Migrate float/uint8 broadcast fivefold add to use binary broadcast fivefold.

PiperOrigin-RevId: 313707010
Change-Id: I800cbc4406bad709cedecbfa0e41b4e465254f75
This commit is contained in:
Renjie Liu 2020-05-28 19:51:43 -07:00 committed by TensorFlower Gardener
parent fba1187eda
commit 4c674a64c8
3 changed files with 134 additions and 282 deletions

View File

@ -234,6 +234,100 @@ inline int32x4x4_t MultiplyByQuantizedMultiplier4Rows(
}
#endif
template <typename ElementwiseF, typename ScalarBroadcastF, typename T>
inline void BinaryBroadcastFiveFold(const ArithmeticParams& unswitched_params,
const RuntimeShape& unswitched_input1_shape,
const T* unswitched_input1_data,
const RuntimeShape& unswitched_input2_shape,
const T* unswitched_input2_data,
const RuntimeShape& output_shape,
T* output_data, ElementwiseF elementwise_f,
ScalarBroadcastF scalar_broadcast_f) {
ArithmeticParams switched_params = unswitched_params;
switched_params.input1_offset = unswitched_params.input2_offset;
switched_params.input1_multiplier = unswitched_params.input2_multiplier;
switched_params.input1_shift = unswitched_params.input2_shift;
switched_params.input2_offset = unswitched_params.input1_offset;
switched_params.input2_multiplier = unswitched_params.input1_multiplier;
switched_params.input2_shift = unswitched_params.input1_shift;
const bool use_unswitched =
unswitched_params.broadcast_category ==
tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast;
const ArithmeticParams& params =
use_unswitched ? unswitched_params : switched_params;
const T* input1_data =
use_unswitched ? unswitched_input1_data : unswitched_input2_data;
const T* input2_data =
use_unswitched ? unswitched_input2_data : unswitched_input1_data;
// Fivefold nested loops. The second input resets its position for each
// iteration of the second loop. The first input resets its position at the
// beginning of the fourth loop. The innermost loop is an elementwise add of
// sections of the arrays.
T* output_data_ptr = output_data;
const T* input1_data_ptr = input1_data;
const T* input2_data_reset = input2_data;
// In the fivefold pattern, y0, y2 and y4 are not broadcast, and so shared
// between input shapes. y3 for input 1 is always broadcast, and so the
// dimension there is 1, whereas optionally y1 might be broadcast for
// input 2. Put another way, input1.shape.FlatSize = y0 * y1 * y2 * y4,
// input2.shape.FlatSize = y0 * y2 * y3 * y4.
int y0 = params.broadcast_shape[0];
int y1 = params.broadcast_shape[1];
int y2 = params.broadcast_shape[2];
int y3 = params.broadcast_shape[3];
int y4 = params.broadcast_shape[4];
if (y4 > 1) {
// General fivefold pattern, with y4 > 1 so there is a non-broadcast inner
// dimension.
for (int i0 = 0; i0 < y0; ++i0) {
const T* input2_data_ptr = nullptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
for (int i3 = 0; i3 < y3; ++i3) {
elementwise_f(y4, params, input1_data_ptr, input2_data_ptr,
output_data_ptr);
input2_data_ptr += y4;
output_data_ptr += y4;
}
// We have broadcast y4 of input1 data y3 times, and now move on.
input1_data_ptr += y4;
}
}
// We have broadcast y2*y3*y4 of input2 data y1 times, and now move on.
input2_data_reset = input2_data_ptr;
}
} else {
// Special case of y4 == 1, in which the innermost loop is a single
// element and can be combined with the next (y3) as an inner broadcast.
//
// Note that this handles the case of pure scalar broadcast when
// y0 == y1 == y2 == 1. With low overhead it handles cases such as scalar
// broadcast with batch (as y2 > 1).
//
// NOTE The process is the same as the above general case except
// simplified for y4 == 1 and the loop over y3 is contained within the
// AddScalarBroadcast function.
for (int i0 = 0; i0 < y0; ++i0) {
const T* input2_data_ptr = nullptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
scalar_broadcast_f(y3, params, *input1_data_ptr, input2_data_ptr,
output_data_ptr);
input2_data_ptr += y3;
output_data_ptr += y3;
input1_data_ptr += 1;
}
}
input2_data_reset = input2_data_ptr;
}
}
}
inline void AddBiasAndEvalActivationFunction(float output_activation_min,
float output_activation_max,
const RuntimeShape& bias_shape,
@ -2073,186 +2167,6 @@ inline void Add(const ArithmeticParams& params,
output_map = output_map.cwiseMin(params.quantized_activation_max);
}
inline void BroadcastAddFivefold(const ArithmeticParams& unswitched_params,
const RuntimeShape& unswitched_input1_shape,
const uint8* unswitched_input1_data,
const RuntimeShape& unswitched_input2_shape,
const uint8* unswitched_input2_data,
const RuntimeShape& output_shape,
uint8* output_data) {
ruy::profiler::ScopeLabel label("BroadcastAddFivefold/8bit");
ArithmeticParams switched_params = unswitched_params;
switched_params.input1_offset = unswitched_params.input2_offset;
switched_params.input1_multiplier = unswitched_params.input2_multiplier;
switched_params.input1_shift = unswitched_params.input2_shift;
switched_params.input2_offset = unswitched_params.input1_offset;
switched_params.input2_multiplier = unswitched_params.input1_multiplier;
switched_params.input2_shift = unswitched_params.input1_shift;
const bool use_unswitched =
unswitched_params.broadcast_category ==
tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast;
const ArithmeticParams& params =
use_unswitched ? unswitched_params : switched_params;
const uint8* input1_data =
use_unswitched ? unswitched_input1_data : unswitched_input2_data;
