Add the tf2xla_supported_ops tool, which dumps ops supported by tf2xla.

Also fix a TODO in XlaOpRegistry to filter by the types allowed by the OpDef.

Also see #14798

PiperOrigin-RevId: 177986664
This commit is contained in:
A. Unique TensorFlower 2017-12-05 11:41:24 -08:00 committed by TensorFlower Gardener
parent e72ecbdb7a
commit 4b0a236848
8 changed files with 707 additions and 11 deletions

View File

@ -1,6 +1,6 @@
licenses(["notice"]) # Apache 2.0
load("//tensorflow:tensorflow.bzl", "tf_cc_test")
load("//tensorflow:tensorflow.bzl", "tf_cc_binary", "tf_cc_test")
package_group(
name = "internal",
@ -25,6 +25,30 @@ package(
load("@local_config_cuda//cuda:build_defs.bzl", "if_cuda_is_configured")
load("//tensorflow/compiler/xla:xla.bzl", "xla_proto_library")
cc_library(
name = "tf2xla_supported_ops_lib",
srcs = ["tf2xla_supported_ops.cc"],
hdrs = ["tf2xla_supported_ops.h"],
visibility = ["//visibility:public"],
deps = [
":xla_compiler",
"//tensorflow/compiler/tf2xla/kernels:xla_cpu_only_ops",
"//tensorflow/compiler/tf2xla/kernels:xla_ops",
"//tensorflow/core:framework",
"//tensorflow/core:framework_internal",
"//tensorflow/core:lib",
"//tensorflow/core:ops",
"//tensorflow/core:protos_all_cc",
],
)
tf_cc_binary(
name = "tf2xla_supported_ops",
srcs = ["tf2xla_supported_ops_main.cc"],
visibility = ["//visibility:public"],
deps = [":tf2xla_supported_ops_lib"],
)
xla_proto_library(
name = "tf2xla_proto",
srcs = ["tf2xla.proto"],

