[KERNEL_GEN] Add kernel generation for FloorDiv.

PiperOrigin-RevId: 348516873
Change-Id: I5b207454fe7bcc010804cd1652260b3b1a3c07fc
This commit is contained in:
Tres Popp 2020-12-21 13:15:22 -08:00 committed by TensorFlower Gardener
parent 265454ac0f
commit 4e7e6df7d7
6 changed files with 72 additions and 0 deletions

View File

@ -24,9 +24,12 @@ REGISTER4(BinaryOp, CPU, "FloorDiv", functor::floor_div_real, float,
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
REGISTER4(BinaryOp, GPU, "FloorDiv", functor::floor_div, uint8, uint16, int16,
int64);
#if !defined(MLIR_GENERATED_GPU_KERNELS_ENABLED) || \
!defined(MLIR_GENERATED_EXPERIMENTAL_GPU_KERNELS_ENABLED)
REGISTER3(BinaryOp, GPU, "FloorDiv", functor::floor_div_real, float,
Eigen::half, double);
#endif
#endif
#if GOOGLE_CUDA || TENSORFLOW_USE_ROCM
// A special GPU kernel for int32.

View File

@ -135,6 +135,7 @@ tf_kernel_library(
"gpu_op_bitwise_or.cc",
"gpu_op_bitwise_xor.cc",
"gpu_op_equal.cc",
"gpu_op_floor_div.cc",
"gpu_op_greater.cc",
"gpu_op_greater_equal.cc",
"gpu_op_left_shift.cc",
@ -155,6 +156,7 @@ tf_kernel_library(
":bitwise_or_kernels",
":bitwise_xor_kernels",
":equal_kernels",
":floor_div_kernels",
":gpu_ops_base",
":greater_equal_kernels",
":greater_kernels",
@ -537,6 +539,20 @@ gen_kernel_library(
]
]
gen_kernel_library(
name = "floor_div",
tile_size = "256",
# TODO(172804967): Enable for integer types also once unsigned integers are
# supported.
types = [
"f16",
"f32",
"f64",
],
# TODO(b/174543802): Enable once fusion heursitics is better.
# unroll_factors = "4",
)
# Kernels that support all floating-point types.
[
gen_kernel_library(

View File

@ -597,5 +597,25 @@ GENERATE_DEFAULT_TESTS_2(LogicalOr, /*test_name=*/Bool, /*T=*/bool,
/*BaselineOutT=*/bool, baseline_logical_or,
/*use_constraint=*/false)
/// Test `tf.FloorDiv`.
template <typename T>
T baseline_floor_div(T lhs, T rhs) {
return std::floor(lhs / rhs);
}
template <>
Eigen::half baseline_floor_div(Eigen::half lhs, Eigen::half rhs) {
return static_cast<Eigen::half>(std::floor(static_cast<float>(lhs / rhs)));
}
GENERATE_DEFAULT_TESTS(FloorDiv,
/*test_name=*/Half, Eigen::half, Eigen::half,
baseline_floor_div);
GENERATE_DEFAULT_TESTS(FloorDiv,
/*test_name=*/Float, float, float, baseline_floor_div);
GENERATE_DEFAULT_TESTS(FloorDiv,
/*test_name=*/Double, double, double,
baseline_floor_div);
} // namespace
} // end namespace tensorflow

View File

@ -0,0 +1,24 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
#include "tensorflow/core/kernels/mlir_generated/gpu_ops_base.h"
namespace tensorflow {
GENERATE_AND_REGISTER_BINARY_KERNEL(FloorDiv, f16, DT_HALF, Eigen::half);
GENERATE_AND_REGISTER_BINARY_KERNEL(FloorDiv, f32, DT_FLOAT, float);
GENERATE_AND_REGISTER_BINARY_KERNEL(FloorDiv, f64, DT_DOUBLE, double);
} // namespace tensorflow

View File

@ -92,6 +92,9 @@ template <typename T, std::enable_if_t<
llvm::is_one_of<T, Eigen::half, float, double>::value,
bool> = true>
absl::InlinedVector<T, 10> DefaultInput(absl::string_view op_name = "") {
if (op_name == "FloorDiv")
return InputAsVector<T, double>({-18.0, -9.0, -1e-6, -0.1, 0.1, 1e-6, 0.1,
0.2, 0.3, 0.5, 0.7, 0.9, 9.0, 18.0});
return InputAsVector<T, double>({-18.0, -9.0, -1e-6, -0.0, 0.0, 1e-6, 0.1,
0.2, 0.3, 0.5, 0.7, 0.9, 9.0, 18.0});
}

View File

@ -0,0 +1,6 @@
func @FloorDiv_elem_type(%arg0: tensor<*xelem_type>, %arg1: tensor<*xelem_type>)
-> tensor<*xelem_type> attributes {tf_entry, llvm.emit_c_interface} {
%0 = "tf.FloorDiv"(%arg0, %arg1) {T = elem_type, device = ""}
: (tensor<*xelem_type>, tensor<*xelem_type>) -> tensor<*xelem_type>
return %0 : tensor<*xelem_type>
}