Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 322461142 Change-Id: Idfc03fde2f11d9cf21ece08f252a6971a8955b85
This commit is contained in:
parent
145d21a90d
commit
4e4cfe7e65
@ -8508,99 +8508,6 @@ func IteratorGetNextSync(scope *Scope, iterator tf.Output, output_types []tf.Dat
|
|||||||
return components
|
return components
|
||||||
}
|
}
|
||||||
|
|
||||||
// RaggedCountSparseOutputAttr is an optional argument to RaggedCountSparseOutput.
|
|
||||||
type RaggedCountSparseOutputAttr func(optionalAttr)
|
|
||||||
|
|
||||||
// RaggedCountSparseOutputMinlength sets the optional minlength attribute to value.
|
|
||||||
//
|
|
||||||
// value: Minimum value to count. Can be set to -1 for no minimum.
|
|
||||||
// If not specified, defaults to -1
|
|
||||||
//
|
|
||||||
// REQUIRES: value >= -1
|
|
||||||
func RaggedCountSparseOutputMinlength(value int64) RaggedCountSparseOutputAttr {
|
|
||||||
return func(m optionalAttr) {
|
|
||||||
m["minlength"] = value
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// RaggedCountSparseOutputMaxlength sets the optional maxlength attribute to value.
|
|
||||||
//
|
|
||||||
// value: Maximum value to count. Can be set to -1 for no maximum.
|
|
||||||
// If not specified, defaults to -1
|
|
||||||
//
|
|
||||||
// REQUIRES: value >= -1
|
|
||||||
func RaggedCountSparseOutputMaxlength(value int64) RaggedCountSparseOutputAttr {
|
|
||||||
return func(m optionalAttr) {
|
|
||||||
m["maxlength"] = value
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Performs sparse-output bin counting for a ragged tensor input.
|
|
||||||
//
|
|
||||||
// Counts the number of times each value occurs in the input.
|
|
||||||
//
|
|
||||||
// Arguments:
|
|
||||||
// splits: Tensor containing the row splits of the ragged tensor to count.
|
|
||||||
// values: Tensor containing values of the sparse tensor to count.
|
|
||||||
// weights: A Tensor of the same shape as indices containing per-index weight values.
|
|
||||||
// May also be the empty tensor if no weights are used.
|
|
||||||
// binary_output: Whether to output the number of occurrences of each value or 1.
|
|
||||||
//
|
|
||||||
// Returns:
|
|
||||||
// output_indices: Indices tensor for the resulting sparse tensor object.
|
|
||||||
// output_values: Values tensor for the resulting sparse tensor object.
|
|
||||||
// output_dense_shape: Shape tensor for the resulting sparse tensor object.
|
|
||||||
// END
|
|
||||||
// }
|
|
||||||
// attr {
|
|
||||||
// name: "T"
|
|
||||||
// description: <<END
|
|
||||||
// Dtype of the input values tensor.
|
|
||||||
func RaggedCountSparseOutput(scope *Scope, splits tf.Output, values tf.Output, weights tf.Output, binary_output bool, optional ...RaggedCountSparseOutputAttr) (output_indices tf.Output, output_values tf.Output, output_dense_shape tf.Output) {
|
|
||||||
if scope.Err() != nil {
|
|
||||||
return
|
|
||||||
}
|
|
||||||
attrs := map[string]interface{}{"binary_output": binary_output}
|
|
||||||
for _, a := range optional {
|
|
||||||
a(attrs)
|
|
||||||
}
|
|
||||||
opspec := tf.OpSpec{
|
|
||||||
Type: "RaggedCountSparseOutput",
|
|
||||||
Input: []tf.Input{
|
|
||||||
splits, values, weights,
|
|
||||||
},
|
|
||||||
Attrs: attrs,
|
|
||||||
}
|
|
||||||
op := scope.AddOperation(opspec)
|
|
||||||
return op.Output(0), op.Output(1), op.Output(2)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Gets the next output from the given iterator .
|
|
||||||
func IteratorGetNext(scope *Scope, iterator tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (components []tf.Output) {
|
|
||||||
if scope.Err() != nil {
|
|
||||||
return
|
|
||||||
}
|
|
||||||
attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes}
|
|
||||||
opspec := tf.OpSpec{
|
|
||||||
Type: "IteratorGetNext",
|
|
||||||
Input: []tf.Input{
|
|
||||||
iterator,
|
|
||||||
},
|
|
||||||
Attrs: attrs,
|
|
||||||
}
|
|
||||||
op := scope.AddOperation(opspec)
|
|
||||||
if scope.Err() != nil {
|
|
||||||
return
|
|
||||||
}
|
|
||||||
var idx int
|
|
||||||
var err error
|
|
||||||
if components, idx, err = makeOutputList(op, idx, "components"); err != nil {
|
|
||||||
scope.UpdateErr("IteratorGetNext", err)
|
|
||||||
return
|
|
||||||
}
|
|
||||||
return components
|
|
||||||
}
|
|
||||||
|
|
||||||
// Makes a new iterator from the given `dataset` and stores it in `iterator`.
|
// Makes a new iterator from the given `dataset` and stores it in `iterator`.
|
||||||
//
|
//
|
||||||
// This operation may be executed multiple times. Each execution will reset the
|
// This operation may be executed multiple times. Each execution will reset the
|
||||||
@ -11324,6 +11231,114 @@ func DynamicStitch(scope *Scope, indices []tf.Output, data []tf.Output) (merged
|
|||||||
return op.Output(0)
|
return op.Output(0)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// RaggedCountSparseOutputAttr is an optional argument to RaggedCountSparseOutput.
