diff --git a/tensorflow/lite/tools/accuracy/README.md b/tensorflow/lite/tools/accuracy/README.md deleted file mode 100644 index 8100cd1e8c9..00000000000 --- a/tensorflow/lite/tools/accuracy/README.md +++ /dev/null @@ -1,38 +0,0 @@ -## TFLite accuracy library. - -This library provides evaluation pipelines that can be used to evaluate -accuracy and other metrics of a model. The resulting binary can be run on -a desktop or on a mobile device. - -## Usage -The tool provides an evaluation pipeline with different stages. Each -stage outputs a Tensorflow graph. -A sample usage is shown below. - -```C++ -// First build the pipeline. -EvalPipelineBuilder builder; -std::unique_ptr eval_pipeline; -auto status = builder.WithInput("pipeline_input", DT_FLOAT) - .WithInputStage(&input_stage) - .WithRunModelStage(&run_model_stage) - .WithPreprocessingStage(&preprocess_stage) - .WithAccuracyEval(&eval) - .Build(scope, &eval_pipeline); -TF_CHECK_OK(status); - -// Now run the pipeline with inputs and outputs. -std::unique_ptr session(NewSession(SessionOptions())); -TF_CHECK_OK(eval_pipeline.AttachSession(std::move(session))); -Tensor input = ... read input for the model ... -Tensor ground_truth = ... read ground truth for the model ... -TF_CHECK_OK(eval_pipeline.Run(input1, ground_truth1)); -``` -For further examples, check the usage in [imagenet accuracy evaluation binary](ilsvrc/imagenet_model_evaluator.cc) - -## Measuring accuracy of published models. - -### ILSVRC (Imagenet Large Scale Visual Recognition Contest) classification task -For measuring accuracy for [ILSVRC 2012 image classification task](http://www.image-net.org/challenges/LSVRC/2012/), the binary can be built -using these -[instructions.](ilsvrc/)