const uint8* input2_data =
use_unswitched ? unswitched_input2_data : unswitched_input1_data;
// Fivefold nested loops. The second input resets its position for each
// iteration of the second loop. The first input resets its position at the
// beginning of the fourth loop. The innermost loop is an elementwise add of
// sections of the arrays.
uint8* output_data_ptr = output_data;
const uint8* input1_data_ptr = input1_data;
const uint8* input2_data_reset = input2_data;
// In the fivefold pattern, y0, y2 and y4 are not broadcast, and so shared
// between input shapes. y3 for input 1 is always broadcast, and so the
// dimension there is 1, whereas optionally y1 might be broadcast for input 2.
// Put another way,
// input1.shape.FlatSize = y0 * y1 * y2 * y4,
// input2.shape.FlatSize = y0 * y2 * y3 * y4.
int y0 = params.broadcast_shape[0];
int y1 = params.broadcast_shape[1];
int y2 = params.broadcast_shape[2];
int y3 = params.broadcast_shape[3];
int y4 = params.broadcast_shape[4];
if (y4 > 1) {
// General fivefold pattern, with y4 > 1 so there is a non-broadcast inner
// dimension.
for (int i0 = 0; i0 < y0; ++i0) {
const uint8* input2_data_ptr = nullptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
for (int i3 = 0; i3 < y3; ++i3) {
AddElementwise(y4, params, input1_data_ptr, input2_data_ptr,
output_data_ptr);
input2_data_ptr += y4;
output_data_ptr += y4;
}
// We have broadcast y4 of input1 data y3 times, and now move on.
input1_data_ptr += y4;
}
}
// We have broadcast y2*y3*y4 of input2 data y1 times, and now move on.
input2_data_reset = input2_data_ptr;
}
} else {
// Special case of y4 == 1, in which the innermost loop is a single element
// and can be combined with the next (y3) as an inner broadcast.
//
// Note that this handles the case of pure scalar broadcast when
// y0 == y1 == y2 == 1. With low overhead it handles cases such as scalar
// broadcast with batch (as y2 > 1).
//
// NOTE The process is the same as the above general case except simplified
// for y4 == 1 and the loop over y3 is contained within the
// AddScalarBroadcast function.
for (int i0 = 0; i0 < y0; ++i0) {
const uint8* input2_data_ptr = nullptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
AddScalarBroadcast(y3, params, *input1_data_ptr, input2_data_ptr,
output_data_ptr);
input2_data_ptr += y3;
output_data_ptr += y3;
input1_data_ptr += 1;
}
}
input2_data_reset = input2_data_ptr;
}
}
}
inline void BroadcastAddFivefold(const ArithmeticParams& params,
const RuntimeShape& unswitched_input1_shape,
const float* unswitched_input1_data,
const RuntimeShape& unswitched_input2_shape,
const float* unswitched_input2_data,
const RuntimeShape& output_shape,
float* output_data) {
ruy::profiler::ScopeLabel label("BroadcastAddFivefold/float");
const bool use_unswitched =
params.broadcast_category ==
tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast;
const float* input1_data =
use_unswitched ? unswitched_input1_data : unswitched_input2_data;
const float* input2_data =
use_unswitched ? unswitched_input2_data : unswitched_input1_data;
// Fivefold nested loops. The second input resets its position for each
// iteration of the second loop. The first input resets its position at the
// beginning of the fourth loop. The innermost loop is an elementwise add of
// sections of the arrays.
float* output_data_ptr = output_data;
const float* input1_data_ptr = input1_data;
const float* input2_data_reset = input2_data;
// In the fivefold pattern, y0, y2 and y4 are not broadcast, and so shared
// between input shapes. y3 for input 1 is always broadcast, and so the
// dimension there is 1, whereas optionally y1 might be broadcast for input 2.
// Put another way,
// input1.shape.FlatSize = y0 * y1 * y2 * y4,
// input2.shape.FlatSize = y0 * y2 * y3 * y4.
int y0 = params.broadcast_shape[0];
int y1 = params.broadcast_shape[1];
int y2 = params.broadcast_shape[2];
int y3 = params.broadcast_shape[3];
int y4 = params.broadcast_shape[4];
if (y4 > 1) {
// General fivefold pattern, with y4 > 1 so there is a non-broadcast inner
// dimension.
for (int i0 = 0; i0 < y0; ++i0) {
const float* input2_data_ptr = nullptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
for (int i3 = 0; i3 < y3; ++i3) {
AddElementwise(y4, params, input1_data_ptr, input2_data_ptr,
output_data_ptr);
input2_data_ptr += y4;
output_data_ptr += y4;
}
// We have broadcast y4 of input1 data y3 times, and now move on.
input1_data_ptr += y4;
}
}
// We have broadcast y2*y3*y4 of input2 data y1 times, and now move on.
input2_data_reset = input2_data_ptr;
}
} else {
// Special case of y4 == 1, in which the innermost loop is a single element
// and can be combined with the next (y3) as an inner broadcast.
//
// Note that this handles the case of pure scalar broadcast when
// y0 == y1 == y2 == 1. With low overhead it handles cases such as scalar
// broadcast with batch (as y2 > 1).
//
// NOTE The process is the same as the above general case except simplified
// for y4 == 1 and the loop over y3 is contained within the
// AddScalarBroadcast function.
for (int i0 = 0; i0 < y0; ++i0) {
const float* input2_data_ptr = nullptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
AddScalarBroadcast(y3, params, *input1_data_ptr, input2_data_ptr,
output_data_ptr);
input2_data_ptr += y3;
output_data_ptr += y3;
input1_data_ptr += 1;
}
}
input2_data_reset = input2_data_ptr;
}
}
}
template <typename T>
inline void BroadcastAddDispatch(