|
||||||
|
type RaggedCountSparseOutputAttr func(optionalAttr)
|
||||||
|
|
||||||
|
// RaggedCountSparseOutputMinlength sets the optional minlength attribute to value.
|
||||||
|
//
|
||||||
|
// value: Minimum value to count. Can be set to -1 for no minimum.
|
||||||
|
// If not specified, defaults to -1
|
||||||
|
//
|
||||||
|
// REQUIRES: value >= -1
|
||||||
|
func RaggedCountSparseOutputMinlength(value int64) RaggedCountSparseOutputAttr {
|
||||||
|
return func(m optionalAttr) {
|
||||||
|
m["minlength"] = value
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// RaggedCountSparseOutputMaxlength sets the optional maxlength attribute to value.
|
||||||
|
//
|
||||||
|
// value: Maximum value to count. Can be set to -1 for no maximum.
|
||||||
|
// If not specified, defaults to -1
|
||||||
|
//
|
||||||
|
// REQUIRES: value >= -1
|
||||||
|
func RaggedCountSparseOutputMaxlength(value int64) RaggedCountSparseOutputAttr {
|
||||||
|
return func(m optionalAttr) {
|
||||||
|
m["maxlength"] = value
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Performs sparse-output bin counting for a ragged tensor input.
|
||||||
|
//
|
||||||
|
// Counts the number of times each value occurs in the input.
|
||||||
|
//
|
||||||
|
// Arguments:
|
||||||
|
// splits: Tensor containing the row splits of the ragged tensor to count.
|
||||||
|
// values: Tensor containing values of the sparse tensor to count.
|
||||||
|
// weights: A Tensor of the same shape as indices containing per-index weight values.
|
||||||
|
// May also be the empty tensor if no weights are used.
|
||||||
|
// binary_output: Whether to output the number of occurrences of each value or 1.
|
||||||
|
//
|
||||||
|
// Returns:
|
||||||
|
// output_indices: Indices tensor for the resulting sparse tensor object.
|
||||||
|
// output_values: Values tensor for the resulting sparse tensor object.
|
||||||
|
// output_dense_shape: Shape tensor for the resulting sparse tensor object.
|
||||||
|
// END
|
||||||
|
// }
|
||||||
|
// attr {
|
||||||
|
// name: "T"
|
||||||
|
// description: <<END
|
||||||
|
// Dtype of the input values tensor.
|
||||||
|
func RaggedCountSparseOutput(scope *Scope, splits tf.Output, values tf.Output, weights tf.Output, binary_output bool, optional ...RaggedCountSparseOutputAttr) (output_indices tf.Output, output_values tf.Output, output_dense_shape tf.Output) {
|
||||||
|
if scope.Err() != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
attrs := map[string]interface{}{"binary_output": binary_output}
|
||||||
|
for _, a := range optional {
|
||||||
|
a(attrs)
|
||||||
|
}
|
||||||
|
opspec := tf.OpSpec{
|
||||||
|
Type: "RaggedCountSparseOutput",
|
||||||
|
Input: []tf.Input{
|
||||||
|
splits, values, weights,
|
||||||
|
},
|
||||||
|
Attrs: attrs,
|
||||||
|
}
|
||||||
|
op := scope.AddOperation(opspec)
|
||||||
|
return op.Output(0), op.Output(1), op.Output(2)
|
||||||
|
}
|
||||||
|
|
||||||
|
// Gets the next output from the given iterator .
|
||||||
|
func IteratorGetNext(scope *Scope, iterator tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (components []tf.Output) {
|
||||||
|
if scope.Err() != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes}
|
||||||
|
opspec := tf.OpSpec{
|
||||||
|
Type: "IteratorGetNext",
|
||||||
|
Input: []tf.Input{
|
||||||
|
iterator,
|
||||||
|
},
|
||||||
|
Attrs: attrs,
|
||||||
|
}
|
||||||
|
op := scope.AddOperation(opspec)
|
||||||
|
if scope.Err() != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
var idx int
|
||||||
|
var err error
|
||||||
|
if components, idx, err = makeOutputList(op, idx, "components"); err != nil {
|
||||||
|
scope.UpdateErr("IteratorGetNext", err)
|
||||||
|
return
|
||||||
|
}
|
||||||
|
return components
|
||||||
|
}
|
||||||
|
|
||||||
|
// Computes the static batch size of a dataset sans partial batches.
|
||||||
|
func ComputeBatchSize(scope *Scope, input_dataset tf.Output) (batch_size tf.Output) {
|
||||||
|
if scope.Err() != nil {
|
||||||
|
return
|
||||||
|
}
|
||||||
|
opspec := tf.OpSpec{
|
||||||
|
Type: "ComputeBatchSize",
|
||||||
|
Input: []tf.Input{
|
||||||
|
input_dataset,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
op := scope.AddOperation(opspec)
|
||||||
|
return op.Output(0)
|
||||||
|
}
|
||||||
|
|
||||||
// Uncompresses a compressed dataset element.
|
// Uncompresses a compressed dataset element.
|
||||||
func UncompressElement(scope *Scope, compressed tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (components []tf.Output) {
|
func UncompressElement(scope *Scope, compressed tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (components []tf.Output) {
|
||||||
if scope.Err() != nil {
|
if scope.Err() != nil {
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user