Removing OpenMP dependency from Mkl-dnn supporting threadpool
This commit is contained in:
parent
be46769cee
commit
4da2360572
@ -25,7 +25,7 @@ limitations under the License.
|
||||
|
||||
namespace tensorflow {
|
||||
|
||||
#ifdef _OPENMP
|
||||
#if defined(_OPENMP) && !defined(ENABLE_MKLDNN_THREADPOOL)
|
||||
TEST(MKLThreadPoolDeviceTest, TestOmpDefaults) {
|
||||
SessionOptions options;
|
||||
unsetenv("OMP_NUM_THREADS");
|
||||
@ -46,7 +46,7 @@ TEST(MKLThreadPoolDeviceTest, TestOmpPreSets) {
|
||||
|
||||
EXPECT_EQ(omp_get_max_threads(), 314);
|
||||
}
|
||||
#endif // _OPENMP
|
||||
#endif // defined(_OPENMP) && !defined(ENABLE_MKLDNN_THREADPOOL)
|
||||
|
||||
} // namespace tensorflow
|
||||
|
||||
|
@ -28,7 +28,7 @@ limitations under the License.
|
||||
#include "tensorflow/core/public/session.h"
|
||||
|
||||
#if defined(INTEL_MKL_DNN_ONLY)
|
||||
#include "third_party/intel_mkl_dnn/include/mkldnn.h"
|
||||
#include "mkldnn.hpp"
|
||||
#include "tensorflow/core/util/mkl_util.h"
|
||||
#endif
|
||||
|
||||
|
@ -91,12 +91,15 @@ limitations under the License.
|
||||
// https://software.intel.com/en-us/articles/lower-numerical-precision-deep-learning-inference-and-training
|
||||
#ifdef INTEL_MKL
|
||||
|
||||
#include "tensorflow/core/framework/op_kernel.h"
|
||||
#include "tensorflow/core/framework/register_types.h"
|
||||
#include "tensorflow/core/kernels/fill_functor.h"
|
||||
#include "tensorflow/core/kernels/mkl_matmul_ops_common.h"
|
||||
#include "tensorflow/core/kernels/mkl_quantized_conv_ops.h"
|
||||
#include "tensorflow/core/kernels/no_op.h"
|
||||
#include "tensorflow/core/lib/core/errors.h"
|
||||
#include "tensorflow/core/util/mkl_threadpool.h"
|
||||
#include "tensorflow/core/util/work_sharder.h"
|
||||
|
||||
namespace {
|
||||
enum {
|
||||
@ -428,6 +431,26 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
|
||||
((max_input - min_input) *
|
||||
std::max(std::abs(max_weight), std::abs(min_weight)));
|
||||
|
||||
#ifdef ENABLE_MKLDNN_THREADPOOL
|
||||
auto parallel_func = [&](int64 start, int64 end) {
|
||||
for (int64 j = start ; j < end; j++) {
|
||||
int x = 0;
|
||||
for (int64 i = 0; i < k; ++i) {
|
||||
x += wt_buf[i * n + j];
|
||||
}
|
||||
comp_bias[j] =
|
||||
((bias_buf[j] * out_scale) + static_cast<float>(x * qa_amin));
|
||||
}
|
||||
};
|
||||
|
||||
const float kArithCost = 2.5f;
|
||||
const float kMovCost = 1.0f;
|
||||
float shard_cost = 4*kArithCost + kMovCost;
|
||||
const DeviceBase::CpuWorkerThreads& worker_threads =
|
||||
*(context->device()->tensorflow_cpu_worker_threads());
|
||||
Shard(worker_threads.num_threads, worker_threads.workers, n, shard_cost,
|
||||
parallel_func);
|
||||
#else
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (int j = 0; j < n; ++j) {
|
||||
int x = 0;
|
||||
@ -437,7 +460,7 @@ class MklDnnQuantizedMatMulOp : public MklDnnMatMulOpBase<Tweight, Toutput> {
|
||||
comp_bias[j] =
|
||||
((bias_buf[j] * out_scale) + static_cast<float>(x * qa_amin));
|
||||
}
|
||||
|
||||
#endif // ENABLE_MKLDNN_THREADPOOL
|
||||
return reinterpret_cast<Tbias*>(comp_bias_);
|
||||
|
||||
} else if (mode_ == QUANTIZE_MODE_SCALED) {
|
||||
|
@ -69,6 +69,19 @@ void MklQuantizationRangeForMultiplication(float min_a, float max_a,
|
||||
const float* max_b = max_b_vector.flat<float>().data();
|
||||
float* min_c = (*min_c_vector)->flat<float>().data();
|
||||
float* max_c = (*max_c_vector)->flat<float>().data();
|
||||
#ifdef ENABLE_MKLDNN_THREADPOOL
