Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 322461142 Change-Id: Idfc03fde2f11d9cf21ece08f252a6971a8955b85
This commit is contained in:
		
							parent
							
								
									145d21a90d
								
							
						
					
					
						commit
						4e4cfe7e65
					
				@ -8508,99 +8508,6 @@ func IteratorGetNextSync(scope *Scope, iterator tf.Output, output_types []tf.Dat
 | 
				
			|||||||
	return components
 | 
						return components
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// RaggedCountSparseOutputAttr is an optional argument to RaggedCountSparseOutput.
 | 
					 | 
				
			||||||
type RaggedCountSparseOutputAttr func(optionalAttr)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// RaggedCountSparseOutputMinlength sets the optional minlength attribute to value.
 | 
					 | 
				
			||||||
//
 | 
					 | 
				
			||||||
// value: Minimum value to count. Can be set to -1 for no minimum.
 | 
					 | 
				
			||||||
// If not specified, defaults to -1
 | 
					 | 
				
			||||||
//
 | 
					 | 
				
			||||||
// REQUIRES: value >= -1
 | 
					 | 
				
			||||||
func RaggedCountSparseOutputMinlength(value int64) RaggedCountSparseOutputAttr {
 | 
					 | 
				
			||||||
	return func(m optionalAttr) {
 | 
					 | 
				
			||||||
		m["minlength"] = value
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// RaggedCountSparseOutputMaxlength sets the optional maxlength attribute to value.
 | 
					 | 
				
			||||||
//
 | 
					 | 
				
			||||||
// value: Maximum value to count. Can be set to -1 for no maximum.
 | 
					 | 
				
			||||||
// If not specified, defaults to -1
 | 
					 | 
				
			||||||
//
 | 
					 | 
				
			||||||
// REQUIRES: value >= -1
 | 
					 | 
				
			||||||
func RaggedCountSparseOutputMaxlength(value int64) RaggedCountSparseOutputAttr {
 | 
					 | 
				
			||||||
	return func(m optionalAttr) {
 | 
					 | 
				
			||||||
		m["maxlength"] = value
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Performs sparse-output bin counting for a ragged tensor input.
 | 
					 | 
				
			||||||
//
 | 
					 | 
				
			||||||
//   Counts the number of times each value occurs in the input.
 | 
					 | 
				
			||||||
//
 | 
					 | 
				
			||||||
// Arguments:
 | 
					 | 
				
			||||||
//	splits: Tensor containing the row splits of the ragged tensor to count.
 | 
					 | 
				
			||||||
//	values: Tensor containing values of the sparse tensor to count.
 | 
					 | 
				
			||||||
//	weights: A Tensor of the same shape as indices containing per-index weight values.
 | 
					 | 
				
			||||||
// May also be the empty tensor if no weights are used.
 | 
					 | 
				
			||||||
//	binary_output: Whether to output the number of occurrences of each value or 1.
 | 
					 | 
				
			||||||
//
 | 
					 | 
				
			||||||
// Returns:
 | 
					 | 
				
			||||||
//	output_indices: Indices tensor for the resulting sparse tensor object.
 | 
					 | 
				
			||||||
//	output_values: Values tensor for the resulting sparse tensor object.
 | 
					 | 
				
			||||||
//	output_dense_shape: Shape tensor for the resulting sparse tensor object.
 | 
					 | 
				
			||||||
//   END
 | 
					 | 
				
			||||||
//   }
 | 
					 | 
				
			||||||
//   attr {
 | 
					 | 
				
			||||||
//     name: "T"
 | 
					 | 
				
			||||||
//     description: <<END
 | 
					 | 
				
			||||||
// Dtype of the input values tensor.
 | 
					 | 
				
			||||||
func RaggedCountSparseOutput(scope *Scope, splits tf.Output, values tf.Output, weights tf.Output, binary_output bool, optional ...RaggedCountSparseOutputAttr) (output_indices tf.Output, output_values tf.Output, output_dense_shape tf.Output) {
 | 
					 | 
				
			||||||
	if scope.Err() != nil {
 | 
					 | 
				
			||||||
		return
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	attrs := map[string]interface{}{"binary_output": binary_output}
 | 
					 | 
				
			||||||
	for _, a := range optional {
 | 
					 | 
				
			||||||
		a(attrs)
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	opspec := tf.OpSpec{
 | 
					 | 
				
