Re-rollback of "TensorFlow: move eigen some NN code from our third_party/eigen3 copy
to being part of TF, add tests." Change: 117608627
This commit is contained in:
parent
edf3586caf
commit
4671953808
@ -54,7 +54,6 @@ cc_library(
|
||||
name = "conv_2d",
|
||||
hdrs = ["conv_2d.h"],
|
||||
deps = [
|
||||
":eigen_helpers",
|
||||
"//tensorflow/core:framework",
|
||||
"//third_party/eigen3",
|
||||
],
|
||||
@ -215,24 +214,6 @@ cc_header_only_library(
|
||||
deps = [":bounds_check"],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "eigen_helpers",
|
||||
hdrs = [
|
||||
"eigen_activations.h",
|
||||
"eigen_attention.h",
|
||||
"eigen_backward_cuboid_convolutions.h",
|
||||
"eigen_backward_spatial_convolutions.h",
|
||||
"eigen_cuboid_convolution.h",
|
||||
"eigen_patch_3d.h",
|
||||
"eigen_pooling.h",
|
||||
"eigen_softmax.h",
|
||||
"eigen_spatial_convolutions.h",
|
||||
],
|
||||
deps = [
|
||||
"//third_party/eigen3",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "image_resizer_state",
|
||||
hdrs = ["image_resizer_state.h"],
|
||||
@ -563,12 +544,12 @@ tf_kernel_libraries(
|
||||
name = "image",
|
||||
prefixes = [
|
||||
"adjust_contrast_op",
|
||||
"attention_ops",
|
||||
"colorspace_op",
|
||||
"decode_jpeg_op",
|
||||
"decode_png_op",
|
||||
"draw_bounding_box_op",
|
||||
"encode_jpeg_op",
|
||||
"attention_ops",
|
||||
"encode_png_op",
|
||||
"random_crop_op",
|
||||
"resize_area_op",
|
||||
@ -578,7 +559,6 @@ tf_kernel_libraries(
|
||||
"sample_distorted_bounding_box_op",
|
||||
],
|
||||
deps = [
|
||||
":eigen_helpers",
|
||||
":image_resizer_state",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:image_ops_op_lib",
|
||||
@ -589,27 +569,6 @@ tf_kernel_libraries(
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_tests(
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
tests = [
|
||||
"eigen_activations_test",
|
||||
"eigen_attention_test",
|
||||
"eigen_backward_spatial_convolutions_test",
|
||||
"eigen_pooling_test",
|
||||
"eigen_softmax_test",
|
||||
"eigen_spatial_convolutions_test",
|
||||
],
|
||||
deps = [
|
||||
":eigen_helpers",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:framework",
|
||||
"//tensorflow/core:protos_all_cc",
|
||||
"//tensorflow/core:test",
|
||||
"//tensorflow/core:test_main",
|
||||
"//tensorflow/core:testlib",
|
||||
],
|
||||
)
|
||||
|
||||
tf_cc_tests(
|
||||
linkstatic = tf_kernel_tests_linkstatic(), # Required for benchmarking
|
||||
tests = [
|
||||
@ -877,7 +836,6 @@ tf_kernel_library(
|
||||
],
|
||||
deps = [
|
||||
":conv_2d",
|
||||
":eigen_helpers",
|
||||
":ops_util",
|
||||
"//tensorflow/core:core_cpu",
|
||||
"//tensorflow/core:framework",
|
||||
@ -1087,15 +1045,6 @@ filegroup(
|
||||
srcs = [
|
||||
"avgpooling_op.h",
|
||||
"bounds_check.h",
|
||||
"eigen_activations.h",
|
||||
"eigen_attention.h",
|
||||
"eigen_backward_cuboid_convolutions.h",
|
||||
"eigen_backward_spatial_convolutions.h",
|
||||
"eigen_cuboid_convolution.h",
|
||||
"eigen_patch_3d.h",
|
||||
"eigen_pooling.h",
|
||||
"eigen_softmax.h",
|
||||
"eigen_spatial_convolutions.h",
|
||||
"maxpooling_op.h",
|
||||
"ops_util.cc",
|
||||
"ops_util.h",
|
||||
|
@ -18,12 +18,12 @@ limitations under the License.
|
||||
#define EIGEN_USE_THREADS
|
||||
|
||||
#include <vector>
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/NeuralNetworks"
|
||||
#include "tensorflow/core/framework/op.h"
|
||||
#include "tensorflow/core/framework/op_kernel.h"
|
||||
#include "tensorflow/core/framework/tensor.h"
|
||||
#include "tensorflow/core/framework/tensor_shape.h"
|
||||
#include "tensorflow/core/framework/types.h"
|
||||
#include "tensorflow/core/kernels/eigen_attention.h"
|
||||
#include "tensorflow/core/platform/logging.h"
|
||||
#include "tensorflow/core/platform/types.h"
|
||||
|
||||
|
@ -20,13 +20,13 @@ limitations under the License.
|
||||
#include "tensorflow/core/kernels/avgpooling_op.h"
|
||||
|
||||
#include <vector>
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/NeuralNetworks"
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "tensorflow/core/framework/numeric_op.h"
|
||||
#include "tensorflow/core/framework/op_kernel.h"
|
||||
#include "tensorflow/core/framework/tensor.h"
|
||||
#include "tensorflow/core/framework/tensor_shape.h"
|
||||
#include "tensorflow/core/framework/tensor_slice.h"
|
||||
#include "tensorflow/core/kernels/eigen_pooling.h"
|
||||
#include "tensorflow/core/kernels/ops_util.h"
|
||||
#include "tensorflow/core/kernels/pooling_ops_common.h"
|
||||
#include "tensorflow/core/lib/core/errors.h"
|
||||
|
@ -17,8 +17,8 @@ limitations under the License.
|
||||
#define TENSORFLOW_KERNELS_AVGPOOLING_OP_H_
|
||||
// Functor definition for AvgPoolingOp, must be compilable by nvcc.
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/NeuralNetworks"
|
||||
#include "tensorflow/core/framework/tensor_types.h"
|
||||
#include "tensorflow/core/kernels/eigen_pooling.h"
|
||||
#include "tensorflow/core/platform/types.h"
|
||||
|
||||
namespace tensorflow {
|
||||
|
@ -16,10 +16,9 @@ limitations under the License.
|
||||
#ifndef TENSORFLOW_KERNELS_CONV_2D_H_
|
||||
#define TENSORFLOW_KERNELS_CONV_2D_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/NeuralNetworks"
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "tensorflow/core/framework/tensor_types.h"
|
||||
#include "tensorflow/core/kernels/eigen_backward_spatial_convolutions.h"
|
||||
#include "tensorflow/core/kernels/eigen_spatial_convolutions.h"
|
||||
#include "tensorflow/core/util/tensor_format.h"
|
||||
|
||||
namespace tensorflow {
|
||||
|
@ -1,125 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_ACTIVATIONS_H_
|
||||
#define THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_ACTIVATIONS_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** scalar_sigmoid_fast_derivative_op
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
* \brief Template functor to compute the fast derivative of a sigmoid
|
||||
*
|
||||
* Input should be the backpropagated gradient.
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::sigmoid_fast_derivative()
|
||||
*/
|
||||
template <typename T>
|
||||
struct scalar_sigmoid_fast_derivative_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_fast_derivative_op)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& y) const {
|
||||
const T one = T(1);
|
||||
return (one - y) * y;
|
||||
}
|
||||
|
||||
template <typename Packet>
|
||||
inline Packet packetOp(const Packet& y) const {
|
||||
const Packet one = internal::pset1<Packet>(1);
|
||||
return internal::pmul(internal::psub(one, y), y);
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template <typename T>
|
||||
struct functor_traits<scalar_sigmoid_fast_derivative_op<T> > {
|
||||
enum {
|
||||
Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost,
|
||||
PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasMul &&
|
||||
packet_traits<T>::HasNegate
|
||||
};
|
||||
};
|
||||
} // namespace internal
|
||||
|
||||
/** scalar_tanh_fast_derivative_op
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
* \brief Template functor to compute the fast derivative of a tanh
|
||||
*
|
||||
* Input should be the backpropagated gradient.
|
||||
*
|
||||
* \sa class CwiseUnaryOp, Cwise::tanh_fast_derivative()
|
||||
*/
|
||||
template <typename T>
|
||||
struct scalar_tanh_fast_derivative_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_tanh_fast_derivative_op)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& y) const {
|
||||
const T one = T(1);
|
||||
return one - (y * y);
|
||||
}
|
||||
|
||||
template <typename Packet>
|
||||
inline Packet packetOp(const Packet& y) const {
|
||||
const Packet one = internal::pset1<Packet>(1);
|
||||
return internal::psub(one, internal::pmul(y, y));
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template <typename T>
|
||||
struct functor_traits<scalar_tanh_fast_derivative_op<T> > {
|
||||
enum {
|
||||
Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 1,
|
||||
PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasMul &&
|
||||
packet_traits<T>::HasNegate
|
||||
};
|
||||
};
|
||||
} // namespace internal
|
||||
|
||||
/**
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
* \brief Template functor to clip the the magnitude of the first scalar.
|
||||
*
|
||||
* \sa class CwiseBinaryOp, MatrixBase::Clip
|
||||
*/
|
||||
template <typename Scalar>
|
||||
struct scalar_clip_op {
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_clip_op)
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar
|
||||
operator()(const Scalar& a, const Scalar& b) const {
|
||||
return numext::mini(numext::maxi(a, -b), b);
|
||||
}
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet
|
||||
packetOp(const Packet& a, const Packet& b) const {
|
||||
return internal::pmin(internal::pmax(a, internal::pnegate(b)), b);
|
||||
}
|
||||
};
|
||||
|
||||
namespace internal {
|
||||
template <typename Scalar>
|
||||
struct functor_traits<scalar_clip_op<Scalar> > {
|
||||
enum {
|
||||
Cost = NumTraits<Scalar>::AddCost * 3,
|
||||
PacketAccess = packet_traits<Scalar>::HasMax &&
|
||||
packet_traits<Scalar>::HasMin &&
|
||||
packet_traits<Scalar>::HasNegate
|
||||
};
|
||||
};
|
||||
} // namespace internal
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_ACTIVATIONS_H_
|
@ -1,101 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/core/kernels/eigen_activations.h"
|
||||
#include "tensorflow/core/framework/types.h"
|
||||
#include "tensorflow/core/platform/test.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace {
|
||||
void EigenApprox(float a, float b) {
|
||||
ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenBackwardSpatialConvolutionsTest, SigmoidFastDerivative) {
|
||||
const ptrdiff_t depth = 3;
|
||||
const ptrdiff_t batch = 10;
|
||||
const ptrdiff_t rows = 32;
|
||||
const ptrdiff_t cols = 48;
|
||||
|
||||
Tensor<float, 4> input(depth, rows, cols, batch);
|
||||
input.setRandom();
|
||||
|
||||
Tensor<float, 4> result(depth, rows, cols, batch);
|
||||
result = input.unaryExpr(scalar_sigmoid_fast_derivative_op<float>());
|
||||
|
||||
for (int b = 0; b < batch; ++b) {
|
||||
for (int c = 0; c < cols; ++c) {
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
for (int d = 0; d < depth; ++d) {
|
||||
float val = input(d, r, c, b);
|
||||
EigenApprox(result(d, r, c, b), (1 - val) * val);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenBackwardSpatialConvolutionsTest, TanhFastDerivative) {
|
||||
const ptrdiff_t depth = 3;
|
||||
const ptrdiff_t batch = 10;
|
||||
const ptrdiff_t rows = 32;
|
||||
const ptrdiff_t cols = 48;
|
||||
|
||||
Tensor<float, 4> input(depth, rows, cols, batch);
|
||||
input.setRandom();
|
||||
|
||||
Tensor<float, 4> result(depth, rows, cols, batch);
|
||||
result = input.unaryExpr(scalar_tanh_fast_derivative_op<float>());
|
||||
|
||||
for (int b = 0; b < batch; ++b) {
|
||||
for (int c = 0; c < cols; ++c) {
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
for (int d = 0; d < depth; ++d) {
|
||||
float val = input(d, r, c, b);
|
||||
EigenApprox(result(d, r, c, b), 1 - (val * val));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenBackwardSpatialConvolutionsTest, Clip) {
|
||||
const ptrdiff_t depth = 3;
|
||||
const ptrdiff_t batch = 10;
|
||||
const ptrdiff_t rows = 32;
|
||||
const ptrdiff_t cols = 48;
|
||||
|
||||
Tensor<float, 4> input(depth, rows, cols, batch);
|
||||
input.setRandom();
|
||||
|
||||
Tensor<float, 4> result(depth, rows, cols, batch);
|
||||
result = input.binaryExpr(input.constant(0.01), scalar_clip_op<float>());
|
||||
|
||||
for (int b = 0; b < batch; ++b) {
|
||||
for (int c = 0; c < cols; ++c) {
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
for (int d = 0; d < depth; ++d) {
|
||||
float val = input(d, r, c, b);
|
||||
EigenApprox(result(d, r, c, b),
|
||||
(std::min)((std::max)(val, -0.01f), 0.01f));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Eigen
|
@ -1,244 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_ATTENTION_H_
|
||||
#define THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_ATTENTION_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** ExtractGlimpses
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Extract glimpses from an input tensor.
|
||||
*
|
||||
* The input parameter is expected to be a col-major tensor with a rank of 4 (depth, x, y, and batch).
|
||||
* The width and height parameters specify the extension of the returned glimpses.
|
||||
* The offsets parameter specifies the x, y locations of the center of the glimpses relative to the center of the input image. The vector is expected to contain one IndexPair for each image in the batch dimension.
|
||||
* The normalized boolean indicates if incoming coordinates are normalized so that 0.0 and 1.0 correspond to the minimum and maximum of each height and width dimension.
|
||||
* The centered boolean indicates if incoming coordinates are centered relative to the image, in which case -1.0 and 1.0 correspond to minimum and maximum of each dimension while 0.0 corresponds to the center.
|
||||
*
|
||||
* The result can be assigned to a tensor of rank equal to that of the input. The result will be laid out in col-major order (depth, x, y, batch).
|
||||
* The dimensions of the result will be equal to the dimensions of the input except for width and height which will be equal to the requested glimpse size.
