Update links for TF2

PiperOrigin-RevId: 272326185
This commit is contained in:
Billy Lamberta 2019-10-01 16:56:05 -07:00 committed by TensorFlower Gardener
parent db6be9c716
commit 4f13360866
5 changed files with 18 additions and 18 deletions
tensorflow/lite/g3doc

View File

@ -13,7 +13,7 @@ execution is an imperative programming environment that evaluates operations
immediately, without building graphs. Operations return concrete values instead
of constructing a computational graph to run later. A detailed guide on eager
execution is available
[here](https://github.com/tensorflow/docs/blob/r2.0rc/site/en/r2/guide/eager.ipynb).
[here](https://www.tensorflow.org/guide/eager).
While running imperatively with eager execution makes development and debugging
more interactive, it doesn't allow for deploying on-device. The `tf.function`
@ -171,7 +171,7 @@ tf.saved_model.save(root, export_dir, concrete_func)
```
Reference the
[SavedModel guide](https://github.com/tensorflow/docs/blob/r2.0rc/site/en/r2/guide/saved_model.ipynb)
[SavedModel guide](https://www.tensorflow.org/guide/saved_model)
for detailed instructions on using SavedModels.
### How do I get a concrete function from the SavedModel?

View File

@ -3,8 +3,8 @@
The TensorFlow Lite converter takes a TensorFlow model and generates a
TensorFlow Lite [`FlatBuffer`](https://google.github.io/flatbuffers/) file
(`.tflite`). The converter supports
[SavedModel directories](https://www.tensorflow.org/alpha/guide/saved_model),
[`tf.keras` models](https://www.tensorflow.org/alpha/guide/keras/overview), and
[SavedModel directories](https://www.tensorflow.org/guide/saved_model),
[`tf.keras` models](https://www.tensorflow.org/guide/keras/overview), and
[concrete functions](concrete_function.md).
Note: This page contains documentation on the converter API for TensorFlow 2.0.

View File

@ -12,13 +12,13 @@ The Python API for converting TensorFlow models to TensorFlow Lite in TensorFlow
classmethods to convert a model based on the original model format:
* `TFLiteConverter.from_saved_model()`: Converts
[SavedModel directories](https://www.tensorflow.org/alpha/guide/saved_model).
[SavedModel directories](https://www.tensorflow.org/guide/saved_model).
* `TFLiteConverter.from_keras_model()`: Converts
[`tf.keras` models](https://www.tensorflow.org/alpha/guide/keras/overview).
[`tf.keras` models](https://www.tensorflow.org/guide/keras/overview).
* `TFLiteConverter.from_concrete_functions()`: Converts
[concrete functions](concrete_function.md).
Note: The TensorFlow Lite 2.0 alpha had a different version of the
Note: TensorFlow Lite 2.0 had a different version of the
`TFLiteConverter` API which only contained the classmethod
[`from_concrete_function`](https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/lite/TFLiteConverter#from_concrete_function).
The API detailed in this document can be installed using the
@ -33,7 +33,7 @@ of [changes in the API between 1.X and 2.0](#differences), and
### Converting a SavedModel <a name="saved_model"></a>
The following example shows how to convert a
[SavedModel](https://www.tensorflow.org/alpha/guide/saved_model) into a
[SavedModel](https://www.tensorflow.org/guide/saved_model) into a
TensorFlow Lite [`FlatBuffer`](https://google.github.io/flatbuffers/).
```python
@ -72,7 +72,7 @@ converter = TFLiteConverter.from_concrete_functions([concrete_func])
### Converting a Keras model <a name="keras"></a>
The following example shows how to convert a
[`tf.keras` model](https://www.tensorflow.org/alpha/guide/keras/overview) into a
[`tf.keras` model](https://www.tensorflow.org/guide/keras/overview) into a
TensorFlow Lite [`FlatBuffer`](https://google.github.io/flatbuffers/).
```python

View File

@ -106,28 +106,28 @@ tflite_model = converter.convert()
open("converted_model.tflite", "wb").write(tflite_model)
```
You can [convert TensorFlow 2.0 models](../r2/convert) in a similar way.
You can [convert TensorFlow 2.0 models](../convert/index.md) in a similar way.
The converter can also be used from the
[command line](../convert/cmdline_examples), but the Python API is recommended.
[command line](../convert/cmdline.md), but the Python API is recommended.
### Options
The converter can convert from a variety of input types.
When [converting TensorFlow 1.x models](../convert/python_api), these are:
When [converting TensorFlow 1.x models](../convert/python_api.md), these are:
* [SavedModel directories](https://www.tensorflow.org/alpha/guide/saved_model)
* [SavedModel directories](https://www.tensorflow.org/guide/saved_model)
* Frozen GraphDef (models generated by
[freeze_graph.py](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/tools/freeze_graph.py))
* [Keras](https://keras.io) HDF5 models
* Models taken from a `tf.Session`
When [converting TensorFlow 2.x models](../r2/convert/python_api), these are:
When [converting TensorFlow 2.x models](../convert/python_api.md), these are:
* [SavedModel directories](https://www.tensorflow.org/alpha/guide/saved_model)
* [`tf.keras` models](https://www.tensorflow.org/alpha/guide/keras/overview)
* [Concrete functions](../r2/convert/concrete_function.md)
* [SavedModel directories](https://www.tensorflow.org/guide/saved_model)
* [`tf.keras` models](https://www.tensorflow.org/guide/keras/overview)
* [Concrete functions](../convert/concrete_function.md)
The converter can be configured to apply various optimizations that can improve
performance or reduce file size. This is covered in section 4,

View File

@ -6,7 +6,7 @@ they can be used by the TensorFlow Lite interpreter.
Note: This page contains documentation on the converter API for TensorFlow 1.x.
The API for TensorFlow 2.0 is available
[here](https://www.tensorflow.org/lite/r2/convert/).
[here](https://www.tensorflow.org/lite/convert/).
## FlatBuffers