Pooling tasks modified to be Metal compatible.

Added pooling_test_util with unified tests.
Added Metal pooling unit tests.

PiperOrigin-RevId: 353513964
Change-Id: I5a58b319509b64f268904312611e4649b35a467a
This commit is contained in:
Raman Sarokin 2021-01-24 08:05:52 -08:00 committed by TensorFlower Gardener
parent b65778df51
commit 4bbdace1a4
8 changed files with 262 additions and 150 deletions

View File

@ -392,7 +392,7 @@ cc_test(
":cl_test",
"//tensorflow/lite/delegates/gpu/common:operations",
"//tensorflow/lite/delegates/gpu/common:status",
"//tensorflow/lite/delegates/gpu/common/tasks:pooling",
"//tensorflow/lite/delegates/gpu/common/tasks:pooling_test_util",
"@com_google_googletest//:gtest_main",
],
)

View File

@ -13,8 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/gpu/common/tasks/pooling.h"
#include <vector>
#include <gmock/gmock.h>
@ -22,9 +20,7 @@ limitations under the License.
#include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h"
#include "tensorflow/lite/delegates/gpu/common/operations.h"
#include "tensorflow/lite/delegates/gpu/common/status.h"
using ::testing::FloatNear;
using ::testing::Pointwise;
#include "tensorflow/lite/delegates/gpu/common/tasks/pooling_test_util.h"
namespace tflite {
namespace gpu {
@ -32,136 +28,23 @@ namespace cl {
namespace {
TEST_F(OpenCLOperationTest, AveragePooling) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 2, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
Pooling2DAttributes attr;
attr.padding.prepended = HW(0, 0);
attr.padding.appended = HW(0, 0);
attr.strides = HW(2, 2);
attr.kernel = HW(2, 2);
attr.type = PoolingType::AVERAGE;
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePooling(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 1, 1, 2), &dst_tensor));
EXPECT_THAT(dst_tensor.data, Pointwise(FloatNear(eps), {3.0f, 4.0f}));
}
}
auto status = AveragePoolingTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, AveragePoolingNonEmptyPadding) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 2, 1);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
Pooling2DAttributes attr;
attr.padding.prepended = HW(0, 0);
attr.padding.appended = HW(1, 1);
attr.strides = HW(1, 1);
attr.kernel = HW(2, 2);
attr.type = PoolingType::AVERAGE;
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePooling(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 2, 2, 1), &dst_tensor));
EXPECT_THAT(dst_tensor.data,
Pointwise(FloatNear(eps), {1.5f, 2.0f, 2.5f, 3.0f}));
}
}
auto status = AveragePoolingNonEmptyPaddingTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, MaxPooling) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 2, 2);
src_tensor.data = {8.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
Pooling2DAttributes attr;
attr.padding.prepended = HW(0, 0);
attr.padding.appended = HW(0, 0);
attr.strides = HW(2, 2);
attr.kernel = HW(2, 2);
attr.type = PoolingType::MAX;
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePooling(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 1, 1, 2), &dst_tensor));
EXPECT_THAT(dst_tensor.data, Pointwise(FloatNear(eps), {8.0f, 7.0f}));
}
}
auto status = MaxPoolingTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, MaxPoolingIndices) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 2, 2);
src_tensor.data = {8.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
Pooling2DAttributes attr;
attr.padding.prepended = HW(0, 0);
attr.padding.appended = HW(0, 0);
attr.strides = HW(2, 2);
attr.kernel = HW(2, 2);
attr.type = PoolingType::MAX;
attr.output_indices = true;
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
TensorFloat32 dst_tensor_ind;
GPUOperation operation = CreatePooling(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
{src_tensor}, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
{BHWC(1, 1, 1, 2), BHWC(1, 1, 1, 2)},
{&dst_tensor, &dst_tensor_ind}));
EXPECT_THAT(dst_tensor.data, Pointwise(FloatNear(eps), {8.0f, 7.0f}));
for (auto& v : dst_tensor_ind.data) {
v = static_cast<int>(v);
}
EXPECT_THAT(dst_tensor_ind.data, Pointwise(FloatNear(eps), {0.0f, 3.0f}));
}
}
auto status = MaxPoolingIndicesTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
} // namespace

View File

@ -462,6 +462,19 @@ cc_library(
],
)
cc_library(
name = "pooling_test_util",
testonly = 1,
srcs = ["pooling_test_util.cc"],
hdrs = ["pooling_test_util.h"],
deps = [
":pooling",
"//tensorflow/lite/delegates/gpu/common:operations",
"//tensorflow/lite/delegates/gpu/common:status",
"//tensorflow/lite/delegates/gpu/common/task:testing_util",
],
)
cc_library(
name = "prelu",
srcs = ["prelu.cc"],