|
||||
*/
|
||||
namespace {
|
||||
template <typename Index>
|
||||
struct GlimpseExtractionOp {
|
||||
GlimpseExtractionOp(const Index width, const Index height,
|
||||
const std::vector<IndexPair<float> >& offsets,
|
||||
const bool normalized,
|
||||
const bool centered,
|
||||
const bool uniform_noise) :
|
||||
width_(width), height_(height), offsets_(offsets),
|
||||
normalized_(normalized), centered_(centered), uniform_noise_(uniform_noise) { }
|
||||
|
||||
template <typename Input>
|
||||
DSizes<Index, 4> dimensions(const Input& input) const {
|
||||
typedef typename internal::traits<Input>::Index IndexType;
|
||||
typedef TensorRef<Tensor<typename internal::traits<Input>::Scalar, 4,
|
||||
internal::traits<Input>::Layout, IndexType> > Ref;
|
||||
Ref in(input);
|
||||
|
||||
DSizes<Index, 4> dims = in.dimensions();
|
||||
|
||||
dims[0] = in.dimension(0);
|
||||
dims[1] = width_;
|
||||
dims[2] = height_;
|
||||
dims[3] = in.dimension(3);
|
||||
return dims;
|
||||
}
|
||||
|
||||
template <typename Input, typename Output, typename Device>
|
||||
EIGEN_DEVICE_FUNC
|
||||
void eval(const Input& input, Output& output, const Device& device) const
|
||||
{
|
||||
typedef typename internal::traits<Input>::Index IndexType;
|
||||
typedef TensorRef<Tensor<typename internal::traits<Input>::Scalar, 4,
|
||||
internal::traits<Input>::Layout, IndexType> > Ref;
|
||||
Ref in(input);
|
||||
const Index num_channels = in.dimension(0);
|
||||
const Index input_width = in.dimension(1);
|
||||
const Index input_height = in.dimension(2);
|
||||
const Index batch_size = in.dimension(3);
|
||||
eigen_assert(input_width > 0);
|
||||
eigen_assert(input_height > 0);
|
||||
internal::NormalRandomGenerator<float> gen;
|
||||
internal::UniformRandomGenerator<float> unigen;
|
||||
|
||||
for (Index i = 0; i < batch_size; ++i) {
|
||||
float x = offsets_[i].first, y = offsets_[i].second;
|
||||
|
||||
// Un-normalize coordinates back to pixel space if normalized.
|
||||
if (normalized_) {
|
||||
x *= input_width;
|
||||
y *= input_height;
|
||||
}
|
||||
// Un-center if coordinates are centered on the image center.
|
||||
if (centered_) {
|
||||
x /= 2.0f;
|
||||
y /= 2.0f;
|
||||
x += input_width / 2.0f;
|
||||
y += input_height / 2.0f;
|
||||
}
|
||||
// Remove half of the glimpse window.
|
||||
x -= width_ / 2.0f;
|
||||
y -= height_ / 2.0f;
|
||||
|
||||
const Index offset_x = (Index) x;
|
||||
const Index offset_y = (Index) y;
|
||||
Index glimpse_width = width_;
|
||||
Index glimpse_height = height_;
|
||||
bool partial_overlap = false;
|
||||
DSizes<Index, 3> slice_offset(0, offset_x, offset_y);
|
||||
DSizes<Index, 3> slice_extent(num_channels, width_, height_);
|
||||
DSizes<Index, 3> base_offset(0, 0, 0);
|
||||
|
||||
if (offset_x < 0) {
|
||||
slice_offset[1] = 0;
|
||||
glimpse_width = (std::max<Index>)(0, width_ + offset_x);
|
||||
slice_extent[1] = glimpse_width;
|
||||
base_offset[1] = width_ - glimpse_width;
|
||||
partial_overlap = true;
|
||||
} else if (offset_x + width_ >= input_width) {
|
||||
glimpse_width = (std::max<Index>)(0, input_width - offset_x);
|
||||
slice_extent[1] = glimpse_width;
|
||||
partial_overlap = true;
|
||||
}
|
||||
if (offset_y < 0) {
|
||||
slice_offset[2] = 0;
|
||||
glimpse_height = (std::max<Index>)(0, height_ + offset_y);
|
||||
slice_extent[2] = glimpse_height;
|
||||
base_offset[2] = height_ - glimpse_height;
|
||||
partial_overlap = true;
|
||||
} else if (offset_y + height_ >= input_height) {
|
||||
glimpse_height = (std::max<Index>)(0, input_height - offset_y);
|
||||
slice_extent[2] = glimpse_height;
|
||||
partial_overlap = true;
|
||||
}
|
||||
slice_extent[1] = std::min<Index>(input_width, slice_extent[1]);
|
||||
slice_extent[2] = std::min<Index>(input_height, slice_extent[2]);
|
||||
|
||||
|
||||
if (partial_overlap) {
|
||||
|
||||
if (uniform_noise_) {
|
||||
// Initialize the glimpse with uniform noise.
|
||||
typedef typename internal::remove_const<
|
||||
typename internal::traits<Input>::Scalar>::type Scalar;
|
||||
TensorFixedSize<Scalar, Sizes<> > mini;
|
||||
mini.device(device) = input.template chip<3>(i).minimum();
|
||||
TensorFixedSize<float, Sizes<> > range;
|
||||
range.device(device) = (input.template chip<3>(i).maximum() - mini)
|
||||
.template cast<float>();
|
||||
|
||||
DSizes<Index, 3> glimpse_size(num_channels, width_, height_);
|
||||
TensorMap<Tensor<float, 3> > tmp(NULL, glimpse_size);
|
||||
output.template chip<3>(i).device(device) =
|
||||
mini.reshape(Sizes<1, 1, 1>()).broadcast(glimpse_size) +
|
||||
(tmp.random(unigen) *
|
||||
range.reshape(Sizes<1, 1, 1>()).broadcast(glimpse_size))
|
||||
.template cast<Scalar>();
|
||||
} else {
|
||||
// Initialize the glimpse with white noise: compute the mean and sigma
|
||||
// of each channel, and use them to shape the gaussian.
|
||||
DSizes<Index, 2> glimpse_size(width_, height_);
|
||||
DSizes<Index, 2> input_size(input_width, input_height);
|
||||
typedef typename internal::remove_const<
|
||||
typename internal::traits<Input>::Scalar>::type Scalar;
|
||||
|
||||
for (int j = 0; j < num_channels; ++j) {
|
||||
TensorFixedSize<Scalar, Sizes<> > mean;
|
||||
mean.device(device) = input.template chip<3>(i)
|
||||
.template chip<0>(j)
|
||||
.template cast<float>()
|
||||
.mean();
|
||||
TensorFixedSize<float, Sizes<> > sigma;
|
||||
sigma.device(device) =
|
||||
(input.template chip<3>(i)
|
||||
.template chip<0>(j)
|
||||
.template cast<float>() -
|
||||
mean.reshape(Sizes<1, 1>()).broadcast(input_size))
|
||||
.square()
|
||||
.mean()
|
||||
.sqrt();
|
||||
TensorFixedSize<Scalar, Sizes<> > mini;
|
||||
mini.device(device) =
|
||||
input.template chip<3>(i).template chip<0>(j).minimum();
|
||||
TensorFixedSize<float, Sizes<> > maxi;
|
||||
maxi.device(device) =
|
||||
input.template chip<3>(i).template chip<0>(j).maximum();
|
||||
|
||||
TensorMap<Tensor<float, 2> > tmp(NULL, glimpse_size);
|
||||
output.template chip<3>(i).template chip<0>(j).device(device) =
|
||||
(mean.reshape(Sizes<1, 1>()).broadcast(glimpse_size) +
|
||||
(tmp.random(gen) *
|
||||
sigma.reshape(Sizes<1, 1>()).broadcast(glimpse_size))
|
||||
.template cast<Scalar>())
|
||||
.cwiseMin(
|
||||
maxi.reshape(Sizes<1, 1>()).broadcast(glimpse_size))
|
||||
.cwiseMax(
|
||||
mini.reshape(Sizes<1, 1>()).broadcast(glimpse_size));
|
||||
}
|
||||
}
|
||||
|
||||
// Copy the part of the glimpse that cover the input image if any.
|
||||
if (glimpse_width == 0 || glimpse_height == 0) {
|
||||
continue;
|
||||
}
|
||||
output.template chip<3>(i)
|
||||
.slice(base_offset, slice_extent)
|
||||
.device(device) =
|
||||
input.template chip<3>(i).slice(slice_offset, slice_extent);
|
||||
} else {
|
||||
output.template chip<3>(i).device(device) =
|
||||
input.template chip<3>(i).slice(slice_offset, slice_extent);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
const Index width_;
|
||||
const Index height_;
|
||||
const std::vector<IndexPair<float> > offsets_;
|
||||
const bool normalized_;
|
||||
const bool centered_;
|
||||
const bool uniform_noise_;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE
|
||||
static const TensorCustomUnaryOp<const GlimpseExtractionOp<typename internal::traits<Input>::Index>, const Input>
|
||||
ExtractGlimpses(const Input& input,
|
||||
const typename internal::traits<Input>::Index width,
|
||||
const typename internal::traits<Input>::Index height,
|
||||
const std::vector<IndexPair<float> >& offsets,
|
||||
const bool normalized = true, const bool centered = true,
|
||||
const bool uniform_noise = true)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == ColMajor, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
typedef typename internal::traits<Input>::Index Index;
|
||||
const GlimpseExtractionOp<Index> op(width, height, offsets, normalized,
|
||||
centered, uniform_noise);
|
||||
return input.customOp(op);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_ATTENTION_H_
|
@ -1,107 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/core/kernels/eigen_attention.h"
|
||||
#include "tensorflow/core/framework/types.h"
|
||||
#include "tensorflow/core/platform/test.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace {
|
||||
void EigenApprox(float a, float b) {
|
||||
ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenAttentionTest, Simple) {
|
||||
const ptrdiff_t depth = 3;
|
||||
const ptrdiff_t batch = 10;
|
||||
const ptrdiff_t rows = 32;
|
||||
const ptrdiff_t cols = 48;
|
||||
const ptrdiff_t glimpse_rows = 8;
|
||||
const ptrdiff_t glimpse_cols = 6;
|
||||
|
||||
Tensor<float, 4> input(depth, rows, cols, batch);
|
||||
input.setRandom();
|
||||
|
||||
std::vector<IndexPair<float>> offsets;
|
||||
offsets.resize(batch);
|
||||
for (int i = 0; i < batch; ++i) {
|
||||
offsets[i].first = (-5 + i) / 10.0f;
|
||||
offsets[i].second = (5 - i) / 10.0f;
|
||||
}
|
||||
|
||||
Tensor<float, 4> result(depth, glimpse_rows, glimpse_cols, batch);
|
||||
result = ExtractGlimpses(input, glimpse_rows, glimpse_cols, offsets);
|
||||
|
||||
for (int b = 0; b < batch; ++b) {
|
||||
for (int c = 0; c < glimpse_cols; ++c) {
|
||||
ptrdiff_t source_c =
|
||||
c + ((1.0f + offsets[b].second) * cols - glimpse_cols) / 2;
|
||||
for (int r = 0; r < glimpse_rows; ++r) {
|
||||
ptrdiff_t source_r =
|
||||
r + ((1.0f + offsets[b].first) * rows - glimpse_rows) / 2;
|
||||
for (int d = 0; d < depth; ++d) {
|
||||
EigenApprox(result(d, r, c, b), input(d, source_r, source_c, b));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenAttentionTest, OutOfBoundsGlimpse) {
|
||||
const ptrdiff_t depth = 3;
|
||||
const ptrdiff_t batch = 10;
|
||||
const ptrdiff_t rows = 32;
|
||||
const ptrdiff_t cols = 48;
|
||||
const ptrdiff_t glimpse_rows = 8;
|
||||
const ptrdiff_t glimpse_cols = 6;
|
||||
|
||||
Tensor<float, 4> input(depth, rows, cols, batch);
|
||||
input.setRandom();
|
||||
|
||||
std::vector<IndexPair<float>> offsets;
|
||||
offsets.resize(batch);
|
||||
for (int i = 0; i < batch; ++i) {
|
||||
offsets[i].first = (-5 + i) / 2.0f;
|
||||
offsets[i].second = (5 - i) / 2.0f;
|
||||
}
|
||||
|
||||
Tensor<float, 4> result(depth, glimpse_rows, glimpse_cols, batch);
|
||||
result = ExtractGlimpses(input, glimpse_rows, glimpse_cols, offsets);
|
||||
|
||||
for (int b = 0; b < batch; ++b) {
|
||||
for (int c = 0; c < glimpse_cols; ++c) {
|
||||
ptrdiff_t source_c =
|
||||
c + ((1.0f + offsets[b].second) * cols - glimpse_cols) / 2;
|
||||
if (source_c < glimpse_cols / 2 || source_c >= cols - glimpse_cols / 2) {
|
||||
continue;
|
||||
}
|
||||
for (int r = 0; r < glimpse_rows; ++r) {
|
||||
ptrdiff_t source_r =
|
||||
r + ((1.0f + offsets[b].first) * rows - glimpse_rows) / 2;
|
||||
if (source_r < glimpse_rows / 2 ||
|
||||
source_r >= rows - glimpse_rows / 2) {
|
||||
continue;
|
||||
}
|
||||
for (int d = 0; d < depth; ++d) {
|
||||
EigenApprox(result(d, r, c, b), input(d, source_r, source_c, b));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Eigen
|
@ -1,539 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_CUBOID_CONVOLUTIONS_H_
|
||||
#define THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_CUBOID_CONVOLUTIONS_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "tensorflow/core/kernels/eigen_patch_3d.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** CuboidConvolutionBackwardInput
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Computes the backprop for the input of a 3D convolution.
|
||||
*
|
||||
* The output_backward parameter is expected to be a tensor with a rank of 4 or more (channels, depth, height, width, and optionally others)
|
||||
* The kernel parameter is expected to be a 5D tensor (filters, channels, kernel_depth, kernel_height, kernel_width)
|
||||
* output_backward and kernel have to be in the same layout.
|
||||
*
|
||||
* The dimensions of the result will be filters, depth, height, width (and others if applicable).
