add CheckTensorValue

This commit is contained in:
Võ Văn Nghĩa 2021-01-07 09:45:08 +07:00
parent 46a34bf640
commit 487b5ff519
3 changed files with 38 additions and 41 deletions
tensorflow/c/experimental/gradients

View File

@ -74,37 +74,35 @@ void CompareNumericalAndAutodiffGradients(
}
}
void CompareManualAndAutodiffGradients(
Model grad_model, AbstractContext* ctx,
absl::Span<AbstractTensorHandle* const> inputs,
absl::Span<const float> manuals, bool use_function, double abs_error) {
auto num_inputs = inputs.size();
std::vector<AbstractTensorHandle*> outputs(num_inputs);
auto s = RunModel(grad_model, ctx, inputs, absl::MakeSpan(outputs),
/*use_function=*/use_function);
void CheckTensorValue(AbstractTensorHandle* t, absl::Span<const float> manuals,
absl::Span<const int64_t> dims, double abs_error) {
TF_Tensor* analytical_tensor;
auto s = GetValue(t, &analytical_tensor);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
int current_index_manual = 0;
for (int i = 0; i < num_inputs; ++i) {
if (!outputs[i]) continue;
TF_Tensor* analytical_tensor;
s = GetValue(outputs[i], &analytical_tensor);
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
auto num_elem_analytical = TF_TensorElementCount(analytical_tensor);
float* danalytical = new float[num_elem_analytical]{0};
memcpy(&danalytical[0], TF_TensorData(analytical_tensor),
TF_TensorByteSize(analytical_tensor));
for (int j = 0; j < num_elem_analytical; j++) {
ASSERT_NEAR(manuals[current_index_manual], danalytical[j], abs_error);
++current_index_manual;
}
TF_DeleteTensor(analytical_tensor);
delete[] danalytical;
outputs[i]->Unref();
int64_t num_elem_analytical = 1;
auto num_dims_analytical = TF_NumDims(analytical_tensor);
ASSERT_EQ(dims.size(), num_dims_analytical);
for (int j = 0; j < num_dims_analytical; j++) {
auto dim_analytical = TF_Dim(analytical_tensor, j);
ASSERT_EQ(dims[j], dim_analytical);
num_elem_analytical *= dim_analytical;
}
float* danalytical = new float[num_elem_analytical]{0};
memcpy(&danalytical[0], TF_TensorData(analytical_tensor),
TF_TensorByteSize(analytical_tensor));
int64_t current_index_manual = 0;
for (int64_t j = 0; j < num_elem_analytical; j++) {
if (abs_error == 0)
ASSERT_EQ(manuals[current_index_manual], danalytical[j]);
else
ASSERT_NEAR(manuals[current_index_manual], danalytical[j], abs_error);
++current_index_manual;
}
TF_DeleteTensor(analytical_tensor);
delete[] danalytical;
}
} // namespace internal

View File

@ -26,14 +26,8 @@ void CompareNumericalAndAutodiffGradients(
absl::Span<AbstractTensorHandle* const> inputs, bool use_function,
double abs_error = 1e-2);
// `manuals` should be a flat array of expected results of `grad_model`. e.g if
// `grad_model` output is `[[1, 2], nullptr, [3, 4]]`, `manuals` will be `[1,
// 2, 3, 4]`.
void CompareManualAndAutodiffGradients(
Model grad_model, AbstractContext* ctx,
absl::Span<AbstractTensorHandle* const> inputs,
absl::Span<const float> manuals, bool use_function,
double abs_error = 1e-2);
void CheckTensorValue(AbstractTensorHandle* t, absl::Span<const float> manuals,
absl::Span<const int64_t> dims, double abs_error = 1e-2);
} // namespace internal
} // namespace gradients

View File

@ -154,10 +154,8 @@ class CppGradients
};
TEST_P(CppGradients, TestReluGrad) {
// Mathematically, Relu isn't differentiable at `0`. So `gradient_checker`
// does not work with it.
float X_vals[] = {1.0f, 2.0f, 3.0f, -5.0f, -4.0f, -3.0f, 2.0f, 10.0f, -1.0f};
int64_t X_dims[] = {2, 2};
int64_t X_dims[] = {3, 3};
AbstractTensorHandlePtr X;
{
AbstractTensorHandle* X_raw;
@ -170,6 +168,8 @@ TEST_P(CppGradients, TestReluGrad) {
ASSERT_NO_FATAL_FAILURE(CompareNumericalAndAutodiffGradients(
ReluModel, ReluGradModel, ctx_.get(), {X.get()}, UseFunction()));
// Mathematically, Relu isn't differentiable at `0`. So `gradient_checker`
// does not work with it.
AbstractTensorHandlePtr Y;
{
AbstractTensorHandle* Y_raw;
@ -178,8 +178,13 @@ TEST_P(CppGradients, TestReluGrad) {
Y.reset(Y_raw);
}
ASSERT_NO_FATAL_FAILURE(CompareManualAndAutodiffGradients(
ReluGradModel, ctx_.get(), {Y.get()}, {0.0f}, UseFunction()));
std::vector<AbstractTensorHandle*> outputs(1);
auto s = RunModel(ReluGradModel, ctx_.get(), {Y.get()},
absl::MakeSpan(outputs), UseFunction());
ASSERT_EQ(errors::OK, s.code()) << s.error_message();
ASSERT_NO_FATAL_FAILURE(CheckTensorValue(outputs[0], {0.0f}, /*dims*/ {},
/*abs_error*/ 0));
outputs[0]->Unref();
}
TEST_P(CppGradients, TestSparseSoftmaxCrossEntropyWithLogitsGrad) {