF - } - } - } -} op { name: "SparseSplit" input_arg { diff --git a/tensorflow/core/ops/ops.pbtxt b/tensorflow/core/ops/ops.pbtxt index 3668ecf5aae..afd6507b0d8 100644 --- a/tensorflow/core/ops/ops.pbtxt +++ b/tensorflow/core/ops/ops.pbtxt @@ -13696,135 +13696,6 @@ op { summary: "Computes softmax cross entropy cost and gradients to backpropagate." description: "Unlike `SoftmaxCrossEntropyWithLogits`, this operation does not accept\na matrix of label probabilities, but rather a single label per row\nof features. This label is considered to have probability 1.0 for the\ngiven row.\n\nInputs are the logits, not probabilities." } -op { - name: "SparseSparseMaximum" - input_arg { - name: "a_indices" - description: "2-D. `N x R` matrix with the indices of non-empty values in a\nSparseTensor, in the canonical lexicographic ordering." - type: DT_INT64 - } - input_arg { - name: "a_values" - description: "1-D. `N` non-empty values corresponding to `a_indices`." - type_attr: "T" - } - input_arg { - name: "a_shape" - description: "1-D. Shape of the input SparseTensor." - type: DT_INT64 - } - input_arg { - name: "b_indices" - description: "counterpart to `a_indices` for the other operand." - type: DT_INT64 - } - input_arg { - name: "b_values" - description: "counterpart to `a_values` for the other operand; must be of the same dtype." - type_attr: "T" - } - input_arg { - name: "b_shape" - description: "counterpart to `a_shape` for the other operand; the two shapes must be equal." - type: DT_INT64 - } - output_arg { - name: "output_indices" - description: "2-D. The indices of the output SparseTensor." - type: DT_INT64 - } - output_arg { - name: "output_values" - description: "1-D. The values of the output SparseTensor." - type_attr: "T" - } - attr { - name: "T" - type: "type" - allowed_values { - list { - type: DT_FLOAT - type: DT_DOUBLE - type: DT_INT32 - type: DT_INT64 - type: DT_UINT8 - type: DT_INT16 - type: DT_INT8 - type: DT_UINT16 - type: DT_HALF - } - } - } - summary: "Returns the element-wise max of two SparseTensors." - description: "Assumes the two SparseTensors have the same shape, i.e., no broadcasting." -} -op { - name: "SparseSparseMinimum" - input_arg { - name: "a_indices" - description: "2-D. `N x R` matrix with the indices of non-empty values in a\nSparseTensor, in the canonical lexicographic ordering." - type: DT_INT64 - } - input_arg { - name: "a_values" - description: "1-D. `N` non-empty values corresponding to `a_indices`." - type_attr: "T" - } - input_arg { - name: "a_shape" - description: "1-D. Shape of the input SparseTensor." - type: DT_INT64 - } - input_arg { - name: "b_indices" - description: "counterpart to `a_indices` for the other operand." - type: DT_INT64 - } - input_arg { - name: "b_values" - description: "counterpart to `a_values` for the other operand; must be of the same dtype." - type_attr: "T" - } - input_arg { - name: "b_shape" - description: "counterpart to `a_shape` for the other operand; the two shapes must be equal." - type: DT_INT64 - } - output_arg { - name: "output_indices" - description: "2-D. The indices of the output SparseTensor." - type: DT_INT64 - } - output_arg { - name: "output_values" - description: "1-D. The values of the output SparseTensor." - type_attr: "T" - } - attr { - name: "T" - type: "type" - allowed_values { - list { - type: DT_FLOAT - type: DT_DOUBLE - type: DT_INT64 - type: DT_INT32 - type: DT_UINT8 - type: DT_UINT16 - type: DT_INT16 - type: DT_INT8 - type: DT_COMPLEX64 - type: DT_COMPLEX128 - type: DT_QINT8 - type: DT_QUINT8 - type: DT_QINT32 - type: DT_HALF - } - } - } - summary: "Returns the element-wise min of two SparseTensors." - description: "Assumes the two SparseTensors have the same shape, i.e., no broadcasting." -} op { name: "SparseSplit" input_arg {