|
||||
*
|
||||
* It is possible to swap the order of the depth, width and height dimensions provided that the same order is used in the input, the kernel, and the output.
|
||||
*
|
||||
* All dimension orders above are given for col-major, and should be reversed for row-major.
|
||||
*/
|
||||
|
||||
template <typename OutputBackward, typename Kernel>
|
||||
EIGEN_ALWAYS_INLINE static const typename internal::conditional<
|
||||
internal::traits<OutputBackward>::Layout == ColMajor,
|
||||
TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<OutputBackward>::Index,
|
||||
internal::traits<OutputBackward>::NumDimensions>,
|
||||
const TensorContractionOp<
|
||||
const array< IndexPair<typename internal::traits<OutputBackward>::Index>, 2>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes< typename internal::traits<OutputBackward>::Index, 3>,
|
||||
const TensorReverseOp<const array<bool, 5>, const Kernel>
|
||||
>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes< typename internal::traits<OutputBackward>::Index, 3>,
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const OutputBackward>
|
||||
>
|
||||
>
|
||||
>,
|
||||
TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<OutputBackward>::Index,
|
||||
internal::traits<OutputBackward>::NumDimensions>,
|
||||
const TensorContractionOp<
|
||||
const array< IndexPair<typename internal::traits<OutputBackward>::Index>, 2>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes< typename internal::traits<OutputBackward>::Index, 3>,
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const OutputBackward>
|
||||
>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<OutputBackward>::Index, 3>,
|
||||
const TensorReverseOp<const array<bool, 5>, const Kernel>
|
||||
>
|
||||
>
|
||||
>
|
||||
>::type
|
||||
CuboidConvolutionBackwardInput(
|
||||
const Kernel& kernel, const OutputBackward& output_backward,
|
||||
typename internal::traits<OutputBackward>::Index inputPlanes,
|
||||
typename internal::traits<OutputBackward>::Index inputRows,
|
||||
typename internal::traits<OutputBackward>::Index inputCols,
|
||||
const DenseIndex stridePlanes = 1, const DenseIndex strideRows = 1,
|
||||
const DenseIndex strideCols = 1) {
|
||||
typedef typename internal::traits<OutputBackward>::Index TensorIndex;
|
||||
const TensorRef<const Tensor<typename internal::traits<Kernel>::Scalar, internal::traits<Kernel>::NumDimensions, internal::traits<Kernel>::Layout, TensorIndex> > kern(kernel);
|
||||
const TensorRef<const Tensor<typename internal::traits<OutputBackward>::Scalar, internal::traits<OutputBackward>::NumDimensions, internal::traits<OutputBackward>::Layout, TensorIndex> > out(output_backward);
|
||||
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Kernel>::Layout == internal::traits<OutputBackward>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
static const bool isColMajor = (internal::traits<OutputBackward>::Layout == ColMajor);
|
||||
|
||||
static const int NumDims = internal::traits<OutputBackward>::NumDimensions;
|
||||
|
||||
// Number of filters to apply. This is the same as the output depth of the result
|
||||
const TensorIndex kernelFilters = isColMajor ? kern.dimensions()[0] : kern.dimensions()[4];
|
||||
// Number of channels. This is the same as the input depth.
|
||||
const TensorIndex kernelChannels = isColMajor ? kern.dimensions()[1] : kern.dimensions()[3];
|
||||
const TensorIndex kernelPlanes = isColMajor ? kern.dimensions()[2] : kern.dimensions()[2];
|
||||
const TensorIndex kernelRows = isColMajor ? kern.dimensions()[3] : kern.dimensions()[1];
|
||||
const TensorIndex kernelCols = isColMajor ? kern.dimensions()[4] : kern.dimensions()[0];
|
||||
|
||||
const TensorIndex outputPlanes = isColMajor ? out.dimensions()[1] : out.dimensions()[NumDims - 2];
|
||||
const TensorIndex outputRows = isColMajor ? out.dimensions()[2] : out.dimensions()[NumDims - 3];
|
||||
const TensorIndex outputCols = isColMajor ? out.dimensions()[3] : out.dimensions()[NumDims - 4];
|
||||
|
||||
TensorIndex forward_pad_z, forward_pad_y, forward_pad_x;
|
||||
const TensorIndex size_z = ceil(inputPlanes / static_cast<float>(stridePlanes));
|
||||
const TensorIndex size_y = ceil(inputRows / static_cast<float>(strideRows));
|
||||
const TensorIndex size_x = ceil(inputCols / static_cast<float>(strideCols));
|
||||
|
||||
// Infer padding type.
|
||||
if (size_z == outputPlanes && size_y == outputRows && size_x == outputCols) {
|
||||
// SAME padding.
|
||||
const TensorIndex dz = size_z * stridePlanes + kernelPlanes - 1 - inputPlanes;
|
||||
const TensorIndex dy = size_y * strideRows + kernelRows - 1 - inputRows;
|
||||
const TensorIndex dx = size_x * strideCols + kernelCols - 1 - inputCols;
|
||||
|
||||
forward_pad_z = dz - dz / 2;
|
||||
forward_pad_y = dy - dy / 2;
|
||||
forward_pad_x = dx - dx / 2;
|
||||
} else {
|
||||
// VALID padding.
|
||||
forward_pad_z = 0;
|
||||
forward_pad_y = 0;
|
||||
forward_pad_x = 0;
|
||||
}
|
||||
const TensorIndex padding_ztop = kernelPlanes - 1 - forward_pad_z;
|
||||
const TensorIndex padding_top = kernelRows - 1 - forward_pad_y;
|
||||
const TensorIndex padding_left = kernelCols - 1 - forward_pad_x;
|
||||
|
||||
const TensorIndex padding_zbottom = inputPlanes + kernelPlanes - 1 - (outputPlanes - 1) * stridePlanes - 1 - padding_ztop;
|
||||
const TensorIndex padding_bottom = inputRows + kernelRows - 1 - (outputRows - 1) * strideRows - 1 - padding_top;
|
||||
const TensorIndex padding_right = inputCols + kernelCols - 1 - (outputCols - 1) * strideCols - 1 - padding_left;
|
||||
|
||||
eigen_assert(padding_ztop >= 0);
|
||||
eigen_assert(padding_zbottom >= 0);
|
||||
eigen_assert(padding_top >= 0);
|
||||
eigen_assert(padding_left >= 0);
|
||||
eigen_assert(padding_bottom >= 0);
|
||||
eigen_assert(padding_right >= 0);
|
||||
|
||||
// The kernel has dimensions filters X channels X patch_planes X patch_rows X patch_cols.
|
||||
// We need to reverse the kernel along the spatial dimensions.
|
||||
array<bool, 5> kernel_reverse;
|
||||
if (isColMajor) {
|
||||
kernel_reverse[0] = false;
|
||||
kernel_reverse[1] = false;
|
||||
kernel_reverse[2] = true;
|
||||
kernel_reverse[3] = true;
|
||||
kernel_reverse[4] = true;
|
||||
} else {
|
||||
kernel_reverse[0] = true;
|
||||
kernel_reverse[1] = true;
|
||||
kernel_reverse[2] = true;
|
||||
kernel_reverse[3] = false;
|
||||
kernel_reverse[4] = false;
|
||||
}
|
||||
|
||||
DSizes<TensorIndex, 3> kernel_dims;
|
||||
if (isColMajor) {
|
||||
kernel_dims[0] = kernelFilters;
|
||||
kernel_dims[1] = kernelChannels;
|
||||
kernel_dims[2] = kernelRows * kernelCols * kernelPlanes;
|
||||
} else {
|
||||
kernel_dims[0] = kernelRows * kernelCols * kernelPlanes;
|
||||
kernel_dims[1] = kernelChannels;
|
||||
kernel_dims[2] = kernelFilters;
|
||||
}
|
||||
|
||||
// The output_backward has dimensions out_depth X out_planes X out_rows X out_cols X OTHERS
|
||||
// When we extract the image patches from output_backward, it will have dimensions:
|
||||
// out_depth X (patch_planes * patch_rows * patch_cols) X (input_planes * input_rows * input_cols * OTHERS)
|
||||
DSizes<TensorIndex, 3> pre_contract_dims;
|
||||
if (isColMajor) {
|
||||
pre_contract_dims[0] = kernelFilters;
|
||||
pre_contract_dims[1] = kernelRows * kernelCols * kernelPlanes;
|
||||
pre_contract_dims[2] = inputRows * inputCols * inputPlanes;
|
||||
for (int i = 4; i < NumDims; ++i) {
|
||||
pre_contract_dims[2] *= out.dimension(i);
|
||||
}
|
||||
} else {
|
||||
pre_contract_dims[2] = kernelFilters;
|
||||
pre_contract_dims[1] = kernelRows * kernelCols * kernelPlanes;
|
||||
pre_contract_dims[0] = inputRows * inputCols * inputPlanes;
|
||||
for (int i = 0; i < NumDims - 4; ++i) {
|
||||
pre_contract_dims[0] *= out.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
// We will contract along dimensions (0, 2) in kernel and (0, 1) in
|
||||
// output_backward, if this is col-major, and
|
||||
// dimensions (0, 2) in kernel and (1, 2) in output_backward, if this row-major.
|
||||
array<IndexPair<TensorIndex>, 2> contract_dims;
|
||||
if (isColMajor) {
|
||||
// col-major: kernel.contract(output.patches)
|
||||
contract_dims[0] = IndexPair<TensorIndex>(0, 0);
|
||||
contract_dims[1] = IndexPair<TensorIndex>(2, 1);
|
||||
} else {
|
||||
// row-major: output.patches.contract(kernel)
|
||||
contract_dims[0] = IndexPair<TensorIndex>(1, 0);
|
||||
contract_dims[1] = IndexPair<TensorIndex>(2, 2);
|
||||
}
|
||||
|
||||
// Post contraction, the dimensions of the input_backprop is
|
||||
// channels X input_planes X input_rows X input_cols X OTHERS
|
||||
DSizes<TensorIndex, NumDims> post_contract_dims;
|
||||
if (isColMajor) {
|
||||
post_contract_dims[0] = kernelChannels;
|
||||
post_contract_dims[1] = inputPlanes;
|
||||
post_contract_dims[2] = inputRows;
|
||||
post_contract_dims[3] = inputCols;
|
||||
for (int i = 4; i < NumDims; ++i) {
|
||||
post_contract_dims[i] = out.dimension(i);
|
||||
}
|
||||
} else {
|
||||
post_contract_dims[NumDims - 1] = kernelChannels;
|
||||
post_contract_dims[NumDims - 2] = inputPlanes;
|
||||
post_contract_dims[NumDims - 3] = inputRows;
|
||||
post_contract_dims[NumDims - 4] = inputCols;
|
||||
for (int i = 0; i < NumDims - 4; ++i) {
|
||||
post_contract_dims[i] = out.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
DSizes<TensorIndex, NumDims> strides;
|
||||
for (int i = 0; i < NumDims; i++) {
|
||||
strides[i] = 1;
|
||||
}
|
||||
if (isColMajor) {
|
||||
strides[1] = stridePlanes;
|
||||
strides[2] = strideRows;
|
||||
strides[3] = strideCols;
|
||||
} else {
|
||||
strides[NumDims - 2] = stridePlanes;
|
||||
strides[NumDims - 3] = strideRows;
|
||||
strides[NumDims - 4] = strideCols;
|
||||
}
|
||||
|
||||
return choose(
|
||||
Cond<internal::traits<OutputBackward>::Layout == ColMajor>(),
|
||||
kernel.reverse(kernel_reverse)
|
||||
.reshape(kernel_dims)
|
||||
.contract(
|
||||
output_backward.extract_volume_patches(kernelPlanes, kernelRows, kernelCols,
|
||||
1, 1, 1, stridePlanes, strideRows, strideCols,
|
||||
padding_ztop, padding_zbottom,
|
||||
padding_top, padding_bottom,
|
||||
padding_left, padding_right)
|
||||
.reshape(pre_contract_dims),
|
||||
contract_dims)
|
||||
.reshape(post_contract_dims),
|
||||
output_backward.extract_volume_patches(kernelPlanes, kernelRows, kernelCols,
|
||||
1, 1, 1, stridePlanes, strideRows, strideCols,
|
||||
padding_ztop, padding_zbottom,
|
||||
padding_top, padding_bottom,
|
||||
padding_left, padding_right)
|
||||
.reshape(pre_contract_dims)
|
||||
.contract(kernel.reverse(kernel_reverse).reshape(kernel_dims),
|
||||
contract_dims)
|
||||
.reshape(post_contract_dims));
|
||||
}
|
||||
|
||||
|
||||
/** CuboidConvolutionBackwardKernel
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Computes the backprop for the filter of a 3D convolution.
|
||||
*
|
||||
* The output_backward parameter is expected to be a tensor with a rank of 4 or more (channels, depth, height, width, and optionally others)
|
||||
* The kernel parameter is expected to be a 4D tensor (filters, channels, kernel_depth, kernel_height, kernel_width)
|
||||
* output_backward and kernel have to be in the same layout.
|
||||
*
|
||||
* The dimensions of the result will be filters, depth, height, width (and others if applicable).
|
||||
*
|
||||
* It is possible to swap the order of the depth, width and height dimensions provided that the same order is used in the input, the kernel, and the output.
|
||||
*
|
||||
* All dimension orders above are given for col-major, and should be reversed for row-major.