View File

@ -0,0 +1,242 @@
**Supported operators for device: XLA_CPU_JIT**
Operator | Type Constraint
------------------------------------- | ---------------
`Abs` | `T={double,float,int32,int64}`
`Acosh` | `T={complex64,double,float}`
`Add` | `T={complex64,double,float,int32,int64}`
`AddN` | `T={complex64,double,float,int32,int64,uint32,uint64}`
`All` | `Tidx={int32,int64}`
`Angle` | `Tout={double,float}`<br>`T={complex64}`
`Any` | `Tidx={int32,int64}`
`ApproximateEqual` | `T={complex64,double,float,int32,int64,uint32,uint64}`
`ArgMax` | `Tidx={int32,int64}`<br>`output_type={int32,int64}`<br>`T={float}`
`ArgMin` | `Tidx={int32,int64}`<br>`output_type={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`Asinh` | `T={complex64,double,float}`
`AssignAddVariableOp` | `dtype={complex64,double,float,int32,int64,uint32,uint64}`
`AssignSubVariableOp` | `dtype={complex64,double,float,int32,int64,uint32,uint64}`
`AssignVariableOp` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Atan2` | `T={double,float}`
`Atanh` | `T={complex64,double,float}`
`AvgPool` | `T={double,float}`
`AvgPool3D` | `T={double,float}`
`AvgPool3DGrad` | `T={double,float}`
`AvgPoolGrad` | `T={double,float}`
`BatchMatMul` | `T={complex64,double,float,int32}`
`BatchToSpace` | `Tidx={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`BatchToSpaceND` | `Tcrops={int32,int64}`<br>`Tblock_shape={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`BiasAdd` | `T={complex64,double,float,int32,int64,uint32,uint64}`
`BiasAddGrad` | `T={complex64,double,float,int32,int64,uint32,uint64}`
`BiasAddV1` | `T={complex64,double,float,int32,int64,uint32,uint64}`
`BitwiseAnd` | `T={int32,int64,uint32,uint64}`
`BitwiseOr` | `T={int32,int64,uint32,uint64}`
`BroadcastArgs` | `T={int32,int64}`
`BroadcastGradientArgs` | `T={int32,int64}`
`Cast` | `DstT={bool,complex64,double,float,int32,int64,uint32,uint64}`<br>`SrcT={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Ceil` | `T={double,float}`
`Cholesky` | `T={complex64,double,float}`
`Complex` | `Tout={complex64}`<br>`T={double,float}`
`ComplexAbs` | `Tout={double,float}`<br>`T={complex64}`
`Concat` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ConcatOffset` |
`ConcatV2` | `Tidx={int32}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Conj` | `T={complex64}`
`Const` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ControlTrigger` |
`Conv2D` | `T={float}`
`Conv2DBackpropFilter` | `T={float}`
`Conv2DBackpropInput` | `T={float}`
`Conv3D` | `T={double,float}`
`Conv3DBackpropFilterV2` | `T={double,float}`
`Conv3DBackpropInputV2` | `T={double,float}`
`Cos` | `T={complex64,double,float}`
`Cosh` | `T={complex64,double,float}`
`Cross` | `T={double,float,int32,int64,uint32,uint64}`
`Cumprod` | `Tidx={int32,int64}`<br>`T={float}`
`Cumsum` | `Tidx={int32,int64}`<br>`T={float}`
`DepthToSpace` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`DepthwiseConv2dNative` | `T={double,float}`
`DepthwiseConv2dNativeBackpropFilter` | `T={double,float}`
`DepthwiseConv2dNativeBackpropInput` | `T={double,float}`
`Diag` | `T={complex64,double,float,int32,int64}`
`DiagPart` | `T={complex64,double,float,int32,int64}`
`Div` | `T={complex64,double,float,int32,int64}`
`DynamicStitch` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Elu` | `T={double,float}`
`EluGrad` | `T={double,float}`
`Equal` | `T={bool,complex64,double,float,int32,int64}`
`Exp` | `T={complex64,double,float}`
`ExpandDims` | `Tdim={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Expm1` | `T={complex64,double,float}`
`Fill` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Floor` | `T={double,float}`
`FloorDiv` | `T={complex64,double,float,int32,int64}`
`FloorMod` | `T={double,float,int32,int64}`
`FusedBatchNorm` | `T={float}`
`FusedBatchNormGrad` | `T={float}`
`FusedBatchNormGradV2` | `U={float}`<br>`T={float}`
`FusedBatchNormV2` | `U={float}`<br>`T={float}`
`Gather` | `Tindices={int32,int64}`<br>`Tparams={bool,complex64,double,float,int32,int64,uint32,uint64}`
`GatherV2` | `Taxis={int32,int64}`<br>`Tindices={int32,int64}`<br>`Tparams={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Greater` | `T={double,float,int32,int64,uint32,uint64}`
`GreaterEqual` | `T={double,float,int32,int64,uint32,uint64}`
`Identity` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`IdentityN` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Imag` | `Tout={double,float}`<br>`T={complex64}`