const ArithmeticParams& params, const RuntimeShape& input1_shape,
@ -2263,8 +2177,37 @@ inline void BroadcastAddDispatch(
input2_data, output_shape, output_data);
}
BroadcastAddFivefold(params, input1_shape, input1_data, input2_shape,
input2_data, output_shape, output_data);
BinaryBroadcastFiveFold(
params, input1_shape, input1_data, input2_shape, input2_data,
output_shape, output_data,
static_cast<void (*)(int, const ArithmeticParams&, const T*, const T*,
T*)>(AddElementwise),
static_cast<void (*)(int, const ArithmeticParams&, T, const T*, T*)>(
AddScalarBroadcast));
}
inline void BroadcastAddFivefold(const ArithmeticParams& unswitched_params,
const RuntimeShape& unswitched_input1_shape,
const uint8* unswitched_input1_data,
const RuntimeShape& unswitched_input2_shape,
const uint8* unswitched_input2_data,
const RuntimeShape& output_shape,
uint8* output_data) {
BroadcastAddDispatch(unswitched_params, unswitched_input1_shape,
unswitched_input1_data, unswitched_input2_shape,
unswitched_input2_data, output_shape, output_data);
}
inline void BroadcastAddFivefold(const ArithmeticParams& params,
const RuntimeShape& unswitched_input1_shape,
const float* unswitched_input1_data,
const RuntimeShape& unswitched_input2_shape,
const float* unswitched_input2_data,
const RuntimeShape& output_shape,
float* output_data) {
BroadcastAddDispatch(params, unswitched_input1_shape, unswitched_input1_data,
unswitched_input2_shape, unswitched_input2_data,
output_shape, output_data);
}
inline void MulElementwise(int size, const ArithmeticParams& params,
@ -7979,101 +7922,6 @@ inline void MinimumScalarBroadcast(int size, const ArithmeticParams& params,
}
}
template <typename ElementwiseF, typename ScalarBroadcastF>
inline void BinaryBroadcastFiveFold(const ArithmeticParams& unswitched_params,
const RuntimeShape& unswitched_input1_shape,
const int8* unswitched_input1_data,
const RuntimeShape& unswitched_input2_shape,
const int8* unswitched_input2_data,
const RuntimeShape& output_shape,
int8* output_data,
ElementwiseF elementwise_f,
ScalarBroadcastF scalar_broadcast_f) {
ArithmeticParams switched_params = unswitched_params;
switched_params.input1_offset = unswitched_params.input2_offset;
switched_params.input1_multiplier = unswitched_params.input2_multiplier;
switched_params.input1_shift = unswitched_params.input2_shift;
switched_params.input2_offset = unswitched_params.input1_offset;
switched_params.input2_multiplier = unswitched_params.input1_multiplier;
switched_params.input2_shift = unswitched_params.input1_shift;
const bool use_unswitched =
unswitched_params.broadcast_category ==
tflite::BroadcastableOpCategory::kFirstInputBroadcastsFast;
const ArithmeticParams& params =
use_unswitched ? unswitched_params : switched_params;
const int8* input1_data =
use_unswitched ? unswitched_input1_data : unswitched_input2_data;
const int8* input2_data =
use_unswitched ? unswitched_input2_data : unswitched_input1_data;
// Fivefold nested loops. The second input resets its position for each
// iteration of the second loop. The first input resets its position at the
// beginning of the fourth loop. The innermost loop is an elementwise add of
// sections of the arrays.
int8* output_data_ptr = output_data;
const int8* input1_data_ptr = input1_data;
const int8* input2_data_reset = input2_data;
// In the fivefold pattern, y0, y2 and y4 are not broadcast, and so shared
// between input shapes. y3 for input 1 is always broadcast, and so the
// dimension there is 1, whereas optionally y1 might be broadcast for
// input 2. Put another way, input1.shape.FlatSize = y0 * y1 * y2 * y4,
// input2.shape.FlatSize = y0 * y2 * y3 * y4.
int y0 = params.broadcast_shape[0];
int y1 = params.broadcast_shape[1];
int y2 = params.broadcast_shape[2];
int y3 = params.broadcast_shape[3];
int y4 = params.broadcast_shape[4];
if (y4 > 1) {
// General fivefold pattern, with y4 > 1 so there is a non-broadcast inner
// dimension.
for (int i0 = 0; i0 < y0; ++i0) {
const int8* input2_data_ptr = nullptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
for (int i3 = 0; i3 < y3; ++i3) {
elementwise_f(y4, params, input1_data_ptr, input2_data_ptr,
output_data_ptr);
input2_data_ptr += y4;
output_data_ptr += y4;
}
// We have broadcast y4 of input1 data y3 times, and now move on.
input1_data_ptr += y4;
}
}
// We have broadcast y2*y3*y4 of input2 data y1 times, and now move on.
input2_data_reset = input2_data_ptr;
}
} else {
// Special case of y4 == 1, in which the innermost loop is a single
// element and can be combined with the next (y3) as an inner broadcast.
//
// Note that this handles the case of pure scalar broadcast when
// y0 == y1 == y2 == 1. With low overhead it handles cases such as scalar
// broadcast with batch (as y2 > 1).
//
// NOTE The process is the same as the above general case except
// simplified for y4 == 1 and the loop over y3 is contained within the
// AddScalarBroadcast function.
for (int i0 = 0; i0 < y0; ++i0) {
const int8* input2_data_ptr = nullptr;
for (int i1 = 0; i1 < y1; ++i1) {
input2_data_ptr = input2_data_reset;
for (int i2 = 0; i2 < y2; ++i2) {
scalar_broadcast_f(y3, params, *input1_data_ptr, input2_data_ptr,
output_data_ptr);
input2_data_ptr += y3;
output_data_ptr += y3;
input1_data_ptr += 1;
}
}
input2_data_reset = input2_data_ptr;
}
}
}
template <typename Op>
inline void BroadcastMaximumDispatch(const ArithmeticParams& params,
const RuntimeShape& input1_shape,