|
||||
*/
|
||||
template <typename OutputBackward, typename Input>
|
||||
EIGEN_ALWAYS_INLINE static const typename internal::conditional<
|
||||
internal::traits<OutputBackward>::Layout == ColMajor,
|
||||
const TensorShufflingOp<
|
||||
const array<typename internal::traits<OutputBackward>::Index, 5>,
|
||||
const TensorReverseOp<
|
||||
const array<bool, 5>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<OutputBackward>::Index, 5>,
|
||||
const TensorContractionOp<
|
||||
const array< IndexPair<typename internal::traits<Input>::Index>, 2>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<Input>::Index, 3>,
|
||||
const Input>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes< typename internal::traits<OutputBackward>::Index, 4>,
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const OutputBackward>
|
||||
>
|
||||
>
|
||||
>
|
||||
>
|
||||
>,
|
||||
const TensorShufflingOp<
|
||||
const array<typename internal::traits<OutputBackward>::Index, 5>,
|
||||
const TensorReverseOp<
|
||||
const array<bool, 5>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<OutputBackward>::Index, 5>,
|
||||
const TensorContractionOp<
|
||||
const array< IndexPair<typename internal::traits<Input>::Index>, 2>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes< typename internal::traits<OutputBackward>::Index, 4>,
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const OutputBackward>
|
||||
>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<Input>::Index, 3>,
|
||||
const Input
|
||||
>
|
||||
>
|
||||
>
|
||||
>
|
||||
>
|
||||
>::type
|
||||
CuboidConvolutionBackwardKernel(
|
||||
const Input& input, const OutputBackward& output_backward,
|
||||
typename internal::traits<Input>::Index kernelPlanes,
|
||||
typename internal::traits<Input>::Index kernelRows,
|
||||
typename internal::traits<Input>::Index kernelCols,
|
||||
const DenseIndex stridePlanes = 1,
|
||||
const DenseIndex strideRows = 1,
|
||||
const DenseIndex strideCols = 1) {
|
||||
typedef typename internal::traits<Input>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);
|
||||
TensorRef<Tensor<typename internal::traits<OutputBackward>::Scalar, internal::traits<OutputBackward>::NumDimensions, internal::traits<OutputBackward>::Layout, TensorIndex> > out(output_backward);
|
||||
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == internal::traits<OutputBackward>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
|
||||
|
||||
static const int NumDims = internal::traits<Input>::NumDimensions;
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == internal::traits<OutputBackward>::NumDimensions, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
const TensorIndex inputPlanes = isColMajor ? in.dimension(1) : in.dimension(NumDims - 2);
|
||||
const TensorIndex inputRows = isColMajor ? in.dimension(2) : in.dimension(NumDims - 3);
|
||||
const TensorIndex inputCols = isColMajor ? in.dimension(3) : in.dimension(NumDims - 4);
|
||||
|
||||
const TensorIndex outputPlanes = isColMajor ? out.dimension(1) : out.dimension(NumDims - 2);
|
||||
const TensorIndex outputRows = isColMajor ? out.dimension(2) : out.dimension(NumDims - 3);
|
||||
const TensorIndex outputCols = isColMajor ? out.dimension(3) : out.dimension(NumDims - 4);
|
||||
|
||||
const TensorIndex kernelFilters = isColMajor ? out.dimension(0) : out.dimension(NumDims - 1);
|
||||
const TensorIndex kernelChannels = isColMajor ? in.dimension(0) : in.dimension(NumDims - 1);
|
||||
|
||||
TensorIndex forward_pad_z, forward_pad_y, forward_pad_x;
|
||||
const TensorIndex size_z = ceil(inputPlanes / static_cast<float>(stridePlanes));
|
||||
const TensorIndex size_y = ceil(inputRows / static_cast<float>(strideRows));
|
||||
const TensorIndex size_x = ceil(inputCols / static_cast<float>(strideCols));
|
||||
|
||||
// Infer padding type.
|
||||
if (size_z == outputPlanes && size_y == outputRows && size_x == outputCols) {
|
||||
// SAME padding.
|
||||
const TensorIndex dz = size_z * stridePlanes + kernelPlanes - 1 - inputPlanes;
|
||||
const TensorIndex dy = size_y * strideRows + kernelRows - 1 - inputRows;
|
||||
const TensorIndex dx = size_x * strideCols + kernelCols - 1 - inputCols;
|
||||
|
||||
forward_pad_z = dz - dz / 2;
|
||||
forward_pad_y = dy - dy / 2;
|
||||
forward_pad_x = dx - dx / 2;
|
||||
} else {
|
||||
// VALID padding.
|
||||
forward_pad_z = 0;
|
||||
forward_pad_y = 0;
|
||||
forward_pad_x = 0;
|
||||
}
|
||||
|
||||
const TensorIndex padding_ztop = kernelPlanes - 1 - forward_pad_z;
|
||||
const TensorIndex padding_top = kernelRows - 1 - forward_pad_y;
|
||||
const TensorIndex padding_left = kernelCols - 1 - forward_pad_x;
|
||||
|
||||
const TensorIndex padding_zbottom = inputPlanes + kernelPlanes - 1 - (outputPlanes - 1) * stridePlanes - 1 - padding_ztop;
|
||||
const TensorIndex padding_bottom = inputRows + kernelRows - 1 - (outputRows - 1) * strideRows - 1 - padding_top;
|
||||
const TensorIndex padding_right = inputCols + kernelCols - 1 - (outputCols - 1) * strideCols - 1 - padding_left;
|
||||
|
||||
eigen_assert(padding_ztop >= 0);
|
||||
eigen_assert(padding_zbottom >= 0);
|
||||
eigen_assert(padding_top >= 0);
|
||||
eigen_assert(padding_left >= 0);
|
||||
eigen_assert(padding_bottom >= 0);
|
||||
eigen_assert(padding_right >= 0);
|
||||
|
||||
// The output_backward has dimensions out_depth X out_plaens X out_rows X out_cols X OTHERS
|
||||
// When we extract the image patches from output_backward (with input as the
|
||||
// kernel), it will have dimensions
|
||||
// (out_depth) X (input_planes * input_rows * input_cols) X (kernel_planes * kernel_rows * kernel_cols) X OTHERS
|
||||
DSizes<TensorIndex, 4> pre_contract_dims;
|
||||
if (isColMajor) {
|
||||
pre_contract_dims[0] = kernelFilters;
|
||||
pre_contract_dims[1] = inputRows * inputCols * inputPlanes;
|
||||
pre_contract_dims[2] = kernelRows * kernelCols * kernelPlanes;
|
||||
pre_contract_dims[3] = 1;
|
||||
for (int i = 4; i < NumDims; ++i) {
|
||||
pre_contract_dims[3] *= out.dimension(i);
|
||||
}
|
||||
} else {
|
||||
pre_contract_dims[3] = kernelFilters;
|
||||
pre_contract_dims[2] = inputRows * inputCols * inputPlanes;
|
||||
pre_contract_dims[1] = kernelRows * kernelCols * kernelPlanes;
|
||||
pre_contract_dims[0] = 1;
|
||||
for (int i = 0; i < NumDims - 4; ++i) {
|
||||
pre_contract_dims[0] *= out.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
// The input has dimensions in_depth X (input_planes * input_rows * input_cols) X OTHERS
|
||||
DSizes<TensorIndex, 3> input_dims;
|
||||
if (isColMajor) {
|
||||
input_dims[0] = kernelChannels;
|
||||
input_dims[1] = inputRows * inputCols * inputPlanes;
|
||||
input_dims[2] = 1;
|
||||
for (int i = 4; i < NumDims; ++i) {
|
||||
input_dims[2] *= in.dimension(i);
|
||||
}
|
||||
eigen_assert(input_dims[2] == pre_contract_dims[3]);
|
||||
} else {
|
||||
input_dims[2] = kernelChannels;
|
||||
input_dims[1] = inputRows * inputCols * inputPlanes;
|
||||
input_dims[0] = 1;
|
||||
for (int i = 0; i < NumDims - 4; ++i) {
|
||||
input_dims[0] *= in.dimension(i);
|
||||
}
|
||||
eigen_assert(input_dims[0] == pre_contract_dims[0]);
|
||||
}
|
||||
|
||||
// We will contract along dimensions (1, 2) in in and (1, 3) in out, if
|
||||
// this is col-major.
|
||||
// For row-major, it's dimensions (0, 1) in in and (0, 2) in out.
|
||||
array<IndexPair<TensorIndex>, 2> contract_dims;
|
||||
if (isColMajor) {
|
||||
// col-major: in.contract(output.patches)
|
||||
contract_dims[0] = IndexPair<TensorIndex>(1, 1);
|
||||
contract_dims[1] = IndexPair<TensorIndex>(2, 3);
|
||||
} else {
|
||||
// row-major: output.patches.contract(in)
|
||||
contract_dims[0] = IndexPair<TensorIndex>(0, 0);
|
||||
contract_dims[1] = IndexPair<TensorIndex>(2, 1);
|
||||
}
|
||||
|
||||
// After the contraction, the kernel will have dimension
|
||||
// in_depth X out_depth X kernel_patches X kernel_rows X kernel_cols
|
||||
// We will need to shuffle the first two dimensions and reverse the spatial dimensions.
|
||||
// The end shape is:
|
||||
// out_depth X in_shape X kernel_planes X kernel_rows X kernel_cols
|
||||
|
||||
// This is the shape of the kernel *before* the shuffling.
|
||||
DSizes<TensorIndex, 5> kernel_dims;
|
||||
if (isColMajor) {
|
||||
kernel_dims[0] = kernelChannels;
|
||||
kernel_dims[1] = kernelFilters;
|
||||
kernel_dims[2] = kernelPlanes;
|
||||
kernel_dims[3] = kernelRows;
|
||||
kernel_dims[4] = kernelCols;
|
||||
} else {
|
||||
kernel_dims[0] = kernelCols;
|
||||
kernel_dims[1] = kernelRows;
|
||||
kernel_dims[2] = kernelPlanes;
|
||||
kernel_dims[3] = kernelFilters;
|
||||
kernel_dims[4] = kernelChannels;
|
||||
}
|
||||
|
||||
// Flip filters and channels.
|
||||
array<TensorIndex, 5> kernel_shuffle;
|
||||
if (isColMajor) {
|
||||
kernel_shuffle[0] = 1;
|
||||
kernel_shuffle[1] = 0;
|
||||
kernel_shuffle[2] = 2;
|
||||
kernel_shuffle[3] = 3;
|
||||
kernel_shuffle[4] = 4;
|
||||
} else {
|
||||
kernel_shuffle[0] = 0;
|
||||
kernel_shuffle[1] = 1;
|
||||
kernel_shuffle[2] = 2;
|
||||
kernel_shuffle[3] = 4;
|
||||
kernel_shuffle[4] = 3;
|
||||
}
|
||||
|
||||
// Reverse the spatial dimensions.
|
||||
array<bool, 5> kernel_reverse;
|
||||
if (isColMajor) {
|
||||
kernel_reverse[0] = false;
|
||||
kernel_reverse[1] = false;
|
||||
kernel_reverse[2] = true;
|
||||
kernel_reverse[3] = true;
|
||||
kernel_reverse[4] = true;
|
||||
} else {
|
||||
kernel_reverse[0] = true;
|
||||
kernel_reverse[1] = true;
|
||||
kernel_reverse[2] = true;
|
||||
kernel_reverse[3] = false;
|
||||
kernel_reverse[4] = false;
|
||||
}
|
||||
|
||||
DSizes<TensorIndex, NumDims> strides;
|
||||
for (int i = 0; i < NumDims; i++) {
|
||||
strides[i] = 1;
|
||||
}
|
||||
if (isColMajor) {
|
||||
strides[1] = stridePlanes;
|
||||
strides[2] = strideRows;
|
||||
strides[3] = strideCols;
|
||||
} else {
|
||||
strides[NumDims - 2] = stridePlanes;
|
||||
strides[NumDims - 3] = strideRows;
|
||||
strides[NumDims - 4] = strideCols;
|
||||
}
|
||||
return choose(
|
||||
Cond<internal::traits<Input>::Layout == ColMajor>(),
|
||||
input.reshape(input_dims)
|
||||
.contract(
|
||||
output_backward.extract_volume_patches(
|
||||
inputPlanes, inputRows, inputCols, 1,
|
||||
1, 1, stridePlanes, strideRows, strideCols,
|
||||
|
||||
padding_ztop, padding_zbottom, padding_top,
|
||||
padding_bottom, padding_left, padding_right)
|
||||
.reshape(pre_contract_dims),
|
||||
contract_dims)
|
||||
.reshape(kernel_dims)
|
||||
.reverse(kernel_reverse)
|
||||
.shuffle(kernel_shuffle),
|
||||
output_backward.extract_volume_patches(
|
||||
inputPlanes, inputRows, inputCols, 1, 1, 1,
|
||||
stridePlanes, strideRows, strideCols, padding_ztop,
|
||||
padding_zbottom, padding_top, padding_bottom,
|
||||
padding_left, padding_right)
|
||||
.reshape(pre_contract_dims)
|
||||
.contract(input.reshape(input_dims), contract_dims)
|
||||
.reshape(kernel_dims)
|
||||
.reverse(kernel_reverse)
|
||||
.shuffle(kernel_shuffle));
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_CUBOID_CONVOLUTIONS_H_
|
@ -1,359 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_SPATIAL_CONVOLUTIONS_H_
|
||||
#define THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_SPATIAL_CONVOLUTIONS_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** SpatialConvolutionBackwardInput
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Computes the backprop for the input of a 2D convolution.
|
||||
*
|
||||
* The output_backward parameter is expected to be a tensor with a rank of 3 or more (channels, height, width, and optionally others)
|
||||
* The kernel parameter is expected to be a 4D tensor (filters, channels, kernel_height, kernel_width)
|
||||
* The output_backward and the kernel must both be in col-major layout. The result will also be in col-major layout.
|
||||
*
|
||||
* If in_stride > 1, then applies convolution with holes (aka atrous convolution), sampling every in_stride input pixels.
|
||||
*
|
||||
* The result can be assigned to a tensor of rank equal to the rank of the output_backward. The dimensions of the result will be filters, height, width (and others if applicable).
|
||||
*
|
||||
* It is possible to swap the order of the width and height dimensions provided that the same order is used in the input, the kernel, and the output.