|
||||
// TODO: Add eigen parallel_for
|
||||
for(size_t n = 0; n < n_channel; ++n) {
|
||||
float a_float_for_one_quant_level =
|
||||
MklFloatForOneQuantizedLevel<T1>(min_a, max_a);
|
||||
float b_float_for_one_quant_level =
|
||||
MklFloatForOneQuantizedLevel<T2>(min_b[n], max_b[n]);
|
||||
float c_float_for_one_quant_level =
|
||||
a_float_for_one_quant_level * b_float_for_one_quant_level;
|
||||
min_c[n] = c_float_for_one_quant_level * c_lowest;
|
||||
max_c[n] = c_float_for_one_quant_level * c_highest;
|
||||
}
|
||||
#else
|
||||
#pragma omp parallel for
|
||||
for (size_t n = 0; n < n_channel; ++n) {
|
||||
float a_float_for_one_quant_level =
|
||||
@ -80,6 +93,7 @@ void MklQuantizationRangeForMultiplication(float min_a, float max_a,
|
||||
min_c[n] = c_float_for_one_quant_level * c_lowest;
|
||||
max_c[n] = c_float_for_one_quant_level * c_highest;
|
||||
}
|
||||
#endif // ENABLE_MKLDNN_THREADPOOL
|
||||
}
|
||||
|
||||
} // namespace tensorflow
|
||||
|
@ -28,6 +28,7 @@ limitations under the License.
|
||||
#include "tensorflow/core/kernels/meta_support.h"
|
||||
#include "tensorflow/core/kernels/no_op.h"
|
||||
#include "tensorflow/core/lib/core/errors.h"
|
||||
#include "tensorflow/core/util/mkl_threadpool.h"
|
||||
#include "tensorflow/core/util/mkl_util.h"
|
||||
|
||||
namespace tensorflow {
|
||||
@ -73,6 +74,26 @@ class MklRequantizationRangePerChannelOp : public OpKernel {
|
||||
|
||||
// Find the ranges of each channel in parallel.
|
||||
float out_min_max = std::numeric_limits<float>::min();
|
||||
#ifdef ENABLE_MKLDNN_THREADPOOL
|
||||
// TODO: Add eigen parallel_for
|
||||
for(size_t i = 0; i < depth; ++i) {
|
||||
Eigen::Tensor<qint32, 0, Eigen::RowMajor> min =
|
||||
transposed_input.chip<0>(i).minimum();
|
||||
Eigen::Tensor<qint32, 0, Eigen::RowMajor> max =
|
||||
transposed_input.chip<0>(i).maximum();
|
||||
const int32_t min_per_channel = min();
|
||||
const int32_t max_per_channel = max();
|
||||
const int32_t abs_max =
|
||||
std::max(std::abs(min_per_channel), std::abs(max_per_channel));
|
||||
float scale =
|
||||
std::max(std::abs(input_min_data[i]), std::abs(input_max_data[i]));
|
||||
ranges[i] =
|
||||
scale * static_cast<float>(abs_max) / static_cast<float>(1L << 31);
|
||||
if (min_per_channel < 0) is_non_negative = false;
|
||||
|
||||
out_min_max = std::max(out_min_max, ranges[i]);
|
||||
}
|
||||
#else
|
||||
#pragma omp parallel for reduction(max : out_min_max)
|
||||
for (size_t i = 0; i < depth; ++i) {
|
||||
Eigen::Tensor<qint32, 0, Eigen::RowMajor> min =
|
||||
@ -92,6 +113,7 @@ class MklRequantizationRangePerChannelOp : public OpKernel {
|
||||
// Thread-local out_min_max.
|
||||
out_min_max = std::max(out_min_max, ranges[i]);
|
||||
}
|
||||
#endif // ENABLE_MKLDNN_THREADPOOL
|
||||
// All local out_min_max gets max-reduced into one global out_min_max at
|
||||
// the end of the loop by specifying reduction(max:out_min_max) along with
|
||||
// omp parallel for.
|
||||
|
@ -354,9 +354,7 @@ def tf_copts(
|
||||
)
|
||||
|
||||
def tf_openmp_copts():
|
||||
# TODO(intel-mkl): Remove -fopenmp for threadpool after removing all
|
||||
# omp pragmas in tensorflow/core.
|
||||
return if_mkl_lnx_x64(["-fopenmp"]) + if_mkldnn_threadpool(["-fopenmp"])
|
||||
return (if_mkl_lnx_x64(["-fopenmp"]) + if_mkldnn_threadpool(["-fno-openmp"]))
|
||||
|
||||
def tfe_xla_copts():
|
||||
return select({
|
||||
|
Loading…
Reference in New Issue
Block a user