Merge pull request from Intel-tensorflow:Leslie_fang/resize_nearest_neighbor_op

PiperOrigin-RevId: 282052293
Change-Id: Icd8b3fc1abf0040dc303db0bd62120d2bdb6dd77
This commit is contained in:
TensorFlower Gardener 2019-11-22 16:17:40 -08:00
commit 5023853fd7
2 changed files with 44 additions and 3 deletions

View File

@ -19,6 +19,7 @@ limitations under the License.
#include "tensorflow/core/kernels/resize_nearest_neighbor_op.h"
#include <memory>
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/register_types.h"
@ -138,10 +139,13 @@ struct ResizeNearestNeighbor<CPUDevice, T, half_pixel_centers, align_corners> {
const Eigen::Index in_height = input.dimension(1);
const Eigen::Index in_width = input.dimension(2);
const Eigen::Index channels = input.dimension(3);
const Eigen::Index out_height = output.dimension(1);
const Eigen::Index out_width = output.dimension(2);
#ifdef PLATFORM_GOOGLE
// The parallel version is significantly slower than the serial version
// internally. Only call the serial version for now.
// TODO(b/145019377): Make the parallel version work for PLATFORM_GOOGLE.
for (Eigen::Index b = 0; b < batch_size; ++b) {
for (Eigen::Index y = 0; y < out_height; ++y) {
Eigen::Index in_y = std::min(
@ -165,6 +169,41 @@ struct ResizeNearestNeighbor<CPUDevice, T, half_pixel_centers, align_corners> {
}
}
}
#else
auto ParallelResize = [&](Eigen::Index start, Eigen::Index end) {
for (Eigen::Index b = start; b < end; ++b) {
Eigen::Index x = b % out_width;
Eigen::Index y = (b / out_width) % out_height;
Eigen::Index bs = (b / out_width) / out_height;
Eigen::Index in_y = std::min(
(align_corners)
? static_cast<Eigen::Index>(roundf(scaler(y, height_scale)))
: static_cast<Eigen::Index>(floorf(scaler(y, height_scale))),
in_height - 1);
if (half_pixel_centers) {
in_y = std::max(static_cast<Eigen::Index>(0), in_y);
}
Eigen::Index in_x = std::min(
(align_corners)
? static_cast<Eigen::Index>(roundf(scaler(x, width_scale)))
: static_cast<Eigen::Index>(floorf(scaler(x, width_scale))),
in_width - 1);
if (half_pixel_centers) {
in_x = std::max(static_cast<Eigen::Index>(0), in_x);
}
std::copy_n(&input(bs, in_y, in_x, 0), channels, &output(bs, y, x, 0));
}
};
Eigen::Index N = batch_size * out_height * out_width;
const int input_bytes = channels * sizeof(T);
const int output_bytes = channels * sizeof(T);
const int compute_cycles = (Eigen::TensorOpCost::ModCost<T>() * 2 +
Eigen::TensorOpCost::DivCost<T>() * 3 +
Eigen::TensorOpCost::AddCost<T>() * 2 +
Eigen::TensorOpCost::MulCost<T>() * 2);
const Eigen::TensorOpCost cost(input_bytes, output_bytes, compute_cycles);
d.parallelFor(N, cost, ParallelResize);
#endif // PLATFORM_GOOGLE
return true;
}
};

View File

@ -49,9 +49,11 @@ static Graph* BM_Resize(const char* algorithm, int batches, int width,
BENCHMARK(BM_Resize_##ALGORITHM##_##DEVICE##_##B##_##W##_##H)
BM_ResizeDev(cpu, ResizeNearestNeighbor, 10, 499, 499);
BM_ResizeDev(gpu, ResizeNearestNeighbor, 10, 499, 499);
BM_ResizeDev(cpu, ResizeBilinear, 10, 499, 499);
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
BM_ResizeDev(gpu, ResizeNearestNeighbor, 10, 499, 499);
BM_ResizeDev(gpu, ResizeBilinear, 10, 499, 499);
#endif
} // namespace tensorflow