|
||||
*
|
||||
*/
|
||||
|
||||
template <typename OutputBackward, typename Kernel>
|
||||
EIGEN_ALWAYS_INLINE
|
||||
static const typename internal::conditional<
|
||||
internal::traits<OutputBackward>::Layout == ColMajor,
|
||||
TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, internal::traits<OutputBackward>::NumDimensions>, const TensorContractionOp<const array<IndexPair<typename internal::traits<OutputBackward>::Index>, 2>, const TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, 3>, const TensorReverseOp<const array<bool, 4>, const Kernel> >, const TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, 3>, const TensorImagePatchOp<Dynamic, Dynamic, const OutputBackward> > > >,
|
||||
TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, internal::traits<OutputBackward>::NumDimensions>, const TensorContractionOp<const array<IndexPair<typename internal::traits<OutputBackward>::Index>, 2>, const TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, 3>, const TensorImagePatchOp<Dynamic, Dynamic, const OutputBackward> >, const TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, 3>, const TensorReverseOp<const array<bool, 4>, const Kernel> > > > >::type
|
||||
SpatialConvolutionBackwardInput(const Kernel& kernel, const OutputBackward& output_backward, typename internal::traits<OutputBackward>::Index inputRows, typename internal::traits<OutputBackward>::Index inputCols, const DenseIndex stride = 1, const DenseIndex in_stride = 1) {
|
||||
|
||||
typedef typename internal::traits<OutputBackward>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Kernel>::Scalar, internal::traits<Kernel>::NumDimensions, internal::traits<Kernel>::Layout, TensorIndex> > kern(kernel);
|
||||
TensorRef<Tensor<typename internal::traits<OutputBackward>::Scalar, internal::traits<OutputBackward>::NumDimensions, internal::traits<OutputBackward>::Layout, TensorIndex> > out(output_backward);
|
||||
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Kernel>::Layout == internal::traits<OutputBackward>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
static const bool isColMajor = (internal::traits<OutputBackward>::Layout == ColMajor);
|
||||
|
||||
static const int NumDims = internal::traits<OutputBackward>::NumDimensions;
|
||||
|
||||
// Number of filters to apply. This is the same as the output depth of the result
|
||||
const TensorIndex kernelFilters = isColMajor ? kern.dimensions()[0] : kern.dimensions()[3];
|
||||
// Number of channels. This is the same as the input depth.
|
||||
const TensorIndex kernelChannels = isColMajor ? kern.dimensions()[1] : kern.dimensions()[2];
|
||||
const TensorIndex kernelRows = isColMajor ? kern.dimensions()[2] : kern.dimensions()[1];
|
||||
const TensorIndex kernelCols = isColMajor ? kern.dimensions()[3] : kern.dimensions()[0];
|
||||
|
||||
// This is the effective kernel size, taking into account the (in_stride - 1) zero-values
|
||||
// inserted between consecutive kernel elements in atrous convolution
|
||||
const TensorIndex kernelRowsEff = kernelRows + (kernelRows - 1) * (in_stride - 1);
|
||||
const TensorIndex kernelColsEff = kernelCols + (kernelCols - 1) * (in_stride - 1);
|
||||
|
||||
const TensorIndex outputRows = isColMajor ? output_backward.dimension(1) : output_backward.dimension(NumDims - 2);
|
||||
const TensorIndex outputCols = isColMajor ? output_backward.dimension(2) : output_backward.dimension(NumDims - 3);
|
||||
|
||||
// Computing the forward padding
|
||||
const TensorIndex forward_pad_top = ((outputRows - 1) * stride + kernelRowsEff - inputRows) / 2;
|
||||
const TensorIndex forward_pad_left = ((outputCols - 1) * stride + kernelColsEff - inputCols) / 2;
|
||||
|
||||
const TensorIndex padding_top = kernelRowsEff - 1 - forward_pad_top;
|
||||
const TensorIndex padding_left = kernelColsEff - 1 - forward_pad_left;
|
||||
const TensorIndex padding_bottom = inputRows + kernelRowsEff - 1 - (outputRows - 1) * stride - 1 - padding_top;
|
||||
const TensorIndex padding_right = inputCols + kernelColsEff - 1 - (outputCols - 1) * stride - 1 - padding_left;
|
||||
|
||||
eigen_assert(padding_top >= 0);
|
||||
eigen_assert(padding_left >= 0);
|
||||
eigen_assert(padding_bottom >= 0);
|
||||
eigen_assert(padding_right >= 0);
|
||||
|
||||
// The kernel has dimensions filters X channels X patch_rows X patch_cols
|
||||
// We need to reverse the kernel along dimensions corresponding to rows and
|
||||
// cols.
|
||||
// TODO(yangke): we can make things slightly faster by collapsing the dimensions
|
||||
// where we don't reverse. Try that once we have a faster compiler.
|
||||
array<bool, 4> kernel_reverse;
|
||||
if (isColMajor) {
|
||||
kernel_reverse[0] = false;
|
||||
kernel_reverse[1] = false;
|
||||
kernel_reverse[2] = true;
|
||||
kernel_reverse[3] = true;
|
||||
} else {
|
||||
kernel_reverse[0] = true;
|
||||
kernel_reverse[1] = true;
|
||||
kernel_reverse[2] = false;
|
||||
kernel_reverse[3] = false;
|
||||
}
|
||||
|
||||
DSizes<TensorIndex, 3> kernel_dims;
|
||||
if (isColMajor) {
|
||||
kernel_dims[0] = kernelFilters;
|
||||
kernel_dims[1] = kernelChannels;
|
||||
kernel_dims[2] = kernelRows * kernelCols;
|
||||
} else {
|
||||
kernel_dims[0] = kernelRows * kernelCols;
|
||||
kernel_dims[1] = kernelChannels;
|
||||
kernel_dims[2] = kernelFilters;
|
||||
}
|
||||
|
||||
// The output_backward has dimensions out_depth X out_rows X out_cols X OTHERS
|
||||
// When we extract the image patches from output_backward, it will have dimensions
|
||||
// out_depth X (patch_rows * patch_cols) X (input_rows * input_cols * OTHERS)
|
||||
DSizes<TensorIndex, 3> pre_contract_dims;
|
||||
if (isColMajor) {
|
||||
pre_contract_dims[0] = kernelFilters;
|
||||
pre_contract_dims[1] = kernelRows * kernelCols;
|
||||
pre_contract_dims[2] = inputRows * inputCols;
|
||||
for (int i = 3; i < NumDims; ++i) {
|
||||
pre_contract_dims[2] *= out.dimension(i);
|
||||
}
|
||||
} else {
|
||||
pre_contract_dims[2] = kernelFilters;
|
||||
pre_contract_dims[1] = kernelRows * kernelCols;
|
||||
pre_contract_dims[0] = inputRows * inputCols;
|
||||
for (int i = 0; i < NumDims - 3; ++i) {
|
||||
pre_contract_dims[0] *= out.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
// We will contract along dimensions (0, 2) in kernel and (0, 1) in
|
||||
// output_backward, if this is col-major, and
|
||||
// dimensions (0, 2) in kernel and (1, 2) in output_backward, if this row-major.
|
||||
array<IndexPair<TensorIndex>, 2> contract_dims;
|
||||
if (isColMajor) {
|
||||
// col-major: kernel.contract(output.patches)
|
||||
contract_dims[0] = IndexPair<TensorIndex>(0, 0);
|
||||
contract_dims[1] = IndexPair<TensorIndex>(2, 1);
|
||||
} else {
|
||||
// row-major: output.patches.contract(kernel)
|
||||
contract_dims[0] = IndexPair<TensorIndex>(1, 0);
|
||||
contract_dims[1] = IndexPair<TensorIndex>(2, 2);
|
||||
}
|
||||
|
||||
// Post contraction, the dimensions of the input_backprop is
|
||||
// channels X input_rows X input_cols X OTHERS
|
||||
DSizes<TensorIndex, NumDims> post_contract_dims;
|
||||
if (isColMajor) {
|
||||
post_contract_dims[0] = kernelChannels;
|
||||
post_contract_dims[1] = inputRows;
|
||||
post_contract_dims[2] = inputCols;
|
||||
for (int i = 3; i < NumDims; ++i) {
|
||||
post_contract_dims[i] = out.dimension(i);
|
||||
}
|
||||
} else {
|
||||
post_contract_dims[NumDims - 1] = kernelChannels;
|
||||
post_contract_dims[NumDims - 2] = inputRows;
|
||||
post_contract_dims[NumDims - 3] = inputCols;
|
||||
for (int i = 0; i < NumDims - 3; ++i) {
|
||||
post_contract_dims[i] = out.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
return choose(Cond<internal::traits<OutputBackward>::Layout == ColMajor>(),
|
||||
kernel.reverse(kernel_reverse).reshape(kernel_dims).contract(output_backward.extract_image_patches(kernelRows, kernelCols, 1, 1, in_stride, in_stride, stride, stride, padding_top, padding_bottom, padding_left, padding_right, 0).reshape(pre_contract_dims), contract_dims).reshape(post_contract_dims),
|
||||
output_backward.extract_image_patches(kernelRows, kernelCols, 1, 1, in_stride, in_stride, stride, stride, padding_top, padding_bottom, padding_left, padding_right, 0).reshape(pre_contract_dims).contract(kernel.reverse(kernel_reverse).reshape(kernel_dims), contract_dims).reshape(post_contract_dims));
|
||||
}
|
||||
|
||||
|
||||
/** SpatialConvolutionBackwardKernel
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Computes the backprop for the filter of a 2D convolution.
|
||||
*
|
||||
* The output_backward parameter is expected to be a tensor with a rank of 3 or more (channels, height, width, and optionally others)
|
||||
* The kernel parameter is expected to be a 4D tensor (filters, channels, kernel_height, kernel_width)
|
||||
* The output_backward and the kernel must both be in col-major layout. The result will also be in col-major layout.
|
||||
*
|
||||
* If in_stride > 1, then applies convolution with holes (aka atrous convolution), sampling every in_stride input pixels.
|
||||
*
|
||||
* The result can be assigned to a tensor of rank equal to the rank of the output_backward. The dimensions of the result will be filters, height, width (and others if applicable).
|
||||
*
|
||||
* It is possible to swap the order of the width and height dimensions provided that the same order is used in the input, the kernel, and the output.
|
||||
*
|
||||
*/
|
||||
// TODO(gpapan): Resolve a bug in TensorContractionInputMapper at SpatialConvolutions.h that yangke circumvented by using .reshape().reshape().
|
||||
// This can significantly accelerate SpatialConvolutionBackwardKernel.
|
||||
|
||||
template <typename OutputBackward, typename Input>
|
||||
EIGEN_ALWAYS_INLINE
|
||||
static const typename internal::conditional<
|
||||
internal::traits<OutputBackward>::Layout == ColMajor,
|
||||
const TensorShufflingOp<const array<typename internal::traits<OutputBackward>::Index, 4>, const TensorReverseOp<const array<bool, 4>, const TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, 4>, const TensorContractionOp<const array<IndexPair<typename internal::traits<Input>::Index>, 2>, const TensorReshapingOp<const DSizes<typename internal::traits<Input>::Index, 3>, const Input>, const TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, 4>, const TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, 4>, const TensorImagePatchOp<Dynamic, Dynamic, const OutputBackward> > > > > > >,
|
||||
const TensorShufflingOp<const array<typename internal::traits<OutputBackward>::Index, 4>, const TensorReverseOp<const array<bool, 4>, const TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, 4>, const TensorContractionOp<const array<IndexPair<typename internal::traits<Input>::Index>, 2>, const TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, 4>, const TensorReshapingOp<const DSizes<typename internal::traits<OutputBackward>::Index, 4>, const TensorImagePatchOp<Dynamic, Dynamic, const OutputBackward> > >, const TensorReshapingOp<const DSizes<typename internal::traits<Input>::Index, 3>, const Input> > > > > >::type
|
||||
SpatialConvolutionBackwardKernel(const Input& input, const OutputBackward& output_backward, typename internal::traits<Input>::Index kernelRows, typename internal::traits<Input>::Index kernelCols, const DenseIndex stride = 1, const DenseIndex in_stride = 1) {
|
||||
|
||||
typedef typename internal::traits<Input>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);
|
||||
TensorRef<Tensor<typename internal::traits<OutputBackward>::Scalar, internal::traits<OutputBackward>::NumDimensions, internal::traits<OutputBackward>::Layout, TensorIndex> > out(output_backward);
|
||||
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == internal::traits<OutputBackward>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
// stride and in_stride cannot both be larger than 1
|
||||
eigen_assert(!(stride > 1 && in_stride > 1));
|
||||
|
||||
static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
|
||||
|
||||
static const int NumDims = internal::traits<Input>::NumDimensions;
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == internal::traits<OutputBackward>::NumDimensions, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
const TensorIndex inputRows = isColMajor ? in.dimension(1) : in.dimension(NumDims - 2);
|
||||
const TensorIndex inputCols = isColMajor ? in.dimension(2) : in.dimension(NumDims - 3);
|
||||
|
||||
const TensorIndex outputRows = isColMajor ? output_backward.dimension(1) : output_backward.dimension(NumDims - 2);
|
||||
const TensorIndex outputCols = isColMajor ? output_backward.dimension(2) : output_backward.dimension(NumDims - 3);
|
||||
|
||||
// Number of filters to apply. This is the same as the output depth of the result
|
||||
const TensorIndex kernelFilters = isColMajor ? out.dimensions()[0] : out.dimensions()[NumDims - 1];
|
||||
|
||||
// Number of channels. This is the same as the input depth.
|
||||
const TensorIndex kernelChannels = isColMajor ? in.dimensions()[0] : in.dimensions()[NumDims - 1];
|
||||
|
||||
// This is the effective kernel size, taking into account the (in_stride - 1) zero-values
|
||||
// inserted between consecutive kernel elements in atrous convolution
|
||||
const TensorIndex kernelRowsEff = kernelRows + (kernelRows - 1) * (in_stride - 1);
|
||||
const TensorIndex kernelColsEff = kernelCols + (kernelCols - 1) * (in_stride - 1);
|
||||
|
||||
// Computing the forward padding
|
||||
const TensorIndex forward_pad_top = ((outputRows - 1) * stride + kernelRowsEff - inputRows) / 2;
|
||||
const TensorIndex forward_pad_left = ((outputCols - 1) * stride + kernelColsEff - inputCols) / 2;
|
||||
|
||||
// TODO: factor out the padding computation.