View File

@ -73,22 +73,21 @@ std::string GetAveragePoolingKernelCode(const OperationDef& op_def,
op_def.src_tensors[0].storage_type == TensorStorageType::IMAGE_BUFFER;
std::string c;
c += "__kernel void main_function(\n";
c += "$0) {\n";
c += " int X = get_global_id(0);\n";
c += "MAIN_FUNCTION($0) {\n";
c += " int X = GLOBAL_ID_0;\n";
if (op_def.dst_tensors[0].HasAxis(Axis::DEPTH)) {
c += " int linear_id_1 = get_global_id(1);\n";
c += " int linear_id_1 = GLOBAL_ID_1;\n";
c += " int Y = linear_id_1 / args.dst_tensor.Depth();\n";
c += " int D = linear_id_1 % args.dst_tensor.Depth();\n";
} else {
c += " int Y = get_global_id(1);\n";
c += " int Y = GLOBAL_ID_1;\n";
}
c += " int Z = get_global_id(2);\n";
c += " int Z = GLOBAL_ID_2;\n";
c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || "
"Z >= args.dst_tensor.Slices()) { \n";
c += " return; \n";
c += " } \n";
c += " float4 r = (float4)(0.0f);\n";
c += " float4 r = INIT_FLOAT4(0.0f);\n";
c += " float window_size = 0.0;\n";
if (stride_correction) {
c += " int xs = " +
@ -124,7 +123,7 @@ std::string GetAveragePoolingKernelCode(const OperationDef& op_def,
if (manual_clamp) {
c += " r += !outside ? args.src_tensor.Read<float>(" + src_coord +
") : "
"(float4)(0.0f);\n";
"INIT_FLOAT4(0.0f);\n";
} else {
c += " r += args.src_tensor.Read<float>(" + src_coord + ");\n";
}
@ -194,24 +193,23 @@ std::string GetMaxPoolingKernelCode(const OperationDef& op_def,
}
std::string c;
c += "__kernel void main_function(\n";
c += "$0) {\n";
c += " int X = get_global_id(0);\n";
c += "MAIN_FUNCTION($0) {\n";
c += " int X = GLOBAL_ID_0;\n";
if (op_def.dst_tensors[0].HasAxis(Axis::DEPTH)) {
c += " int linear_id_1 = get_global_id(1);\n";
c += " int linear_id_1 = GLOBAL_ID_1;\n";
c += " int Y = linear_id_1 / args.dst_tensor.Depth();\n";
c += " int D = linear_id_1 % args.dst_tensor.Depth();\n";
} else {
c += " int Y = get_global_id(1);\n";
c += " int Y = GLOBAL_ID_1;\n";
}
c += " int Z = get_global_id(2);\n";
c += " int Z = GLOBAL_ID_2;\n";
c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || "
"Z >= args.dst_tensor.Slices()) { \n";
c += " return; \n";
c += " } \n";
c += " FLT4 maximum = (FLT4)(-10000.0f);\n";
c += " FLT4 maximum = INIT_FLT4(-10000.0f);\n";
if (output_indices) {
c += " FLT4 indexes = (FLT4)(0.0f);\n";
c += " FLT4 indexes = INIT_FLT4(0.0f);\n";
}
if (stride_correction) {
c += " int xs = " +
@ -246,11 +244,12 @@ std::string GetMaxPoolingKernelCode(const OperationDef& op_def,
c += " FLT4 src = args.src_tensor.Read(" + src_coord + ");\n";
if (output_indices) {
if (op_def.dst_tensors[0].HasAxis(Axis::DEPTH)) {
c += " FLT index_counter = (FLT)((ky * args.kernel_size_x + kx) * "
"args.kernel_size_z + kz) + (FLT)(0.1f);\n";
c +=
" FLT index_counter = INIT_FLT((ky * args.kernel_size_x + kx) * "
"args.kernel_size_z + kz) + INIT_FLT(0.1f);\n";
} else {
c += " FLT index_counter = (FLT)(ky * args.kernel_size_x + kx) + "
"(FLT)(0.1f);\n";
c += " FLT index_counter = INIT_FLT(ky * args.kernel_size_x + kx) + "
"INIT_FLT(0.1f);\n";
}
c += " if (src.x > maximum.x) {\n";
c += " indexes.x = index_counter;\n";