			||||||
		Type: "RaggedCountSparseOutput",
 | 
					 | 
				
			||||||
		Input: []tf.Input{
 | 
					 | 
				
			||||||
			splits, values, weights,
 | 
					 | 
				
			||||||
		},
 | 
					 | 
				
			||||||
		Attrs: attrs,
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	op := scope.AddOperation(opspec)
 | 
					 | 
				
			||||||
	return op.Output(0), op.Output(1), op.Output(2)
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Gets the next output from the given iterator .
 | 
					 | 
				
			||||||
func IteratorGetNext(scope *Scope, iterator tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (components []tf.Output) {
 | 
					 | 
				
			||||||
	if scope.Err() != nil {
 | 
					 | 
				
			||||||
		return
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes}
 | 
					 | 
				
			||||||
	opspec := tf.OpSpec{
 | 
					 | 
				
			||||||
		Type: "IteratorGetNext",
 | 
					 | 
				
			||||||
		Input: []tf.Input{
 | 
					 | 
				
			||||||
			iterator,
 | 
					 | 
				
			||||||
		},
 | 
					 | 
				
			||||||
		Attrs: attrs,
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	op := scope.AddOperation(opspec)
 | 
					 | 
				
			||||||
	if scope.Err() != nil {
 | 
					 | 
				
			||||||
		return
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	var idx int
 | 
					 | 
				
			||||||
	var err error
 | 
					 | 
				
			||||||
	if components, idx, err = makeOutputList(op, idx, "components"); err != nil {
 | 
					 | 
				
			||||||
		scope.UpdateErr("IteratorGetNext", err)
 | 
					 | 
				
			||||||
		return
 | 
					 | 
				
			||||||
	}
 | 
					 | 
				
			||||||
	return components
 | 
					 | 
				
			||||||
}
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
// Makes a new iterator from the given `dataset` and stores it in `iterator`.
 | 
					// Makes a new iterator from the given `dataset` and stores it in `iterator`.
 | 
				
			||||||
//
 | 
					//
 | 
				
			||||||
// This operation may be executed multiple times. Each execution will reset the
 | 
					// This operation may be executed multiple times. Each execution will reset the
 | 
				
			||||||
@ -11324,6 +11231,114 @@ func DynamicStitch(scope *Scope, indices []tf.Output, data []tf.Output) (merged
 | 
				
			|||||||
	return op.Output(0)
 | 
						return op.Output(0)
 | 
				
			||||||
}
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// RaggedCountSparseOutputAttr is an optional argument to RaggedCountSparseOutput.
 | 
				
			||||||
 | 
					type RaggedCountSparseOutputAttr func(optionalAttr)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// RaggedCountSparseOutputMinlength sets the optional minlength attribute to value.
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// value: Minimum value to count. Can be set to -1 for no minimum.
 | 
				
			||||||
 | 
					// If not specified, defaults to -1
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// REQUIRES: value >= -1
 | 
				
			||||||
 | 
					func RaggedCountSparseOutputMinlength(value int64) RaggedCountSparseOutputAttr {
 | 
				
			||||||
 | 
						return func(m optionalAttr) {
 | 
				
			||||||
 | 
							m["minlength"] = value
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// RaggedCountSparseOutputMaxlength sets the optional maxlength attribute to value.
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// value: Maximum value to count. Can be set to -1 for no maximum.
 | 
				
			||||||
 | 
					// If not specified, defaults to -1
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// REQUIRES: value >= -1
 | 
				
			||||||
 | 
					func RaggedCountSparseOutputMaxlength(value int64) RaggedCountSparseOutputAttr {
 | 
				
			||||||
 | 
						return func(m optionalAttr) {
 | 
				
			||||||
 | 
							m["maxlength"] = value
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// Performs sparse-output bin counting for a ragged tensor input.
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					//   Counts the number of times each value occurs in the input.
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// Arguments:
 | 
				
			||||||
 | 
					//	splits: Tensor containing the row splits of the ragged tensor to count.
 | 
				
			||||||
 | 
					//	values: Tensor containing values of the sparse tensor to count.
 | 
				
			||||||
 | 
					//	weights: A Tensor of the same shape as indices containing per-index weight values.
 | 
				
			||||||
 | 
					// May also be the empty tensor if no weights are used.
 | 
				
			||||||
 | 
					//	binary_output: Whether to output the number of occurrences of each value or 1.
 | 
				