|
||||
const TensorIndex padding_top = kernelRowsEff - 1 - forward_pad_top;
|
||||
const TensorIndex padding_left = kernelColsEff - 1 - forward_pad_left;
|
||||
const TensorIndex padding_bottom = inputRows + kernelRowsEff - 1 - (outputRows - 1) * stride - 1 - padding_top;
|
||||
const TensorIndex padding_right = inputCols + kernelColsEff - 1 - (outputCols - 1) * stride - 1 - padding_left;
|
||||
|
||||
eigen_assert(padding_top >= 0);
|
||||
eigen_assert(padding_left >= 0);
|
||||
eigen_assert(padding_bottom >= 0);
|
||||
eigen_assert(padding_right >= 0);
|
||||
|
||||
// The output_backward has dimensions out_depth X out_rows X out_cols X OTHERS
|
||||
// When we extract the image patches from output_backward (with input as the
|
||||
// kernel), it will have dimensions
|
||||
// (out_depth) X (input_rows * input_cols) X (kernel_rows * kernel_cols) X OTHERS
|
||||
DSizes<TensorIndex, 4> pre_contract_dims;
|
||||
if (isColMajor) {
|
||||
pre_contract_dims[0] = kernelFilters;
|
||||
pre_contract_dims[1] = inputRows * inputCols;
|
||||
pre_contract_dims[2] = kernelRows * kernelCols;
|
||||
pre_contract_dims[3] = 1;
|
||||
for (int i = 3; i < NumDims; ++i) {
|
||||
pre_contract_dims[3] *= out.dimension(i);
|
||||
}
|
||||
} else {
|
||||
pre_contract_dims[3] = kernelFilters;
|
||||
pre_contract_dims[2] = inputRows * inputCols;
|
||||
pre_contract_dims[1] = kernelRows * kernelCols;
|
||||
pre_contract_dims[0] = 1;
|
||||
for (int i = 0; i < NumDims - 3; ++i) {
|
||||
pre_contract_dims[0] *= out.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
// The input has dimensions in_depth X (input_rows * input_cols) X OTHERS
|
||||
DSizes<TensorIndex, 3> input_dims;
|
||||
if (isColMajor) {
|
||||
input_dims[0] = kernelChannels;
|
||||
input_dims[1] = inputRows * inputCols;
|
||||
input_dims[2] = 1;
|
||||
for (int i = 3; i < NumDims; ++i) {
|
||||
input_dims[2] *= in.dimension(i);
|
||||
}
|
||||
eigen_assert(input_dims[2] == pre_contract_dims[3]);
|
||||
} else {
|
||||
input_dims[2] = kernelChannels;
|
||||
input_dims[1] = inputRows * inputCols;
|
||||
input_dims[0] = 1;
|
||||
for (int i = 0; i < NumDims - 3; ++i) {
|
||||
input_dims[0] *= in.dimension(i);
|
||||
}
|
||||
eigen_assert(input_dims[0] == pre_contract_dims[0]);
|
||||
}
|
||||
|
||||
// We will contract along dimensions (1, 2) in in and (1, 3) in out, if
|
||||
// this is col-major.
|
||||
// For row-major, it's dimensions (0, 1) in in and (0, 2) in out.
|
||||
array<IndexPair<TensorIndex>, 2> contract_dims;
|
||||
if (isColMajor) {
|
||||
// col-major: in.contract(output.patches)
|
||||
contract_dims[0] = IndexPair<TensorIndex>(1, 1);
|
||||
contract_dims[1] = IndexPair<TensorIndex>(2, 3);
|
||||
} else {
|
||||
// row-major: output.patches.contract(in)
|
||||
contract_dims[0] = IndexPair<TensorIndex>(0, 0);
|
||||
contract_dims[1] = IndexPair<TensorIndex>(2, 1);
|
||||
}
|
||||
|
||||
// After the contraction, the kernel will have dimension
|
||||
// in_depth X out_depth X kernel_rows X kernel_cols
|
||||
// We will need to shuffle the first two dimensions and reverse the latter
|
||||
// two dimensions.
|
||||
// The end shape is
|
||||
// out_depth X in_shape X kernel_rows X kernel_cols
|
||||
|
||||
// This is the shape of the kernel *before* the shuffling.
|
||||
DSizes<TensorIndex, 4> kernel_dims;
|
||||
if (isColMajor) {
|
||||
kernel_dims[0] = kernelChannels;
|
||||
kernel_dims[1] = kernelFilters;
|
||||
kernel_dims[2] = kernelRows;
|
||||
kernel_dims[3] = kernelCols;
|
||||
} else {
|
||||
kernel_dims[0] = kernelCols;
|
||||
kernel_dims[1] = kernelRows;
|
||||
kernel_dims[2] = kernelFilters;
|
||||
kernel_dims[3] = kernelChannels;
|
||||
}
|
||||
|
||||
array<TensorIndex, 4> kernel_shuffle;
|
||||
if (isColMajor) {
|
||||
kernel_shuffle[0] = 1;
|
||||
kernel_shuffle[1] = 0;
|
||||
kernel_shuffle[2] = 2;
|
||||
kernel_shuffle[3] = 3;
|
||||
} else {
|
||||
kernel_shuffle[0] = 0;
|
||||
kernel_shuffle[1] = 1;
|
||||
kernel_shuffle[2] = 3;
|
||||
kernel_shuffle[3] = 2;
|
||||
}
|
||||
|
||||
array<bool, 4> kernel_reverse;
|
||||
if (isColMajor) {
|
||||
kernel_reverse[0] = false;
|
||||
kernel_reverse[1] = false;
|
||||
kernel_reverse[2] = true;
|
||||
kernel_reverse[3] = true;
|
||||
} else {
|
||||
kernel_reverse[0] = true;
|
||||
kernel_reverse[1] = true;
|
||||
kernel_reverse[2] = false;
|
||||
kernel_reverse[3] = false;
|
||||
}
|
||||
|
||||
return choose(Cond<internal::traits<Input>::Layout == ColMajor>(),
|
||||
input.reshape(input_dims).contract(output_backward.extract_image_patches(inputRows, inputCols, in_stride, in_stride, 1, 1, stride, stride, padding_top, padding_bottom, padding_left, padding_right, 0).reshape(pre_contract_dims).reshape(pre_contract_dims), contract_dims).reshape(kernel_dims).reverse(kernel_reverse).shuffle(kernel_shuffle),
|
||||
output_backward.extract_image_patches(inputRows, inputCols, in_stride, in_stride, 1, 1, stride, stride, padding_top, padding_bottom, padding_left, padding_right, 0).reshape(pre_contract_dims).reshape(pre_contract_dims).contract(input.reshape(input_dims), contract_dims).reshape(kernel_dims).reverse(kernel_reverse).shuffle(kernel_shuffle));
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_BACKWARD_SPATIAL_CONVOLUTIONS_H_
|
File diff suppressed because it is too large
Load Diff
@ -1,195 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_CUBOID_CONVOLUTION_H_
|
||||
#define THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_CUBOID_CONVOLUTION_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "tensorflow/core/kernels/eigen_patch_3d.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** CuboidConvolution
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Applies a 3D convolution over a multichannel input voxel block.
|
||||
*
|
||||
* The input parameter is expected to be a tensor with a rank of 4 or more (channels, depth, height, width, and optionally others).
|
||||
* The kernel parameter is expected to be a 5D tensor (filters, channels, kernel_depth, kernel_height, kernel_width).
|
||||
* The result can be assigned to a tensor of rank equal to the rank of the input. The dimensions of the result will be filters, depth, height, width (and others if applicable).
|
||||
*
|
||||
* The input and kernel have to be in the same layout, and both row-major and
|
||||
* col-major are supported. The shapes given above are for col-major layout.
|
||||
* For row-major, all dimensions should be reversed.
|
||||
*
|
||||
* It is possible to swap the order of the depth, width, and height dimensions provided that the same order is used in the input, the kernel, and the output.
|
||||
*/
|
||||
template <typename Input, typename Kernel>
|
||||
EIGEN_ALWAYS_INLINE
|
||||
static const typename internal::conditional <
|
||||
internal::traits<Input>::Layout == ColMajor,
|
||||
TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<Input>::Index,
|
||||
internal::traits<Input>::NumDimensions>,
|
||||
const TensorContractionOp<
|
||||
const array<IndexPair<typename internal::traits<Input>::Index>, 1>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<Input>::Index, 2>,
|
||||
const Kernel>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<Input>::Index, 2>,
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic,
|
||||
const Input> > > >,
|
||||
TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<Input>::Index,
|
||||
internal::traits<Input>::NumDimensions>,
|
||||
const TensorContractionOp<
|
||||
const array<IndexPair<typename internal::traits<Input>::Index>, 1>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<Input>::Index, 2>,
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic,
|
||||
const Input> > ,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<Input>::Index, 2>,
|
||||
const Kernel> > > >::type
|
||||
CuboidConvolution(const Input& input, const Kernel& kernel,
|
||||
const DenseIndex stridePlanes = 1,
|
||||
const DenseIndex strideRows = 1,
|
||||
const DenseIndex strideCols = 1,
|
||||
const PaddingType padding_type = PADDING_SAME) {
|
||||
typedef typename internal::traits<Input>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);
|
||||
TensorRef<Tensor<typename internal::traits<Kernel>::Scalar, internal::traits<Kernel>::NumDimensions, internal::traits<Kernel>::Layout, TensorIndex> > kern(kernel);
|
||||
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == internal::traits<Kernel>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
|
||||
static const int NumDims = internal::traits<Input>::NumDimensions;
|
||||
|
||||
// Number of filters to apply. This is the same as the output depth of the result.
|
||||
const TensorIndex kernelFilters = isColMajor ? kern.dimensions()[0] : kern.dimensions()[4];
|
||||
const TensorIndex kernelChannels = isColMajor ? kern.dimensions()[1] : kern.dimensions()[3];
|
||||
|
||||
// Spatial size of the kernel.
|
||||
const TensorIndex kernelDepth = isColMajor ? kern.dimensions()[2] : kern.dimensions()[2];
|
||||
const TensorIndex kernelRows = isColMajor ? kern.dimensions()[3] : kern.dimensions()[1];
|
||||
const TensorIndex kernelCols = isColMajor ? kern.dimensions()[4] : kern.dimensions()[0];
|
||||
|
||||
if (isColMajor) {
|
||||
eigen_assert(kernelChannels == in.dimension(0));
|
||||
} else {
|
||||
eigen_assert(kernelChannels == in.dimension(NumDims - 1));
|
||||
}
|
||||
|
||||
const TensorIndex inputPlanes = isColMajor ? in.dimension(1) : in.dimension(NumDims - 2);
|
||||
const TensorIndex inputRows = isColMajor ? in.dimension(2) : in.dimension(NumDims - 3);
|
||||
const TensorIndex inputCols = isColMajor ? in.dimension(3) : in.dimension(NumDims - 4);
|
||||
|
||||
const float stride_planes_f = static_cast<float>(stridePlanes);
|
||||
const float stride_rows_f = static_cast<float>(strideRows);
|
||||
const float stride_cols_f = static_cast<float>(strideCols);
|
||||
TensorIndex out_depth;
|
||||
TensorIndex out_height;
|
||||
TensorIndex out_width;
|
||||
switch (padding_type) {
|
||||
case PADDING_VALID:
|
||||
out_depth = ceil((inputPlanes - kernelDepth + 1.f) / stride_planes_f);
|
||||
out_height = ceil((inputRows - kernelRows + 1.f) / stride_rows_f);
|
||||
out_width = ceil((inputCols - kernelCols + 1.f) / stride_cols_f);
|
||||
break;
|
||||
case PADDING_SAME:
|
||||
out_depth = ceil(inputPlanes / stride_planes_f);
|
||||
out_height = ceil(inputRows / stride_rows_f);
|
||||
out_width = ceil(inputCols / stride_cols_f);
|
||||
break;
|
||||
default:
|
||||
eigen_assert(false && "unexpected padding");
|
||||
}
|
||||
|
||||
DSizes<TensorIndex, 2> kernel_dims;
|
||||
if (isColMajor) {
|
||||
kernel_dims[0] = kernelFilters;
|
||||
kernel_dims[1] = kernelChannels * kernelDepth * kernelRows * kernelCols;
|
||||
} else {
|
||||
kernel_dims[0] = kernelChannels * kernelDepth * kernelRows * kernelCols;
|
||||
kernel_dims[1] = kernelFilters;
|
||||
}
|
||||
|
||||
// Molds the output of the patch extraction result into a 2D tensor:
|
||||
// - the first dimension (dims[0]): the patch values to be multiplied with the kernels
|
||||
// - the second dimension (dims[1]): everything else
|
||||
DSizes<TensorIndex, 2> pre_contract_dims;
|
||||
if (isColMajor) {
|
||||
pre_contract_dims[0] = kernelChannels * kernelDepth * kernelRows * kernelCols;
|
||||
pre_contract_dims[1] = out_depth * out_height * out_width;
|
||||
for (int i = 4; i < NumDims; ++i) {
|
||||
pre_contract_dims[1] *= in.dimension(i);
|
||||
}
|
||||
} else {
|
||||
pre_contract_dims[1] = kernelChannels * kernelDepth * kernelRows * kernelCols;
|
||||
pre_contract_dims[0] = out_depth * out_height * out_width;
|
||||
for (int i = 0; i < NumDims - 4; ++i) {
|
||||
pre_contract_dims[0] *= in.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
array<IndexPair<TensorIndex>, 1> contract_dims;
|
||||
contract_dims[0] = IndexPair<TensorIndex>(1, 0);
|
||||
|
||||
// Molds the output of the contraction into the shape expected by the user
|
||||
// (assuming ColMajor):
|
||||
// - 1st dim: kernel filters
|
||||
// - 2nd dim: output depth
|
||||
// - 3nd dim: output height
|
||||
// - 4rd dim: output width
|
||||
// - 5th dim and beyond: everything else including batch size
|
||||
DSizes<TensorIndex, NumDims> post_contract_dims;
|
||||
if (isColMajor) {
|
||||
post_contract_dims[0] = kernelFilters;
|
||||
post_contract_dims[1] = out_depth;
|
||||
post_contract_dims[2] = out_height;
|
||||
post_contract_dims[3] = out_width;
|
||||
for (int i = 4; i < NumDims; ++i) {
|
||||
post_contract_dims[i] = in.dimension(i);
|
||||
}
|
||||
} else {
|
||||
post_contract_dims[NumDims - 1] = kernelFilters;
|
||||
post_contract_dims[NumDims - 2] = out_depth;
|
||||
post_contract_dims[NumDims - 3] = out_height;
|
||||
post_contract_dims[NumDims - 4] = out_width;
|
||||
for (int i = 0; i < NumDims - 4; ++i) {
|
||||
post_contract_dims[i] = in.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
return choose(
|
||||
Cond<internal::traits<Input>::Layout == ColMajor>(),
|
||||
kernel.reshape(kernel_dims)
|
||||
.contract(input.extract_volume_patches(
|
||||
kernelDepth, kernelRows, kernelCols, stridePlanes,
|
||||
strideRows, strideCols, padding_type)
|
||||
.reshape(pre_contract_dims),
|
||||
contract_dims)
|
||||
.reshape(post_contract_dims),
|
||||
input.extract_volume_patches(kernelDepth, kernelRows, kernelCols,
|
||||
stridePlanes, strideRows, strideCols,
|
||||
padding_type)
|
||||
.reshape(pre_contract_dims)
|
||||
.contract(kernel.reshape(kernel_dims), contract_dims)
|
||||
.reshape(post_contract_dims));
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_CUBOID_CONVOLUTION_H_
|
@ -1,257 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_PATCH_3D_H_
|
||||
#define THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_PATCH_3D_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
|
||||
#if not defined(__CUDACC__)
|
||||
#include <type_traits>
|
||||
#endif
|
||||
|
||||
namespace Eigen {
|
||||
namespace internal {
|
||||
|
||||
/** Extract3DPatches
|
||||
* \ingroup CXX11_NeuralNetworksModule
|
||||
*
|
||||
* \brief Extracts 3D patches from a multichannel input volume.