View File

@ -0,0 +1,162 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/gpu/common/tasks/pooling_test_util.h"
#include <vector>
#include "tensorflow/lite/delegates/gpu/common/operations.h"
#include "tensorflow/lite/delegates/gpu/common/status.h"
#include "tensorflow/lite/delegates/gpu/common/task/testing_util.h"
#include "tensorflow/lite/delegates/gpu/common/tasks/pooling.h"
namespace tflite {
namespace gpu {
absl::Status AveragePoolingTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 2, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
Pooling2DAttributes attr;
attr.padding.prepended = HW(0, 0);
attr.padding.appended = HW(0, 0);
attr.strides = HW(2, 2);
attr.kernel = HW(2, 2);
attr.type = PoolingType::AVERAGE;
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePooling(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 1, 1, 2), &dst_tensor));
RETURN_IF_ERROR(PointWiseNear({3.0f, 4.0f}, dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status AveragePoolingNonEmptyPaddingTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 2, 1);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
Pooling2DAttributes attr;
attr.padding.prepended = HW(0, 0);
attr.padding.appended = HW(1, 1);
attr.strides = HW(1, 1);
attr.kernel = HW(2, 2);
attr.type = PoolingType::AVERAGE;
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePooling(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 2, 2, 1), &dst_tensor));
RETURN_IF_ERROR(
PointWiseNear({1.5f, 2.0f, 2.5f, 3.0f}, dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status MaxPoolingTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 2, 2);
src_tensor.data = {8.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
Pooling2DAttributes attr;
attr.padding.prepended = HW(0, 0);
attr.padding.appended = HW(0, 0);
attr.strides = HW(2, 2);
attr.kernel = HW(2, 2);
attr.type = PoolingType::MAX;
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePooling(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 1, 1, 2), &dst_tensor));
RETURN_IF_ERROR(PointWiseNear({8.0f, 7.0f}, dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status MaxPoolingIndicesTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 2, 2);
src_tensor.data = {8.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f};
Pooling2DAttributes attr;
attr.padding.prepended = HW(0, 0);
attr.padding.appended = HW(0, 0);
attr.strides = HW(2, 2);
attr.kernel = HW(2, 2);
attr.type = PoolingType::MAX;
attr.output_indices = true;
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
TensorFloat32 dst_tensor_ind;
GPUOperation operation = CreatePooling(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
{src_tensor}, absl::make_unique<GPUOperation>(std::move(operation)),
{BHWC(1, 1, 1, 2), BHWC(1, 1, 1, 2)},
{&dst_tensor, &dst_tensor_ind}));
RETURN_IF_ERROR(PointWiseNear({8.0f, 7.0f}, dst_tensor.data, eps));
for (auto& v : dst_tensor_ind.data) {
v = static_cast<int>(v);
}
RETURN_IF_ERROR(PointWiseNear({0.0f, 3.0f}, dst_tensor_ind.data, eps));
}
}
return absl::OkStatus();
}
} // namespace gpu
} // namespace tflite

View File

@ -0,0 +1,33 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_POOLING_TEST_UTIL_H_
#define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_POOLING_TEST_UTIL_H_
#include "tensorflow/lite/delegates/gpu/common/status.h"
#include "tensorflow/lite/delegates/gpu/common/task/testing_util.h"
namespace tflite {
namespace gpu {
absl::Status AveragePoolingTest(TestExecutionEnvironment* env);
absl::Status AveragePoolingNonEmptyPaddingTest(TestExecutionEnvironment* env);
absl::Status MaxPoolingTest(TestExecutionEnvironment* env);
absl::Status MaxPoolingIndicesTest(TestExecutionEnvironment* env);
} // namespace gpu
} // namespace tflite
#endif // TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_PRELU_TEST_UTIL_H_

View File

@ -336,6 +336,7 @@ objc_library(
deps = [
":pooling",
":test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:pooling_test_util",
],
)
@ -753,6 +754,7 @@ objc_library(
"//tensorflow/lite/delegates/gpu/common/tasks:lstm_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:max_unpooling_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:padding_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:pooling_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:prelu_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:quantize_and_dequantize_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:reduce_test_util",

View File

@ -21,6 +21,7 @@ limitations under the License.
#include "tensorflow/lite/delegates/gpu/common/operations.h"
#include "tensorflow/lite/delegates/gpu/common/shape.h"
#include "tensorflow/lite/delegates/gpu/common/status.h"
#include "tensorflow/lite/delegates/gpu/common/tasks/pooling_test_util.h"
#include "tensorflow/lite/delegates/gpu/common/tensor.h"
#include "tensorflow/lite/delegates/gpu/common/util.h"
#include "tensorflow/lite/delegates/gpu/metal/compute_task_descriptor.h"
@ -39,9 +40,8 @@ using ::tflite::gpu::metal::SingleOpModel;
@interface PoolingTest : XCTestCase
@end
@implementation PoolingTest
- (void)setUp {
[super setUp];
@implementation PoolingTest {
tflite::gpu::metal::MetalExecutionEnvironment exec_env_;
}
- (void)testPoolingMaxKernel2x2Stride2x2WithIndices {
@ -130,4 +130,24 @@ using ::tflite::gpu::metal::SingleOpModel;
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testAveragePooling {
auto status = AveragePoolingTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testAveragePoolingNonEmptyPadding {
auto status = AveragePoolingNonEmptyPaddingTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testMaxPooling {
auto status = MaxPoolingTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testMaxPoolingIndices {
auto status = MaxPoolingIndicesTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
@end