When calling `strategy.reduce` in eager mode, wrap the `strategy.run` calls inside with `tf.function` so it is compatible with TPUStrategy.
PiperOrigin-RevId: 312847673 Change-Id: I6db92c34ba24e160689da3fca2fe0a3c26223d52
This commit is contained in:
parent
19f4ac7694
commit
4797b3b908
|
@ -1181,6 +1181,23 @@ distribute_py_test(
|
|||
],
|
||||
)
|
||||
|
||||
distribute_py_test(
|
||||
name = "strategy_reduce_test",
|
||||
srcs = ["strategy_reduce_test.py"],
|
||||
main = "strategy_reduce_test.py",
|
||||
tags = [
|
||||
"multi_and_single_gpu",
|
||||
],
|
||||
deps = [
|
||||
":combinations",
|
||||
":strategy_combinations",
|
||||
"//tensorflow/python:errors",
|
||||
"//tensorflow/python:variables",
|
||||
"//tensorflow/python/eager:test",
|
||||
"@absl_py//absl/testing:parameterized",
|
||||
],
|
||||
)
|
||||
|
||||
distribute_py_test(
|
||||
name = "minimize_loss_test",
|
||||
srcs = ["minimize_loss_test.py"],
|
||||
|
|
|
@ -26,6 +26,7 @@ import numpy as np
|
|||
from tensorflow.python import keras
|
||||
from tensorflow.python.data.ops import dataset_ops
|
||||
from tensorflow.python.distribute import combinations
|
||||
from tensorflow.python.distribute import reduce_util
|
||||
from tensorflow.python.distribute import strategy_combinations
|
||||
from tensorflow.python.eager import backprop
|
||||
from tensorflow.python.eager import def_function
|
||||
|
@ -448,6 +449,35 @@ class KerasModelsTest(test.TestCase, parameterized.TestCase):
|
|||
|
||||
train_step(input_iterator)
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=strategy_combinations.all_strategies, mode=["eager"]))
|
||||
def test_reduce_loss(self, distribution):
|
||||
inputs = np.zeros((10, 4), dtype=np.float32)
|
||||
targets = np.zeros((10, 1), dtype=np.float32)
|
||||
dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets))
|
||||
dataset = dataset.batch(10, drop_remainder=False)
|
||||
input_iterator = iter(distribution.experimental_distribute_dataset(dataset))
|
||||
|
||||
with distribution.scope():
|
||||
x = keras.layers.Input(shape=(4), name="input")
|
||||
y = keras.layers.Dense(3, name="dense")(x)
|
||||
model = keras.Model(x, y)
|
||||
|
||||
@def_function.function
|
||||
def train_step(iterator):
|
||||
|
||||
def step_fn(inputs):
|
||||
images, targets = inputs
|
||||
outputs = model(images)
|
||||
loss = keras.losses.sparse_categorical_crossentropy(targets, outputs)
|
||||
return loss
|
||||
|
||||
return distribution.run(step_fn, args=(next(iterator),))
|
||||
|
||||
loss = train_step(input_iterator)
|
||||
loss = distribution.reduce(reduce_util.ReduceOp.MEAN, loss, axis=0)
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=strategy_combinations.tpu_strategies, mode=["eager"]))
|
||||
|
|
|
@ -114,6 +114,7 @@ from tensorflow.python.distribute import distribution_strategy_context
|
|||
from tensorflow.python.distribute import numpy_dataset
|
||||
from tensorflow.python.distribute import reduce_util
|
||||
from tensorflow.python.eager import context as eager_context
|
||||
from tensorflow.python.eager import def_function
|
||||
from tensorflow.python.eager import monitoring
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import dtypes
|
||||
|
@ -628,6 +629,10 @@ class StrategyBase(object):
|
|||
# a sensible value.
|
||||
extended._retrace_functions_for_each_device = True
|
||||
|
||||
# Below are the dicts of axis(int) -> `tf.function`.
|
||||
self._mean_reduce_helper_fns = {}
|
||||
self._reduce_sum_fns = {}
|
||||
|
||||
@property
|
||||
def extended(self):
|
||||
"""`tf.distribute.StrategyExtended` with additional methods."""