			||||||
 | 
					//
 | 
				
			||||||
 | 
					// Returns:
 | 
				
			||||||
 | 
					//	output_indices: Indices tensor for the resulting sparse tensor object.
 | 
				
			||||||
 | 
					//	output_values: Values tensor for the resulting sparse tensor object.
 | 
				
			||||||
 | 
					//	output_dense_shape: Shape tensor for the resulting sparse tensor object.
 | 
				
			||||||
 | 
					//   END
 | 
				
			||||||
 | 
					//   }
 | 
				
			||||||
 | 
					//   attr {
 | 
				
			||||||
 | 
					//     name: "T"
 | 
				
			||||||
 | 
					//     description: <<END
 | 
				
			||||||
 | 
					// Dtype of the input values tensor.
 | 
				
			||||||
 | 
					func RaggedCountSparseOutput(scope *Scope, splits tf.Output, values tf.Output, weights tf.Output, binary_output bool, optional ...RaggedCountSparseOutputAttr) (output_indices tf.Output, output_values tf.Output, output_dense_shape tf.Output) {
 | 
				
			||||||
 | 
						if scope.Err() != nil {
 | 
				
			||||||
 | 
							return
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						attrs := map[string]interface{}{"binary_output": binary_output}
 | 
				
			||||||
 | 
						for _, a := range optional {
 | 
				
			||||||
 | 
							a(attrs)
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						opspec := tf.OpSpec{
 | 
				
			||||||
 | 
							Type: "RaggedCountSparseOutput",
 | 
				
			||||||
 | 
							Input: []tf.Input{
 | 
				
			||||||
 | 
								splits, values, weights,
 | 
				
			||||||
 | 
							},
 | 
				
			||||||
 | 
							Attrs: attrs,
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						op := scope.AddOperation(opspec)
 | 
				
			||||||
 | 
						return op.Output(0), op.Output(1), op.Output(2)
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// Gets the next output from the given iterator .
 | 
				
			||||||
 | 
					func IteratorGetNext(scope *Scope, iterator tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (components []tf.Output) {
 | 
				
			||||||
 | 
						if scope.Err() != nil {
 | 
				
			||||||
 | 
							return
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						attrs := map[string]interface{}{"output_types": output_types, "output_shapes": output_shapes}
 | 
				
			||||||
 | 
						opspec := tf.OpSpec{
 | 
				
			||||||
 | 
							Type: "IteratorGetNext",
 | 
				
			||||||
 | 
							Input: []tf.Input{
 | 
				
			||||||
 | 
								iterator,
 | 
				
			||||||
 | 
							},
 | 
				
			||||||
 | 
							Attrs: attrs,
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						op := scope.AddOperation(opspec)
 | 
				
			||||||
 | 
						if scope.Err() != nil {
 | 
				
			||||||
 | 
							return
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						var idx int
 | 
				
			||||||
 | 
						var err error
 | 
				
			||||||
 | 
						if components, idx, err = makeOutputList(op, idx, "components"); err != nil {
 | 
				
			||||||
 | 
							scope.UpdateErr("IteratorGetNext", err)
 | 
				
			||||||
 | 
							return
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						return components
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					// Computes the static batch size of a dataset sans partial batches.
 | 
				
			||||||
 | 
					func ComputeBatchSize(scope *Scope, input_dataset tf.Output) (batch_size tf.Output) {
 | 
				
			||||||
 | 
						if scope.Err() != nil {
 | 
				
			||||||
 | 
							return
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						opspec := tf.OpSpec{
 | 
				
			||||||
 | 
							Type: "ComputeBatchSize",
 | 
				
			||||||
 | 
							Input: []tf.Input{
 | 
				
			||||||
 | 
								input_dataset,
 | 
				
			||||||
 | 
							},
 | 
				
			||||||
 | 
						}
 | 
				
			||||||
 | 
						op := scope.AddOperation(opspec)
 | 
				
			||||||
 | 
						return op.Output(0)
 | 
				
			||||||
 | 
					}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
// Uncompresses a compressed dataset element.
 | 
					// Uncompresses a compressed dataset element.
 | 
				
			||||||
func UncompressElement(scope *Scope, compressed tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (components []tf.Output) {
 | 
					func UncompressElement(scope *Scope, compressed tf.Output, output_types []tf.DataType, output_shapes []tf.Shape) (components []tf.Output) {
 | 
				
			||||||
	if scope.Err() != nil {
 | 
						if scope.Err() != nil {
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user