View File

@ -76,6 +76,10 @@ inline bool ProcessBroadcastShapes(const RuntimeShape& shape0,
BroadcastableOpCategory::kFirstInputBroadcastsFast &&
params->broadcast_category !=
BroadcastableOpCategory::kSecondInputBroadcastsFast) {
// This is unreachable because at least one else clause in the above loop
// must be reached.
TFLITE_DCHECK(false);
params->broadcast_category = BroadcastableOpCategory::kNonBroadcast;
return false;
}

View File

@ -326,11 +326,11 @@ void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
TF_LITE_SUB(reference_ops, Add, uint8_t);
}
} else {
if (op_params.broadcast_category ==
BroadcastableOpCategory::kGenericBroadcast) {
TF_LITE_SUB(optimized_ops, BroadcastAdd4DSlow, uint8_t);
} else if (need_broadcast) {
TF_LITE_SUB(optimized_ops, BroadcastAddFivefold, uint8_t);
if (need_broadcast) {
optimized_ops::BroadcastAddDispatch(
op_params, GetTensorShape(input1), GetTensorData<uint8_t>(input1),
GetTensorShape(input2), GetTensorData<uint8_t>(input2),
GetTensorShape(output), GetTensorData<uint8_t>(output));
} else {
TF_LITE_SUB(optimized_ops, Add, uint8_t);
}