|
||||
*
|
||||
* The input parameter is expected to be a tensor with a rank of 4 or more
|
||||
* (channels, depth, height, width, optional others in col-major, and the
|
||||
* reverse order in row-major).
|
||||
|
||||
* The return value will be a tensor of 3 more dimension than the input tensor.
|
||||
* In col-major, the first 4 dimensions of the result are: channels, patch_depth,
|
||||
* patch_height, patch_width. The next dimensions will identify the patch
|
||||
* position on the 3D grid of extracted patches: z, y, x. The remaining
|
||||
* dimensions, if any, will be the same as the 'other' dimensions of the input
|
||||
* tensor.
|
||||
*/
|
||||
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE static const TensorStridingOp<
|
||||
const array<typename internal::traits<Input>::Index,
|
||||
internal::traits<Input>::NumDimensions + 3>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<Input>::Index,
|
||||
internal::traits<Input>::NumDimensions + 3>,
|
||||
const TensorPatchOp<
|
||||
const DSizes<typename internal::traits<Input>::Index,
|
||||
internal::traits<Input>::NumDimensions>,
|
||||
const TensorPaddingOp<
|
||||
const array<IndexPair<typename internal::traits<Input>::Index>,
|
||||
internal::traits<Input>::NumDimensions>,
|
||||
const Input> > > >
|
||||
Extract3DPatches(
|
||||
const Input& input, const DenseIndex patchPlanes,
|
||||
const DenseIndex patchRows, const DenseIndex patchCols,
|
||||
const DenseIndex stridePlanes, const DenseIndex strideRows,
|
||||
const DenseIndex strideCols,
|
||||
const DenseIndex paddingZTop, const DenseIndex paddingZBottom,
|
||||
const DenseIndex paddingTop, const DenseIndex paddingBottom,
|
||||
const DenseIndex paddingLeft, const DenseIndex paddingRight,
|
||||
const typename internal::traits<Input>::Scalar padding_value = 0) {
|
||||
|
||||
typedef typename internal::traits<Input>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);
|
||||
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions >= 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
|
||||
static const int NumDims = internal::traits<Input>::NumDimensions;
|
||||
static const int ExtDims = NumDims + 3;
|
||||
|
||||
// Tensor size after patch extraction. We add three dimensions to unpack the
|
||||
// linear patch index into a 3D grid over which stride() can work.
|
||||
DSizes<TensorIndex, ExtDims> pre_stride_dims;
|
||||
|
||||
if (isColMajor) {
|
||||
pre_stride_dims[0] = in.dimension(0);
|
||||
pre_stride_dims[1] = patchPlanes;
|
||||
pre_stride_dims[2] = patchRows;
|
||||
pre_stride_dims[3] = patchCols;
|
||||
} else {
|
||||
pre_stride_dims[ExtDims - 1] = in.dimension(NumDims - 1);
|
||||
pre_stride_dims[ExtDims - 4] = patchCols;
|
||||
pre_stride_dims[ExtDims - 3] = patchRows;
|
||||
pre_stride_dims[ExtDims - 2] = patchPlanes;
|
||||
}
|
||||
|
||||
const TensorIndex inputPlanes = isColMajor ? in.dimension(1) : in.dimension(NumDims - 2);
|
||||
const TensorIndex inputRows = isColMajor ? in.dimension(2) : in.dimension(NumDims - 3);
|
||||
const TensorIndex inputCols = isColMajor ? in.dimension(3) : in.dimension(NumDims - 4);
|
||||
|
||||
array<IndexPair<TensorIndex>, NumDims> paddings;
|
||||
for (int i = 0; i < NumDims; ++i) {
|
||||
paddings[i] = IndexPair<TensorIndex>(0, 0);
|
||||
}
|
||||
|
||||
paddings[isColMajor ? 1 : (NumDims - 2)] = IndexPair<TensorIndex>(paddingZTop, paddingZBottom);
|
||||
paddings[isColMajor ? 2 : (NumDims - 3)] = IndexPair<TensorIndex>(paddingTop, paddingBottom);
|
||||
paddings[isColMajor ? 3 : (NumDims - 4)] = IndexPair<TensorIndex>(paddingLeft, paddingRight);
|
||||
|
||||
pre_stride_dims[isColMajor ? 4 : (ExtDims - 5)] = inputPlanes + paddingZBottom + paddingZTop - patchPlanes + 1;
|
||||
pre_stride_dims[isColMajor ? 5 : (ExtDims - 6)] = inputRows + paddingTop + paddingBottom - patchRows + 1;
|
||||
pre_stride_dims[isColMajor ? 6 : (ExtDims - 7)] = inputCols + paddingLeft + paddingRight - patchCols + 1;
|
||||
|
||||
if (isColMajor) {
|
||||
for (int i = 7; i < NumDims + 3; ++i) {
|
||||
pre_stride_dims[i] = in.dimension(i - 3);
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < NumDims - 4; ++i) {
|
||||
pre_stride_dims[i] = in.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
DSizes<TensorIndex, NumDims> patch_dims;
|
||||
if (isColMajor) {
|
||||
patch_dims[0] = in.dimension(0);
|
||||
patch_dims[1] = patchPlanes;
|
||||
patch_dims[2] = patchRows;
|
||||
patch_dims[3] = patchCols;
|
||||
for (int i = 4; i < NumDims; ++i) {
|
||||
patch_dims[i] = 1;
|
||||
}
|
||||
} else {
|
||||
patch_dims[NumDims - 1] = in.dimension(NumDims - 1);
|
||||
patch_dims[NumDims - 4] = patchCols;
|
||||
patch_dims[NumDims - 3] = patchRows;
|
||||
patch_dims[NumDims - 2] = patchPlanes;
|
||||
for (int i = 0; i < NumDims - 4; i++) {
|
||||
patch_dims[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
array<TensorIndex, NumDims + 3> strides;
|
||||
if (isColMajor) {
|
||||
// No striding within the patches.
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
strides[i] = 1;
|
||||
}
|
||||
// Apply striding in the spatial patch grid dimensions only.
|
||||
strides[4] = stridePlanes;
|
||||
strides[5] = strideRows;
|
||||
strides[6] = strideCols;
|
||||
// No striding in the remaining dimensions (batches, ...).
|
||||
for (int i = 7; i < NumDims + 3; i++) {
|
||||
strides[i] = 1;
|
||||
}
|
||||
} else {
|
||||
// No striding within the patches.
|
||||
for (int i = 1; i <= 4; ++i) {
|
||||
strides[ExtDims - i] = 1;
|
||||
}
|
||||
// Apply striding in the spatial patch grid dimensions only.
|
||||
strides[ExtDims - 7] = strideCols;
|
||||
strides[ExtDims - 6] = strideRows;
|
||||
strides[ExtDims - 5] = stridePlanes;
|
||||
// No striding in the remaining dimensions (batches, ...).
|
||||
for (int i = 0; i < NumDims - 4; i++) {
|
||||
strides[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
// TODO(mjanusz): Consider getting rid of pad(), and stride() and extend
|
||||
// extract_patches to take additional parameters for padding/striding,
|
||||
// similarly to etract_image_patches.
|
||||
return input.pad(paddings, padding_value).extract_patches(patch_dims).reshape(pre_stride_dims).stride(strides);
|
||||
}
|
||||
|
||||
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE static const TensorStridingOp<
|
||||
const array<typename internal::traits<Input>::Index,
|
||||
internal::traits<Input>::NumDimensions + 3>,
|
||||
const TensorReshapingOp<
|
||||
const DSizes<typename internal::traits<Input>::Index,
|
||||
internal::traits<Input>::NumDimensions + 3>,
|
||||
const TensorPatchOp<
|
||||
const DSizes<typename internal::traits<Input>::Index,
|
||||
internal::traits<Input>::NumDimensions>,
|
||||
const TensorPaddingOp<
|
||||
const array<IndexPair<typename internal::traits<Input>::Index>,
|
||||
internal::traits<Input>::NumDimensions>,
|
||||
const Input> > > >
|
||||
Extract3DPatches(
|
||||
const Input& input, const DenseIndex patchPlanes,
|
||||
const DenseIndex patchRows, const DenseIndex patchCols,
|
||||
const DenseIndex stridePlanes, const DenseIndex strideRows,
|
||||
const DenseIndex strideCols, const PaddingType padding_type,
|
||||
const typename internal::traits<Input>::Scalar padding_value = 0) {
|
||||
typedef typename internal::traits<Input>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);
|
||||
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions >= 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
|
||||
static const int NumDims = internal::traits<Input>::NumDimensions;
|
||||
|
||||
const TensorIndex inputPlanes = isColMajor ? in.dimension(1) : in.dimension(NumDims - 2);
|
||||
const TensorIndex inputRows = isColMajor ? in.dimension(2) : in.dimension(NumDims - 3);
|
||||
const TensorIndex inputCols = isColMajor ? in.dimension(3) : in.dimension(NumDims - 4);
|
||||
|
||||
switch (padding_type) {
|
||||
case PADDING_VALID:
|
||||
// No padding in any dimension.
|
||||
return Extract3DPatches(input, patchPlanes, patchRows, patchCols,
|
||||
stridePlanes, strideRows, strideCols,
|
||||
0, 0, 0, 0, 0, 0, padding_value);
|
||||
case PADDING_SAME: {
|
||||
// The side of the tensor before striding should be just the expected
|
||||
// output times the stride.
|
||||
const TensorIndex size_z = ceil(inputPlanes / static_cast<float>(stridePlanes)) * stridePlanes;
|
||||
const TensorIndex size_y = ceil(inputRows / static_cast<float>(strideRows)) * strideRows;
|
||||
const TensorIndex size_x = ceil(inputCols / static_cast<float>(strideCols)) * strideCols;
|
||||
|
||||
// The size of the patch space is going to be: padded_input_size - patch_size + 1.
|
||||
// This has to match the expected size before striding (pre_stride_dims).
|
||||
// The deltas below extend the input to the expected size.
|
||||
const TensorIndex dz = size_z + patchPlanes - 1 - inputPlanes;
|
||||
const TensorIndex dy = size_y + patchRows - 1 - inputRows;
|
||||
const TensorIndex dx = size_x + patchCols - 1 - inputCols;
|
||||
|
||||
return Extract3DPatches(input, patchPlanes, patchRows, patchCols,
|
||||
stridePlanes, strideRows, strideCols,
|
||||
dz - dz / 2, dz / 2,
|
||||
dy - dy / 2, dy / 2,
|
||||
dx - dx / 2, dx / 2,
|
||||
padding_value);
|
||||
}
|
||||
default:
|
||||
eigen_assert(false && "unexpected padding");
|
||||
// unreachable code to avoid missing return warning.
|
||||
return Extract3DPatches(input, patchPlanes, patchRows, patchCols,
|
||||
stridePlanes, strideRows, strideCols,
|
||||
0, 0, 0, 0, 0, 0, padding_value);
|
||||
}
|
||||
}
|
||||
|
||||
// TODO(mjanusz): Switch this to a 'using' alias once CUDA supports C++11.
|
||||
template <typename Input>
|
||||
struct Extract3DPatchesType {
|
||||
typedef const TensorStridingOp< const array<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions + 3>,
|
||||
const TensorReshapingOp< const DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions + 3>,
|
||||
const TensorPatchOp< const DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>,
|
||||
const TensorPaddingOp< const array< IndexPair<typename internal::traits<Input>::Index>, internal::traits<Input>::NumDimensions>,
|
||||
const Input> > > > type;
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_PATCH_3D_H_
|
@ -1,441 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_POOLING_H_
|
||||
#define THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_POOLING_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "tensorflow/core/kernels/eigen_patch_3d.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** SpatialMaxPooling
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Applies a max-pooling over a multichannel input image.
|
||||
*
|
||||
* The input parameter is expected to be a with a rank of 4 (channels, height, width, others in col-major, and the reverse of that in row-major).
|
||||
*
|
||||
* The result can be assigned to a tensor of rank equal to the rank of the input. The dimensions of the result will be channels, height, width, and others (in col-major, and the reverse of that if the input was row-major).
|
||||
*
|
||||
* The order of the width and height dimensions can be swapped if needed.
|
||||
*
|
||||
*/
|
||||
#if !defined(EIGEN_HAS_INDEX_LIST)
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE
|
||||
static const TensorReshapingOp<const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp<internal::MaxReducer<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>, const Eigen::array<int, 2>, const TensorImagePatchOp<Dynamic, Dynamic, const Input> > >
|
||||
#else
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE
|
||||
static const TensorReshapingOp<const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp<internal::MaxReducer<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>, typename internal::conditional<internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> >, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3> > >::type, const TensorImagePatchOp<Dynamic, Dynamic, const Input> > >
|
||||
#endif
|
||||
SpatialMaxPooling(const Input& input, DenseIndex patchRows, DenseIndex patchCols,
|
||||
DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type,
|
||||
DenseIndex in_strideRows = 1, DenseIndex in_strideCols = 1)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
typedef typename internal::traits<Input>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);
|
||||
|
||||
const DenseIndex patchRowsEff = patchRows + (patchRows - 1) * (in_strideRows - 1);
|
||||
const DenseIndex patchColsEff = patchCols + (patchCols - 1) * (in_strideCols - 1);
|
||||
|
||||
static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
|
||||
static const int idxRows = isColMajor ? 1 : 2;
|
||||
static const int idxCols = isColMajor ? 2 : 1;
|
||||
|
||||
// Molds the output of the reduction into the shape expected by the user.
