Remove ">>> _ =" These are unnecessary.
The doctest system no longer checks outputs if the author doesn't supply one. PiperOrigin-RevId: 305055550 Change-Id: I424110500a15a8c79bf0082318c0a7d9af7fe608
This commit is contained in:
parent
6db5faa3e2
commit
5068c9c94b
@ -620,14 +620,14 @@ class Tensor(tensor_like.TensorLike):
|
|||||||
|
|
||||||
The shape inference functions propagate shapes to the extent possible:
|
The shape inference functions propagate shapes to the extent possible:
|
||||||
|
|
||||||
>>> _ = my_matmul.get_concrete_function(
|
>>> f = my_matmul.get_concrete_function(
|
||||||
... tf.TensorSpec([None,3]),
|
... tf.TensorSpec([None,3]),
|
||||||
... tf.TensorSpec([3,5]))
|
... tf.TensorSpec([3,5]))
|
||||||
Result shape: (None, 5)
|
Result shape: (None, 5)
|
||||||
|
|
||||||
Tracing may fail if a shape missmatch can be detected:
|
Tracing may fail if a shape missmatch can be detected:
|
||||||
|
|
||||||
>>> _ = my_matmul.get_concrete_function(
|
>>> cf = my_matmul.get_concrete_function(
|
||||||
... tf.TensorSpec([None,3]),
|
... tf.TensorSpec([None,3]),
|
||||||
... tf.TensorSpec([4,5]))
|
... tf.TensorSpec([4,5]))
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
@ -647,7 +647,7 @@ class Tensor(tensor_like.TensorLike):
|
|||||||
... print("Result shape: ", a.shape)
|
... print("Result shape: ", a.shape)
|
||||||
... return a
|
... return a
|
||||||
|
|
||||||
>>> _ = my_fun.get_concrete_function(
|
>>> cf = my_fun.get_concrete_function(
|
||||||
... tf.TensorSpec([None, None]))
|
... tf.TensorSpec([None, None]))
|
||||||
Result shape: (5, 5)
|
Result shape: (5, 5)
|
||||||
|
|
||||||
@ -712,7 +712,7 @@ class Tensor(tensor_like.TensorLike):
|
|||||||
Trace the function, see the [Concrete Functions
|
Trace the function, see the [Concrete Functions
|
||||||
Guide](https://www.tensorflow.org/guide/concrete_function) for details.
|
Guide](https://www.tensorflow.org/guide/concrete_function) for details.
|
||||||
|
|
||||||
>>> _ = load_image.get_concrete_function(
|
>>> cf = load_image.get_concrete_function(
|
||||||
... tf.TensorSpec([], dtype=tf.string))
|
... tf.TensorSpec([], dtype=tf.string))
|
||||||
Initial shape: (None, None, 3)
|
Initial shape: (None, None, 3)
|
||||||
Final shape: (28, 28, 3)
|
Final shape: (28, 28, 3)
|
||||||
|
@ -3296,11 +3296,11 @@ _VALUE_SET_CODE_STRING = """
|
|||||||
|
|
||||||
>>> v = tf.Variable(1.)
|
>>> v = tf.Variable(1.)
|
||||||
|
|
||||||
>>> _ = v.assign(2.)
|
>>> v.assign(2.)
|
||||||
>>> print(v.numpy())
|
>>> print(v.numpy())
|
||||||
2.0
|
2.0
|
||||||
|
|
||||||
>>> _ = v.assign_add(1.)
|
>>> v.assign_add(1.)
|
||||||
>>> print(v.numpy())
|
>>> print(v.numpy())
|
||||||
3.0"""[3:] # Prune first newline and indent to match the docstring template.
|
3.0"""[3:] # Prune first newline and indent to match the docstring template.
|
||||||
|
|
||||||
|
@ -416,7 +416,7 @@ class Model(network.Network, version_utils.ModelVersionSelector):
|
|||||||
|
|
||||||
>>> x = np.random.random((2, 3))
|
>>> x = np.random.random((2, 3))
|
||||||
>>> y = np.random.randint(0, 2, (2, 2))
|
>>> y = np.random.randint(0, 2, (2, 2))
|
||||||
>>> _ = model.fit(x, y, verbose=0)
|
>>> model.fit(x, y, verbose=0)
|
||||||
>>> [m.name for m in model.metrics]
|
>>> [m.name for m in model.metrics]
|
||||||
['loss', 'mae']
|
['loss', 'mae']
|
||||||
|
|
||||||
@ -429,7 +429,7 @@ class Model(network.Network, version_utils.ModelVersionSelector):
|
|||||||
>>> model.add_metric(
|
>>> model.add_metric(
|
||||||
... tf.reduce_sum(output_2), name='mean', aggregation='mean')
|
... tf.reduce_sum(output_2), name='mean', aggregation='mean')
|
||||||
>>> model.compile(optimizer="Adam", loss="mse", metrics=["mae", "acc"])
|
>>> model.compile(optimizer="Adam", loss="mse", metrics=["mae", "acc"])
|
||||||
>>> _ = model.fit(x, (y, y), verbose=0)
|
>>> model.fit(x, (y, y), verbose=0)
|
||||||
>>> [m.name for m in model.metrics]
|
>>> [m.name for m in model.metrics]
|
||||||
['loss', 'out_loss', 'out_1_loss', 'out_mae', 'out_acc', 'out_1_mae',
|
['loss', 'out_loss', 'out_1_loss', 'out_mae', 'out_acc', 'out_1_mae',
|
||||||
'out_1_acc', 'mean']
|
'out_1_acc', 'mean']
|
||||||
|
Loading…
x
Reference in New Issue
Block a user