`Inv` | `T={complex64,double,float,int32,int64}`
`Invert` | `T={int32,int64,uint32,uint64}`
`InvertPermutation` | `T={int32}`
`IsFinite` | `T={double,float}`
`IsInf` | `T={double,float}`
`IsNan` | `T={double,float}`
`L2Loss` | `T={double,float}`
`LRN` | `T={float}`
`LRNGrad` | `T={float}`
`LeftShift` | `T={int32,int64,uint32,uint64}`
`Less` | `T={double,float,int32,int64,uint32,uint64}`
`LessEqual` | `T={double,float,int32,int64,uint32,uint64}`
`LinSpace` | `Tidx={int32,int64}`<br>`T={double,float}`
`Log` | `T={complex64,double,float}`
`Log1p` | `T={complex64,double,float}`
`LogSoftmax` | `T={double,float}`
`LogicalAnd` |
`LogicalNot` |
`LogicalOr` |
`MatMul` | `T={complex64,double,float}`
`MatrixDiag` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`MatrixDiagPart` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Max` | `Tidx={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`MaxPool` | `T={double,float,int32,int64}`
`MaxPool3D` | `T={float}`
`MaxPool3DGrad` | `TInput={float}`<br>`T={float}`
`MaxPoolGrad` | `T={double,float,int32,int64,uint32,uint64}`
`Maximum` | `T={double,float,int32,int64}`
`Mean` | `Tidx={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`Min` | `Tidx={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`Minimum` | `T={double,float,int32,int64}`
`MirrorPad` | `Tpaddings={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Mod` | `T={double,float,int32,int64}`
`Mul` | `T={complex64,double,float,int32,int64}`
`Multinomial` | `output_dtype={int32,int64}`<br>`T={double,float,int32,int64,uint32,uint64}`
`Neg` | `T={complex64,double,float,int32,int64}`
`NoOp` |
`NotEqual` | `T={bool,complex64,double,float,int32,int64}`
`OneHot` | `TI={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`OnesLike` | `T={bool,complex64,double,float,int32,int64}`
`Pack` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Pad` | `Tpaddings={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`PadV2` | `Tpaddings={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ParallelDynamicStitch` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Pow` | `T={complex64,double,float,int32,int64}`
`PreventGradient` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Prod` | `Tidx={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`QuantizeAndDequantizeV2` | `T={double,float}`
`RandomStandardNormal` | `dtype={float}`
`RandomUniform` | `T={int32,int64}`<br>`dtype={double,float}`
`RandomUniformInt` | `T={int32,int64}`<br>`Tout={int32,int64}`
`Range` | `Tidx={double,float,int32,int64}`
`Rank` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ReadVariableOp` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Real` | `Tout={double,float}`<br>`T={complex64}`
`RealDiv` | `T={complex64,double,float,int32,int64}`
`Reciprocal` | `T={complex64,double,float,int32,int64}`
`ReciprocalGrad` | `T={complex64,double,float}`
`Relu` | `T={double,float,int32,int64,uint32,uint64}`
`Relu6` | `T={double,float,int32,int64,uint32,uint64}`
`Relu6Grad` | `T={double,float,int32,int64,uint32,uint64}`
`ReluGrad` | `T={double,float,int32,int64,uint32,uint64}`
`Reshape` | `Tshape={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ResourceApplyAdagrad` | `T={double,float}`
`ResourceApplyAdam` | `T={double,float}`
`ResourceApplyFtrl` | `T={double,float}`
`ResourceApplyFtrlV2` | `T={double,float}`
`ResourceApplyGradientDescent` | `T={double,float}`
`ResourceApplyMomentum` | `T={double,float}`
`ResourceApplyRMSProp` | `T={double,float}`
`ResourceGather` | `Tindices={int32,int64}`<br>`dtype={complex64,double,float,int32,int64,uint32,uint64}`
`ResourceStridedSliceAssign` | `Index={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Reverse` | `T={bool,complex64,double,float,int32,int64}`
`ReverseV2` | `T={bool,complex64,double,float,int32,int64}`<br>`Tidx={int32,int64}`
`RightShift` | `T={int32,int64,uint32,uint64}`
`Rint` | `T={double,float}`
`Round` | `T={complex64,double,float,int32,int64}`
`Rsqrt` | `T={complex64,double,float}`
`RsqrtGrad` | `T={complex64,double,float}`
`Select` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Selu` | `T={double,float}`
`SeluGrad` | `T={double,float}`
`Shape` | `out_type={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ShapeN` | `out_type={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Sigmoid` | `T={complex64,double,float}`
