diff --git a/tensorflow/go/op/wrappers.go b/tensorflow/go/op/wrappers.go index 72c28f95dfd..c4af3a60a8a 100644 --- a/tensorflow/go/op/wrappers.go +++ b/tensorflow/go/op/wrappers.go @@ -13463,6 +13463,11 @@ func Cross(scope *Scope, a tf.Output, b tf.Output) (product tf.Output) { // to compute `input` is odd, it should be provided since it cannot be inferred // properly. // +// Along each axis `IRFFT2D` is computed on, if `fft_length` (or +// `fft_length / 2 + 1` for the inner-most dimension) is smaller than the +// corresponding dimension of `input`, the dimension is cropped. If it is larger, +// the dimension is padded with zeros. +// // Arguments: // input: A complex64 tensor. // fft_length: An int32 tensor of shape [2]. The FFT length for each dimension. @@ -16691,6 +16696,10 @@ func Zeta(scope *Scope, x tf.Output, q tf.Output) (z tf.Output) { // compute `input` is odd, it should be provided since it cannot be inferred // properly. // +// Along the axis `IRFFT` is computed on, if `fft_length / 2 + 1` is smaller +// than the corresponding dimension of `input`, the dimension is cropped. If it is +// larger, the dimension is padded with zeros. +// // Arguments: // input: A complex64 tensor. // fft_length: An int32 tensor of shape [1]. The FFT length. @@ -16874,6 +16883,10 @@ func AssignAddVariableOp(scope *Scope, resource tf.Output, value tf.Output) (o * // `fft_length / 2 + 1` unique components of the FFT: the zero-frequency term, // followed by the `fft_length / 2` positive-frequency terms. // +// Along the axis `RFFT` is computed on, if `fft_length` is smaller than the +// corresponding dimension of `input`, the dimension is cropped. If it is larger, +// the dimension is padded with zeros. +// // Arguments: // input: A float32 tensor. // fft_length: An int32 tensor of shape [1]. The FFT length. @@ -17169,6 +17182,10 @@ func MaxPoolGradGrad(scope *Scope, orig_input tf.Output, orig_output tf.Output, // of `output`: the zero-frequency term, followed by the `fft_length / 2` // positive-frequency terms. // +// Along each axis `RFFT3D` is computed on, if `fft_length` is smaller than the +// corresponding dimension of `input`, the dimension is cropped. If it is larger, +// the dimension is padded with zeros. +// // Arguments: // input: A float32 tensor. // fft_length: An int32 tensor of shape [3]. The FFT length for each dimension. @@ -17514,6 +17531,11 @@ func StringSplit(scope *Scope, input tf.Output, delimiter tf.Output) (indices tf // to compute `input` is odd, it should be provided since it cannot be inferred // properly. // +// Along each axis `IRFFT3D` is computed on, if `fft_length` (or +// `fft_length / 2 + 1` for the inner-most dimension) is smaller than the +// corresponding dimension of `input`, the dimension is cropped. If it is larger, +// the dimension is padded with zeros. +// // Arguments: // input: A complex64 tensor. // fft_length: An int32 tensor of shape [3]. The FFT length for each dimension. @@ -18936,6 +18958,10 @@ func Erfc(scope *Scope, x tf.Output) (y tf.Output) { // of `output`: the zero-frequency term, followed by the `fft_length / 2` // positive-frequency terms. // +// Along each axis `RFFT2D` is computed on, if `fft_length` is smaller than the +// corresponding dimension of `input`, the dimension is cropped. If it is larger, +// the dimension is padded with zeros. +// // Arguments: // input: A float32 tensor. // fft_length: An int32 tensor of shape [2]. The FFT length for each dimension.