|
||||
|
@ -1014,8 +1019,25 @@ class StrategyBase(object):
|
|||
if axis is None:
|
||||
return self._extended._reduce(reduce_op, value) # pylint: disable=protected-access
|
||||
if reduce_op == reduce_util.ReduceOp.SUM:
|
||||
value = self.run(
|
||||
lambda v: math_ops.reduce_sum(v, axis=axis), args=(value,))
|
||||
|
||||
def reduce_sum(v):
|
||||
return math_ops.reduce_sum(v, axis=axis)
|
||||
|
||||
if eager_context.executing_eagerly():
|
||||
# As some strategies (e.g. TPUStrategy) doesn't support pure eager
|
||||
# execution, wrap the `reduce_sum_fn` with a `tf.function` so it can be
|
||||
# run from eager mode. Cache the tf.function by `axis` to avoid the
|
||||
# same function to be traced again.
|
||||
if axis not in self._reduce_sum_fns:
|
||||
|
||||
def reduce_sum_fn(v):
|
||||
return self.run(reduce_sum, args=(v,))
|
||||
|
||||
self._reduce_sum_fns[axis] = def_function.function(reduce_sum_fn)
|
||||
value = self._reduce_sum_fns[axis](value)
|
||||
else:
|
||||
value = self.run(reduce_sum, args=(value,))
|
||||
|
||||
return self._extended._reduce(reduce_op, value) # pylint: disable=protected-access
|
||||
if reduce_op != reduce_util.ReduceOp.MEAN:
|
||||
raise TypeError("Expected `reduce_op` to be a `tf.distribute.ReduceOp`, "
|
||||
|
@ -1062,7 +1084,22 @@ class StrategyBase(object):
|
|||
# reduce is complete?
|
||||
return numer, denom
|
||||
|
||||
if eager_context.executing_eagerly():
|
||||
# As some strategies (e.g. TPUStrategy) doesn't support pure eager
|
||||
# execution, wrap the `mean_reduce_helper` with a `tf.function` so it can
|
||||
# be run from eager mode. Cache the tf.function by `axis` to avoid the
|
||||
# same function to be traced again.
|
||||
if axis not in self._mean_reduce_helper_fns:
|
||||
|
||||
def mean_reduce_fn(v):
|
||||
return self.run(mean_reduce_helper, args=(v,))
|
||||
|
||||
self._mean_reduce_helper_fns[axis] = def_function.function(
|
||||
mean_reduce_fn)
|
||||
numer, denom = self._mean_reduce_helper_fns[axis](value)
|
||||
else:
|
||||
numer, denom = self.run(mean_reduce_helper, args=(value,))
|
||||
|
||||
# TODO(josh11b): Should batch reduce here instead of doing two.
|
||||
numer = self._extended._reduce(reduce_util.ReduceOp.SUM, numer) # pylint: disable=protected-access
|
||||
denom = self._extended._reduce(reduce_util.ReduceOp.SUM, denom) # pylint: disable=protected-access
|
||||
|
|
|
@ -0,0 +1,52 @@
|
|||
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Tests for `strategy.reduce`."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
|
||||
from tensorflow.python.distribute import combinations
|
||||
from tensorflow.python.distribute import reduce_util
|
||||
from tensorflow.python.distribute import strategy_combinations
|
||||
from tensorflow.python.eager import def_function
|
||||
from tensorflow.python.eager import test
|
||||
from tensorflow.python.framework import constant_op
|
||||
|
||||
|
||||
class StrategyReduceTest(test.TestCase, parameterized.TestCase):
|
||||
|
||||
@combinations.generate(
|
||||
combinations.combine(
|
||||
distribution=strategy_combinations.all_strategies,
|
||||
mode=["eager"]
|
||||
))
|
||||
def test_reduce_with_axis(self, distribution):
|
||||
|
||||
@def_function.function
|
||||
def fn():
|
||||
return constant_op.constant([1., 2.])
|
||||
x = distribution.run(fn)
|
||||
|
||||
x_m = distribution.reduce(reduce_util.ReduceOp.MEAN, x, axis=0)
|
||||
self.assertEqual(1.5, self.evaluate(x_m))
|
||||
x_s = distribution.reduce(reduce_util.ReduceOp.SUM, x, axis=0)
|
||||
self.assertEqual(3 * distribution.num_replicas_in_sync, self.evaluate(x_s))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test.main()
|
Loading…
Reference in New Issue