`SigmoidGrad` | `T={complex64,double,float}`
`Sign` | `T={complex64,double,float,int32,int64}`
`Sin` | `T={complex64,double,float}`
`Sinh` | `T={complex64,double,float}`
`Size` | `out_type={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Slice` | `Index={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Softmax` | `T={double,float}`
`SoftmaxCrossEntropyWithLogits` | `T={double,float}`
`Softplus` | `T={double,float,int32,int64,uint32,uint64}`
`SoftplusGrad` | `T={double,float,int32,int64,uint32,uint64}`
`Softsign` | `T={double,float,int32,int64,uint32,uint64}`
`SoftsignGrad` | `T={double,float,int32,int64,uint32,uint64}`
`SpaceToBatch` | `Tpaddings={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`SpaceToBatchND` | `Tblock_shape={int32,int64}`<br>`Tpaddings={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`SpaceToDepth` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`SparseMatMul` | `Tb={float}`<br>`Ta={float}`
`SparseSoftmaxCrossEntropyWithLogits` | `Tlabels={int32,int64}`<br>`T={double,float}`
`Split` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`SplitV` | `Tlen={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Sqrt` | `T={complex64,double,float}`
`SqrtGrad` | `T={complex64,double,float}`
`Square` | `T={complex64,double,float,int32,int64}`
`SquaredDifference` | `T={complex64,double,float,int32,int64}`
`Squeeze` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StackCloseV2` |
`StackPopV2` | `elem_type={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StackPushV2` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StackV2` | `elem_type={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StatelessRandomNormal` | `Tseed={int32}`<br>`T={int32,int64}`<br>`dtype={float}`
`StatelessRandomUniform` | `Tseed={int32}`<br>`T={int32,int64}`<br>`dtype={float}`
`StopGradient` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StridedSlice` | `Index={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StridedSliceGrad` | `Index={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Sub` | `T={complex64,double,float,int32,int64}`
`Sum` | `Tidx={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`SymbolicGradient` | `Tout={bool,complex64,double,float,int32,int64,uint32,uint64}`<br>`Tin={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Tan` | `T={complex64,double,float,int32,int64}`
`Tanh` | `T={complex64,double,float}`
`TanhGrad` | `T={complex64,double,float}`
`TensorArrayCloseV3` |
`TensorArrayConcatV3` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArrayGatherV3` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArrayGradV3` |
`TensorArrayReadV3` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArrayScatterV3` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArraySizeV3` |
`TensorArraySplitV3` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArrayV3` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArrayWriteV3` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Tile` | `Tmultiples={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Transpose` | `Tperm={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TruncateDiv` | `T={complex64,double,float,int32,int64}`
`TruncateMod` | `T={double,float,int32,int64}`
`TruncatedNormal` | `T={int32,int64}`<br>`dtype={double,float}`
`Unpack` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`UnsortedSegmentSum` | `Tnumsegments={int32,int64}`<br>`Tindices={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`VarIsInitializedOp` |
`VariableShape` | `out_type={int32,int64}`
`XlaWhile` | `T={bool,complex64,double,float,int32,int64,resource,uint32,uint64}`
`ZerosLike` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`_Arg` | `T={bool,complex64,double,float,int32,int64,resource,uint32,uint64}`
`_ArrayToList` | `out_types={bool,complex64,double,float,int32,int64,uint32,uint64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`_ListToArray` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`<br>`Tin={bool,complex64,double,float,int32,int64,uint32,uint64}`
`_Retval` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`_XLARecv` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`_XLASend` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
To regenerate this table, run:
```shell
bazel run -c opt -- tensorflow/compiler/tf2xla:tf2xla_supported_ops --device=XLA_CPU_JIT
```

