Deprecate random_binomial in favor of random_bernoulli.
PiperOrigin-RevId: 299205387 Change-Id: Id347f893f8e8fd6bf573c62827e96ec4d1de3343
This commit is contained in:
parent
a1d2f94d2e
commit
4ab3153140
tensorflow
python/keras
tools/api/golden
@ -79,6 +79,7 @@ from tensorflow.python.util import nest
|
||||
from tensorflow.python.util import object_identity
|
||||
from tensorflow.python.util import tf_contextlib
|
||||
from tensorflow.python.util import tf_inspect
|
||||
from tensorflow.python.util.deprecation import deprecated
|
||||
from tensorflow.python.util.tf_export import keras_export
|
||||
|
||||
py_all = all
|
||||
@ -5703,10 +5704,13 @@ def random_uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None):
|
||||
shape, minval=minval, maxval=maxval, dtype=dtype, seed=seed)
|
||||
|
||||
|
||||
@deprecated(None, 'Use `tf.keras.backend.random_bernoulli` instead.')
|
||||
@keras_export('keras.backend.random_binomial')
|
||||
def random_binomial(shape, p=0.0, dtype=None, seed=None):
|
||||
"""Returns a tensor with random binomial distribution of values.
|
||||
|
||||
DEPRECATED, use `tf.keras.backend.random_bernoulli` instead.
|
||||
|
||||
The binomial distribution with parameters `n` and `p` is the probability
|
||||
distribution of the number of successful Bernoulli process. Only supports
|
||||
`n` = 1 for now.
|
||||
@ -5729,6 +5733,22 @@ def random_binomial(shape, p=0.0, dtype=None, seed=None):
|
||||
array_ops.ones(shape, dtype=dtype), array_ops.zeros(shape, dtype=dtype))
|
||||
|
||||
|
||||
@keras_export('keras.backend.random_bernoulli')
|
||||
def random_bernoulli(shape, p=0.0, dtype=None, seed=None):
|
||||
"""Returns a tensor with random bernoulli distribution of values.
|
||||
|
||||
Arguments:
|
||||
shape: A tuple of integers, the shape of tensor to create.
|
||||
p: A float, `0. <= p <= 1`, probability of bernoulli distribution.
|
||||
dtype: String, dtype of returned tensor.
|
||||
seed: Integer, random seed.
|
||||
|
||||
Returns:
|
||||
A tensor.
|
||||
"""
|
||||
return random_binomial(shape, p, dtype, seed)
|
||||
|
||||
|
||||
@keras_export('keras.backend.truncated_normal')
|
||||
def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None):
|
||||
"""Returns a tensor with truncated random normal distribution of values.
|
||||
|
@ -372,6 +372,10 @@ tf_module {
|
||||
name: "prod"
|
||||
argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "random_bernoulli"
|
||||
argspec: "args=[\'shape\', \'p\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "random_binomial"
|
||||
argspec: "args=[\'shape\', \'p\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\'], "
|
||||
|
@ -368,6 +368,10 @@ tf_module {
|
||||
name: "prod"
|
||||
argspec: "args=[\'x\', \'axis\', \'keepdims\'], varargs=None, keywords=None, defaults=[\'None\', \'False\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "random_bernoulli"
|
||||
argspec: "args=[\'shape\', \'p\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "random_binomial"
|
||||
argspec: "args=[\'shape\', \'p\', \'dtype\', \'seed\'], varargs=None, keywords=None, defaults=[\'0.0\', \'None\', \'None\'], "
|
||||
|
Loading…
Reference in New Issue
Block a user