View File

@ -0,0 +1,238 @@
**Supported operators for device: XLA_GPU_JIT**
Operator | Type Constraint
------------------------------------- | ---------------
`Abs` | `T={double,float,int32,int64}`
`Acosh` | `T={complex64,double,float}`
`Add` | `T={complex64,double,float,int32,int64}`
`AddN` | `T={complex64,double,float,int32,int64,uint32,uint64}`
`All` | `Tidx={int32,int64}`
`Angle` | `Tout={double,float}`<br>`T={complex64}`
`Any` | `Tidx={int32,int64}`
`ApproximateEqual` | `T={complex64,double,float,int32,int64,uint32,uint64}`
`ArgMax` | `Tidx={int32,int64}`<br>`output_type={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`ArgMin` | `Tidx={int32,int64}`<br>`output_type={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`Asinh` | `T={complex64,double,float}`
`AssignAddVariableOp` | `dtype={complex64,double,float,int32,int64,uint32,uint64}`
`AssignSubVariableOp` | `dtype={complex64,double,float,int32,int64,uint32,uint64}`
`AssignVariableOp` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Atan2` | `T={double,float}`
`Atanh` | `T={complex64,double,float}`
`AvgPool` | `T={double,float}`
`AvgPool3D` | `T={double,float}`
`AvgPool3DGrad` | `T={double,float}`
`AvgPoolGrad` | `T={double,float}`
`BatchMatMul` | `T={complex64,double,float,int32}`
`BatchToSpace` | `Tidx={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`BatchToSpaceND` | `Tcrops={int32,int64}`<br>`Tblock_shape={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`BiasAdd` | `T={complex64,double,float,int32,int64,uint32,uint64}`
`BiasAddGrad` | `T={complex64,double,float,int32,int64,uint32,uint64}`
`BiasAddV1` | `T={complex64,double,float,int32,int64,uint32,uint64}`
`BitwiseAnd` | `T={int32,int64,uint32,uint64}`
`BitwiseOr` | `T={int32,int64,uint32,uint64}`
`BroadcastArgs` | `T={int32,int64}`
`BroadcastGradientArgs` | `T={int32,int64}`
`Cast` | `DstT={bool,complex64,double,float,int32,int64,uint32,uint64}`<br>`SrcT={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Ceil` | `T={double,float}`
`Cholesky` | `T={complex64,double,float}`
`Complex` | `Tout={complex64}`<br>`T={double,float}`
`ComplexAbs` | `Tout={double,float}`<br>`T={complex64}`
`Concat` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ConcatOffset` |
`ConcatV2` | `Tidx={int32}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Conj` | `T={complex64}`
`Const` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ControlTrigger` |
`Conv2D` | `T={float}`
`Conv2DBackpropFilter` | `T={float}`
`Conv2DBackpropInput` | `T={float}`
`Conv3D` | `T={double,float}`
`Conv3DBackpropFilterV2` | `T={double,float}`
`Conv3DBackpropInputV2` | `T={double,float}`
`Cos` | `T={complex64,double,float}`
`Cosh` | `T={complex64,double,float}`
`Cross` | `T={double,float,int32,int64,uint32,uint64}`
`Cumprod` | `Tidx={int32,int64}`<br>`T={float}`
`Cumsum` | `Tidx={int32,int64}`<br>`T={float}`
`DepthToSpace` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`DepthwiseConv2dNative` | `T={double,float}`
`DepthwiseConv2dNativeBackpropFilter` | `T={double,float}`
`DepthwiseConv2dNativeBackpropInput` | `T={double,float}`
`Diag` | `T={complex64,double,float,int32,int64}`
`DiagPart` | `T={complex64,double,float,int32,int64}`
`Div` | `T={complex64,double,float,int32,int64}`
`DynamicStitch` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Elu` | `T={double,float}`
`EluGrad` | `T={double,float}`
`Equal` | `T={bool,complex64,double,float,int32,int64}`
`Exp` | `T={complex64,double,float}`
`ExpandDims` | `Tdim={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Expm1` | `T={complex64,double,float}`
`Fill` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Floor` | `T={double,float}`
`FloorDiv` | `T={complex64,double,float,int32,int64}`
`FloorMod` | `T={double,float,int32,int64}`
`FusedBatchNorm` | `T={float}`
`FusedBatchNormGrad` | `T={float}`
`FusedBatchNormGradV2` | `U={float}`<br>`T={float}`
`FusedBatchNormV2` | `U={float}`<br>`T={float}`
`Gather` | `Tindices={int32,int64}`<br>`Tparams={bool,complex64,double,float,int32,int64,uint32,uint64}`
`GatherV2` | `Taxis={int32,int64}`<br>`Tindices={int32,int64}`<br>`Tparams={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Greater` | `T={double,float,int32,int64,uint32,uint64}`
`GreaterEqual` | `T={double,float,int32,int64,uint32,uint64}`
`Identity` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`IdentityN` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Imag` | `Tout={double,float}`<br>`T={complex64}`
`Inv` | `T={complex64,double,float,int32,int64}`
`Invert` | `T={int32,int64,uint32,uint64}`
`InvertPermutation` | `T={int32}`
`IsFinite` | `T={double,float}`
`IsInf` | `T={double,float}`
`IsNan` | `T={double,float}`
`L2Loss` | `T={double,float}`
`LRN` | `T={float}`
`LRNGrad` | `T={float}`
`LeftShift` | `T={int32,int64,uint32,uint64}`
`Less` | `T={double,float,int32,int64,uint32,uint64}`
`LessEqual` | `T={double,float,int32,int64,uint32,uint64}`
`LinSpace` | `Tidx={int32,int64}`<br>`T={double,float}`
`Log` | `T={complex64,double,float}`
`Log1p` | `T={complex64,double,float}`
`LogSoftmax` | `T={double,float}`
`LogicalAnd` |
`LogicalNot` |
`LogicalOr` |
`MatMul` | `T={complex64,double,float}`
`MatrixDiag` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`MatrixDiagPart` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Max` | `Tidx={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`MaxPool` | `T={double,float,int32,int64}`
`MaxPool3D` | `T={float}`
`MaxPool3DGrad` | `TInput={float}`<br>`T={float}`
`MaxPoolGrad` | `T={double,float,int32,int64,uint32,uint64}`
`Maximum` | `T={double,float,int32,int64}`
`Mean` | `Tidx={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`Min` | `Tidx={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`Minimum` | `T={double,float,int32,int64}`
`MirrorPad` | `Tpaddings={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Mod` | `T={double,float,int32,int64}`
`Mul` | `T={complex64,double,float,int32,int64}`
`Multinomial` | `output_dtype={int32,int64}`<br>`T={double,float,int32,int64,uint32,uint64}`
`Neg` | `T={complex64,double,float,int32,int64}`
`NoOp` |
`NotEqual` | `T={bool,complex64,double,float,int32,int64}`
`OneHot` | `TI={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`OnesLike` | `T={bool,complex64,double,float,int32,int64}`
`Pack` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Pad` | `Tpaddings={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`PadV2` | `Tpaddings={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ParallelDynamicStitch` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Pow` | `T={complex64,double,float,int32,int64}`
`PreventGradient` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Prod` | `Tidx={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`QuantizeAndDequantizeV2` | `T={double,float}`
`Range` | `Tidx={double,float,int32,int64}`
`Rank` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ReadVariableOp` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Real` | `Tout={double,float}`<br>`T={complex64}`
`RealDiv` | `T={complex64,double,float,int32,int64}`
`Reciprocal` | `T={complex64,double,float,int32,int64}`
`ReciprocalGrad` | `T={complex64,double,float}`
`Relu` | `T={double,float,int32,int64,uint32,uint64}`
`Relu6` | `T={double,float,int32,int64,uint32,uint64}`
`Relu6Grad` | `T={double,float,int32,int64,uint32,uint64}`
`ReluGrad` | `T={double,float,int32,int64,uint32,uint64}`
`Reshape` | `Tshape={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ResourceApplyAdagrad` | `T={double,float}`
`ResourceApplyAdam` | `T={double,float}`
`ResourceApplyFtrl` | `T={double,float}`
`ResourceApplyFtrlV2` | `T={double,float}`
`ResourceApplyGradientDescent` | `T={double,float}`
`ResourceApplyMomentum` | `T={double,float}`
`ResourceApplyRMSProp` | `T={double,float}`
`ResourceGather` | `Tindices={int32,int64}`<br>`dtype={complex64,double,float,int32,int64,uint32,uint64}`
`ResourceStridedSliceAssign` | `Index={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Reverse` | `T={bool,complex64,double,float,int32,int64}`
`ReverseV2` | `T={bool,complex64,double,float,int32,int64}`<br>`Tidx={int32,int64}`
`RightShift` | `T={int32,int64,uint32,uint64}`
`Rint` | `T={double,float}`
`Round` | `T={complex64,double,float,int32,int64}`
`Rsqrt` | `T={complex64,double,float}`
`RsqrtGrad` | `T={complex64,double,float}`
`Select` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Selu` | `T={double,float}`
`SeluGrad` | `T={double,float}`
`Shape` | `out_type={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`ShapeN` | `out_type={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Sigmoid` | `T={complex64,double,float}`
`SigmoidGrad` | `T={complex64,double,float}`
`Sign` | `T={complex64,double,float,int32,int64}`
`Sin` | `T={complex64,double,float}`
`Sinh` | `T={complex64,double,float}`
`Size` | `out_type={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Slice` | `Index={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Softmax` | `T={double,float}`
`SoftmaxCrossEntropyWithLogits` | `T={double,float}`
`Softplus` | `T={double,float,int32,int64,uint32,uint64}`
`SoftplusGrad` | `T={double,float,int32,int64,uint32,uint64}`
`Softsign` | `T={double,float,int32,int64,uint32,uint64}`
`SoftsignGrad` | `T={double,float,int32,int64,uint32,uint64}`
`SpaceToBatch` | `Tpaddings={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`SpaceToBatchND` | `Tblock_shape={int32,int64}`<br>`Tpaddings={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`SpaceToDepth` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`SparseMatMul` | `Tb={float}`<br>`Ta={float}`
`SparseSoftmaxCrossEntropyWithLogits` | `Tlabels={int32,int64}`<br>`T={double,float}`
`Split` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`SplitV` | `Tlen={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Sqrt` | `T={complex64,double,float}`
`SqrtGrad` | `T={complex64,double,float}`
`Square` | `T={complex64,double,float,int32,int64}`
`SquaredDifference` | `T={complex64,double,float,int32,int64}`
`Squeeze` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StackCloseV2` |
`StackPopV2` | `elem_type={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StackPushV2` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StackV2` | `elem_type={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StatelessRandomNormal` | `Tseed={int32}`<br>`T={int32,int64}`<br>`dtype={float}`
`StatelessRandomUniform` | `Tseed={int32}`<br>`T={int32,int64}`<br>`dtype={float}`
`StopGradient` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StridedSlice` | `Index={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`StridedSliceGrad` | `Index={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Sub` | `T={complex64,double,float,int32,int64}`
`Sum` | `Tidx={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`SymbolicGradient` | `Tout={bool,complex64,double,float,int32,int64,uint32,uint64}`<br>`Tin={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Tan` | `T={complex64,double,float,int32,int64}`
`Tanh` | `T={complex64,double,float}`
`TanhGrad` | `T={complex64,double,float}`
`TensorArrayCloseV3` |
`TensorArrayConcatV3` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArrayGatherV3` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArrayGradV3` |
`TensorArrayReadV3` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArrayScatterV3` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArraySizeV3` |
`TensorArraySplitV3` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArrayV3` | `dtype={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TensorArrayWriteV3` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Tile` | `Tmultiples={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`Transpose` | `Tperm={int32,int64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`TruncateDiv` | `T={complex64,double,float,int32,int64}`
`TruncateMod` | `T={double,float,int32,int64}`
`Unpack` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`UnsortedSegmentSum` | `Tnumsegments={int32,int64}`<br>`Tindices={int32,int64}`<br>`T={complex64,double,float,int32,int64,uint32,uint64}`
`VarIsInitializedOp` |
`VariableShape` | `out_type={int32,int64}`
`XlaWhile` | `T={bool,complex64,double,float,int32,int64,resource,uint32,uint64}`
`ZerosLike` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`_Arg` | `T={bool,complex64,double,float,int32,int64,resource,uint32,uint64}`
`_ArrayToList` | `out_types={bool,complex64,double,float,int32,int64,uint32,uint64}`<br>`T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`_ListToArray` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`<br>`Tin={bool,complex64,double,float,int32,int64,uint32,uint64}`
`_Retval` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`_XLARecv` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
`_XLASend` | `T={bool,complex64,double,float,int32,int64,uint32,uint64}`
To regenerate this table, run:
```shell
bazel run -c opt -- tensorflow/compiler/tf2xla:tf2xla_supported_ops --device=XLA_GPU_JIT
```

View File

@ -0,0 +1,97 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/tf2xla/tf2xla_supported_ops.h"
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>
#include "tensorflow/compiler/tf2xla/xla_op_registry.h"
#include "tensorflow/core/framework/kernel_def.pb.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/framework/types.pb.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/util/command_line_flags.h"
namespace tensorflow {
namespace tf2xla {
namespace {
void PrintSupportedOps(const string& device, const string& regen_run) {
XlaOpRegistry::RegisterCompilationKernels();
std::vector<const KernelDef*> kdefs =
XlaOpRegistry::DeviceKernels(device,
/*include_compilation_only_kernels=*/true);
std::sort(
kdefs.begin(), kdefs.end(),
[](const KernelDef* a, const KernelDef* b) { return a->op() < b->op(); });
std::cout << "**Supported operators for device: " << device << "**\n\n"
<< "Operator | Type Constraint\n"
<< "-------- | ---------------" << std::endl;
for (const KernelDef* kdef : kdefs) {
std::vector<string> constraints;
for (const KernelDef::AttrConstraint& constraint : kdef->constraint()) {
std::vector<string> types;
for (int type : constraint.allowed_values().list().type()) {
types.push_back(DataTypeString(static_cast<DataType>(type)));
}
std::sort(types.begin(), types.end());
constraints.push_back("`" + constraint.name() + "={" +
str_util::Join(types, ",") + "}`");
}
std::cout << "`" << kdef->op() << "` | "
<< str_util::Join(constraints, "<br>") << std::endl;
}
std::cout << "\nTo regenerate this table, run:\n\n```shell\n"
<< regen_run << " --device=" << device << "\n```" << std::endl;
}
} // namespace
void SupportedOpsMain(int argc, char** argv, const char* regen_run) {
std::vector<string> device_names = XlaOpRegistry::BackendNames();
std::sort(device_names.begin(), device_names.end());
// Set up and parse flags.
string device;
std::vector<Flag> flag_list = {
{"device", &device,
"Name of the compilation device for which to print supported ops, "
"one of: " +
str_util::Join(device_names, ",")},
};
string usage = Flags::Usage(argv[0], flag_list);
bool parsed_flags_ok = Flags::Parse(&argc, argv, flag_list);
QCHECK(parsed_flags_ok) << "\n" << usage;
QCHECK(XlaOpRegistry::IsBackendRegistered(device))
<< "\nUnknown device: " << device << "\n"
<< usage;
// Run the program.
port::InitMain(usage.c_str(), &argc, &argv);
QCHECK(argc == 1) << "\nERROR: This command does not take any arguments "
"other than flags\n\n"
<< usage;
PrintSupportedOps(device, regen_run);
}
} // namespace tf2xla
} // namespace tensorflow

View File

@ -0,0 +1,33 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_COMPILER_TF2XLA_TF2XLA_SUPPORTED_OPS_H_
#define TENSORFLOW_COMPILER_TF2XLA_TF2XLA_SUPPORTED_OPS_H_
namespace tensorflow {
namespace tf2xla {
// The implementation of a main function for a binary that prints a table of
// supported tf2xla operators for a given device, along with their type
// constraints, to stdout.
//
// Pass the argc and argv from main, unmodified. Use regen_run to specify the
// command used to regenerate the table.
void SupportedOpsMain(int argc, char** argv, const char* regen_run);
} // namespace tf2xla
} // namespace tensorflow
#endif // TENSORFLOW_COMPILER_TF2XLA_TF2XLA_SUPPORTED_OPS_H_

View File

@ -0,0 +1,22 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/compiler/tf2xla/tf2xla_supported_ops.h"
int main(int argc, char** argv) {
const char* regen_run =
"bazel run -c opt -- tensorflow/compiler/tf2xla:tf2xla_supported_ops";
tensorflow::tf2xla::SupportedOpsMain(argc, argv, regen_run);
}

View File

@ -26,6 +26,7 @@ limitations under the License.
#include "tensorflow/core/framework/device_base.h"
#include "tensorflow/core/framework/kernel_def.pb.h"
#include "tensorflow/core/framework/node_def.pb.h"
#include "tensorflow/core/framework/op_def_util.h"
#include "tensorflow/core/platform/mem.h"
#include "tensorflow/core/platform/stream_executor_no_cuda.h"
@ -187,22 +188,39 @@ void XlaOpRegistry::RegisterCompilationKernels() {
// Constrain each type attribute to the intersection of:
// a) the types supported by the backend, and
// b) the attribute's type constraints.
// TODO(phawkins): it may be necessary to also take the intersection with
// the set of types supported by the OpDef.
// b) the types allowed by the OpDef, and
// c) the type constraints.
for (const string& type_attr : type_attrs) {
KernelDef::AttrConstraint* attr_constraint = kdef->add_constraint();
attr_constraint->set_name(type_attr);
auto* allowed_values =
attr_constraint->mutable_allowed_values()->mutable_list();
auto it = op_registration->type_constraints.find(type_attr);
const OpDef::AttrDef& op_def_attr = *FindAttr(type_attr, *op_def);
const auto* op_def_allowed_types =
op_def_attr.has_allowed_values()
? &op_def_attr.allowed_values().list().type()
: nullptr;
auto constraint_it = op_registration->type_constraints.find(type_attr);
const std::set<DataType>* type_constraints =
constraint_it != op_registration->type_constraints.end()
? &constraint_it->second
: nullptr;
for (DataType dtype : backend.second.supported_types) {
if (it == op_registration->type_constraints.end() ||
(it != op_registration->type_constraints.end() &&
it->second.find(dtype) != it->second.end())) {
allowed_values->add_type(dtype);
// Filter out types that aren't allowed by the OpDef.
if (op_def_allowed_types != nullptr &&
std::find(op_def_allowed_types->begin(),
op_def_allowed_types->end(),
dtype) == op_def_allowed_types->end()) {
continue;
}
// Filter out types based on the type constraints.
if (type_constraints != nullptr &&
type_constraints->find(dtype) == type_constraints->end()) {
continue;
}
// Passed all the filters, this type is allowed.
allowed_values->add_type(dtype);
}
if (op_registration->allow_resource_types) {
allowed_values->add_type(DT_RESOURCE);
@ -245,6 +263,22 @@ std::vector<const KernelDef*> XlaOpRegistry::DeviceKernels(
return kernels;
}
std::vector<string> XlaOpRegistry::BackendNames() {
std::vector<string> names;
XlaOpRegistry& registry = Instance();
mutex_lock lock(registry.mutex_);
for (const auto& backend_pair : registry.backends_) {
names.push_back(backend_pair.first);
}
return names;
}
bool XlaOpRegistry::IsBackendRegistered(const string& name) {
XlaOpRegistry& registry = Instance();
mutex_lock lock(registry.mutex_);
return registry.backends_.find(name) != registry.backends_.end();
}
XlaOpRegistry& XlaOpRegistry::Instance() {
static XlaOpRegistry* r = new XlaOpRegistry;
return *r;

View File

@ -97,6 +97,12 @@ class XlaOpRegistry {
gtl::ArraySlice<DataType> supported_types,
BackendOpFilter op_filter);
// Returns the names of the registered backends.
static std::vector<string> BackendNames();
// Returns true iff a backend with the given name is registered.
static bool IsBackendRegistered(const string& name);
// Registers `device_name` for XLA compilation, using information from
// `registration`.
static void RegisterCompilationDevice(const string& device_name,
@ -116,8 +122,8 @@ class XlaOpRegistry {
static void RegisterCompilationKernels();
// Returns KernelDefs for compilation ops registered on
// 'compilation_device_name'.
// Does not include kernels registered as CompilationOnly.
// 'compilation_device_name'. Does not include kernels registered as
// CompilationOnly, iff include_compilation_only_kernels=false.
static std::vector<const KernelDef*> DeviceKernels(
const string& compilation_device_name,
bool include_compilation_only_kernels);