|
||||
// (assuming col-major):
|
||||
// - 1st dim: channels
|
||||
// - 2nd dim: output height
|
||||
// - 3rd dim: output width
|
||||
// - 4th dim and beyond: everything else including batch size
|
||||
Eigen::DSizes<TensorIndex, internal::traits<Input>::NumDimensions> post_reduce_dims;
|
||||
post_reduce_dims[0] = in.dimension(0);
|
||||
if (padding_type == PADDING_VALID) {
|
||||
post_reduce_dims[idxRows] = numext::ceil((in.dimension(idxRows) - patchRowsEff + 1.f) / static_cast<float>(strideRows));
|
||||
post_reduce_dims[idxCols] = numext::ceil((in.dimension(idxCols) - patchColsEff + 1.f) / static_cast<float>(strideCols));
|
||||
} else {
|
||||
post_reduce_dims[idxRows] = numext::ceil(in.dimension(idxRows) / static_cast<float>(strideRows));
|
||||
post_reduce_dims[idxCols] = numext::ceil(in.dimension(idxCols) / static_cast<float>(strideCols));
|
||||
}
|
||||
post_reduce_dims[3] = in.dimension(3);
|
||||
|
||||
#if !defined(EIGEN_HAS_INDEX_LIST)
|
||||
// nvcc doesn't support cxx11
|
||||
Eigen::array<int, 2> reduction_dims;
|
||||
if (isColMajor) {
|
||||
reduction_dims[0] = 1;
|
||||
reduction_dims[1] = 2;
|
||||
} else {
|
||||
reduction_dims[0] = 2;
|
||||
reduction_dims[1] = 3;
|
||||
}
|
||||
#else
|
||||
// Take advantage of cxx11 to give the compiler information it can use to
|
||||
// optimize the code.
|
||||
typename internal::conditional<internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> >, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3> > >::type reduction_dims;
|
||||
#endif
|
||||
|
||||
return input.extract_image_patches(patchRows, patchCols, strideRows, strideCols, in_strideRows, in_strideCols, padding_type, -Eigen::NumTraits<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>::highest()).maximum(reduction_dims).reshape(post_reduce_dims);
|
||||
}
|
||||
|
||||
/** CuboidMaxPooling
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Applies a max-pooling over a multichannel input volume.
|
||||
*
|
||||
* The input parameter is expected to be a tensor with a rank of 5 (channels, depth, height, width, others in col-major, and the reverse of that in row-major).
|
||||
*
|
||||
* The result can be assigned to a tensor of rank equal to the rank of the input. The dimensions of the result will be channels, depth, height, width, and others (in col-major, and the reverse of that if the input was row-major).
|
||||
*
|
||||
* The order of the depth, width and height dimensions can be swapped if needed.
|
||||
*
|
||||
*/
|
||||
#if !defined(EIGEN_HAS_INDEX_LIST)
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE static const TensorReshapingOp<
|
||||
const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>,
|
||||
const TensorReductionOp<
|
||||
internal::MaxReducer<float>, const Eigen::array<int, 1>,
|
||||
const TensorReshapingOp<
|
||||
const Eigen::DSizes<DenseIndex, 3>,
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input> > > >
|
||||
#else
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE static const TensorReshapingOp<
|
||||
const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>,
|
||||
const TensorReductionOp<
|
||||
internal::MaxReducer<float>,
|
||||
const Eigen::IndexList<Eigen::type2index<1> >,
|
||||
const TensorReshapingOp<
|
||||
const Eigen::DSizes<DenseIndex, 3>,
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input> > > >
|
||||
#endif
|
||||
CuboidMaxPooling(const Input& input, DenseIndex patchPlanes,
|
||||
DenseIndex patchRows, DenseIndex patchCols,
|
||||
DenseIndex stridePlanes, DenseIndex strideRows,
|
||||
DenseIndex strideCols, const PaddingType padding_type) {
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
|
||||
|
||||
typedef typename internal::traits<Input>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);
|
||||
|
||||
static const int idxPlanes = isColMajor ? 1 : 3;
|
||||
static const int idxRows = 2;
|
||||
static const int idxCols = isColMajor ? 3 : 1;
|
||||
|
||||
// Molds the output of the reduction into the shape expected by the used
|
||||
// (assuming col-major):
|
||||
// - 1st dim: channels
|
||||
// - 2nd dim: output depth
|
||||
// - 3rd dim: output height
|
||||
// - 4th dim: output width
|
||||
// - 5th dim and beyond: everything else including batch size
|
||||
Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions> post_reduce_dims;
|
||||
post_reduce_dims[0] = in.dimension(0);
|
||||
if (padding_type == PADDING_VALID) {
|
||||
post_reduce_dims[idxPlanes] = numext::ceil((in.dimension(idxPlanes) - patchPlanes + 1.f) / static_cast<float>(stridePlanes));
|
||||
post_reduce_dims[idxRows] = numext::ceil((in.dimension(idxRows) - patchRows + 1.f) / static_cast<float>(strideRows));
|
||||
post_reduce_dims[idxCols] = numext::ceil((in.dimension(idxCols) - patchCols + 1.f) / static_cast<float>(strideCols));
|
||||
} else {
|
||||
post_reduce_dims[idxPlanes] = numext::ceil(in.dimension(idxPlanes) / static_cast<float>(stridePlanes));
|
||||
post_reduce_dims[idxRows] = numext::ceil(in.dimension(idxRows) / static_cast<float>(strideRows));
|
||||
post_reduce_dims[idxCols] = numext::ceil(in.dimension(idxCols) / static_cast<float>(strideCols));
|
||||
}
|
||||
post_reduce_dims[4] = in.dimension(4);
|
||||
|
||||
Eigen::DSizes<DenseIndex, 3> pre_reduce_dims;
|
||||
pre_reduce_dims[1] = patchRows * patchCols * patchPlanes;
|
||||
if (isColMajor) {
|
||||
pre_reduce_dims[0] = post_reduce_dims[0];
|
||||
pre_reduce_dims[2] = post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3] * post_reduce_dims[4];
|
||||
} else {
|
||||
pre_reduce_dims[0] = post_reduce_dims[0] * post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3];
|
||||
pre_reduce_dims[2] = post_reduce_dims[4];
|
||||
}
|
||||
|
||||
#if !defined(EIGEN_HAS_INDEX_LIST)
|
||||
// nvcc doesn't support cxx11
|
||||
Eigen::array<int, 1> reduction_dims;
|
||||
reduction_dims[0] = 1;
|
||||
#else
|
||||
// Take advantage of cxx11 to give the compiler information it can use to
|
||||
// optimize the code.
|
||||
Eigen::IndexList<Eigen::type2index<1> > reduction_dims;
|
||||
#endif
|
||||
return input.extract_volume_patches(patchPlanes, patchRows, patchCols,
|
||||
stridePlanes, strideRows, strideCols,
|
||||
padding_type, -Eigen::NumTraits<float>::highest())
|
||||
.reshape(pre_reduce_dims)
|
||||
.maximum(reduction_dims)
|
||||
.reshape(post_reduce_dims);
|
||||
}
|
||||
|
||||
|
||||
/** SpatialAvgPooling
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Applies an average pooling over a multichannel input image.
|
||||
*
|
||||
* The input parameter is expected to be a tensor with a rank of 4 (channels, height, width, others in col-major, and the reverse of that in row-major).
|
||||
*
|
||||
* The result can be assigned to a tensor of rank equal to the rank of the input. The dimensions of the result will be channels, height, width, and others (in col-major, and the reverse of that if the input was row-major).
|
||||
*
|
||||
* The order of the width and height dimensions can be swapped if needed.
|
||||
*
|
||||
*/
|
||||
namespace internal {
|
||||
|
||||
template <typename T> struct AvgPoolMeanReducer
|
||||
{
|
||||
#if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__)
|
||||
// We only support packet access for floats.
|
||||
static const bool PacketAccess = internal::is_same<T, float>::value;
|
||||
#else
|
||||
static const bool PacketAccess = false;
|
||||
#endif
|
||||
static const bool IsStateful = true;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE AvgPoolMeanReducer() : scalarCount_(0) {
|
||||
typedef typename packet_traits<T>::type Packet;
|
||||
packetCount_ = pset1<Packet>(0.0);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) {
|
||||
if (t != -Eigen::NumTraits<T>::highest()) {
|
||||
(*accum) = (*accum) + t;
|
||||
scalarCount_++;
|
||||
}
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
|
||||
return static_cast<T>(0);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T accum) const {
|
||||
eigen_assert(scalarCount_ > 0);
|
||||
return accum / scalarCount_;
|
||||
}
|
||||
|
||||
#if (EIGEN_ARCH_i386 || EIGEN_ARCH_x86_64) && !defined(__CUDACC__)
|
||||
#ifdef EIGEN_VECTORIZE_AVX
|
||||
#define pequal(a,b) _mm256_cmp_ps(a,b,_CMP_EQ_UQ)
|
||||
#define psel(a,b,false_mask) _mm256_blendv_ps(a,b,false_mask)
|
||||
#else
|
||||
#define pequal(a,b) _mm_cmpeq_ps(a,b)
|
||||
#define psel(a,b,false_mask) _mm_or_ps(_mm_andnot_ps(false_mask, a), _mm_and_ps(false_mask, b))
|
||||
#endif
|
||||
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reducePacket(const Packet& p, Packet* accum) {
|
||||
reducePacketWithType(static_cast<T>(0), p, accum);
|
||||
}
|
||||
|
||||
template <typename Packet>
|
||||
void reducePacketWithType(T, const Packet& p, Packet* accum) {
|
||||
Packet skip_mask = pequal(p, pset1<Packet>(-Eigen::NumTraits<T>::highest()));
|
||||
(*accum) = padd<Packet>(*accum, psel(p, pset1<Packet>(0), skip_mask));
|
||||
packetCount_ = padd<Packet>(packetCount_, psel(pset1<Packet>(1), pset1<Packet>(0), skip_mask));
|
||||
}
|
||||
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet initializePacket() const {
|
||||
return pset1<Packet>(0);
|
||||
}
|
||||
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet finalizePacket(const Packet& vaccum) const {
|
||||
return pdiv(vaccum, packetCount_);
|
||||
}
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalizeBoth(const T saccum, const Packet& vaccum) const {
|
||||
return (saccum + predux(vaccum)) / (scalarCount_ + predux(packetCount_));
|
||||
}
|
||||
#endif
|
||||
|
||||
protected:
|
||||
typedef typename packet_traits<T>::type Packet;
|
||||
int scalarCount_;
|
||||
Packet packetCount_;
|
||||
};
|
||||
|
||||
} // namespace internal
|
||||
|
||||
#if !defined(EIGEN_HAS_INDEX_LIST)
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE
|
||||
static const TensorReshapingOp<const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp<internal::AvgPoolMeanReducer<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>, const Eigen::array<int, 2>, const TensorImagePatchOp<Dynamic, Dynamic, const Input> > >
|
||||
#else
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE
|
||||
static const TensorReshapingOp<const Eigen::DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorReductionOp<internal::AvgPoolMeanReducer<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>, typename internal::conditional<internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> >, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3> > >::type, const TensorImagePatchOp<Dynamic, Dynamic, const Input> > >
|
||||
#endif
|
||||
SpatialAvgPooling(const Input& input, DenseIndex patchRows, DenseIndex patchCols,
|
||||
DenseIndex strideRows, DenseIndex strideCols, const PaddingType padding_type,
|
||||
DenseIndex in_strideRows = 1, DenseIndex in_strideCols = 1)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 4, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
typedef typename internal::traits<Input>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);
|
||||
|
||||
const DenseIndex patchRowsEff = patchRows + (patchRows - 1) * (in_strideRows - 1);
|
||||
const DenseIndex patchColsEff = patchCols + (patchCols - 1) * (in_strideCols - 1);
|
||||
|
||||
static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
|
||||
static const int idxRows = isColMajor ? 1 : 2;
|
||||
static const int idxCols = isColMajor ? 2 : 1;
|
||||
|
||||
// Molds the output of the reduction into the shape expected by the user.
|
||||
// (assuming col-major):
|
||||
// - 1st dim: channels
|
||||
// - 2nd dim: output height
|
||||
// - 3rd dim: output width
|
||||
// - 4th dim and beyond: everything else including batch size
|
||||
Eigen::DSizes<TensorIndex, internal::traits<Input>::NumDimensions> post_reduce_dims;
|
||||
post_reduce_dims[0] = in.dimension(0);
|
||||
if (padding_type == PADDING_VALID) {
|
||||
post_reduce_dims[idxRows] = numext::ceil((in.dimension(idxRows) - patchRowsEff + 1.f) / static_cast<float>(strideRows));
|
||||
post_reduce_dims[idxCols] = numext::ceil((in.dimension(idxCols) - patchColsEff + 1.f) / static_cast<float>(strideCols));
|
||||
} else {
|
||||
post_reduce_dims[idxRows] = numext::ceil(in.dimension(idxRows) / static_cast<float>(strideRows));
|
||||
post_reduce_dims[idxCols] = numext::ceil(in.dimension(idxCols) / static_cast<float>(strideCols));
|
||||
}
|
||||
post_reduce_dims[3] = in.dimension(3);
|
||||
|
||||
typedef typename internal::remove_const<typename internal::traits<Input>::Scalar>::type CoeffReturnType;
|
||||
internal::AvgPoolMeanReducer<CoeffReturnType> mean_with_nan;
|
||||
|
||||
#if !defined(EIGEN_HAS_INDEX_LIST)
|
||||
// nvcc doesn't support cxx11
|
||||
Eigen::array<int, 2> reduction_dims;
|
||||
if (isColMajor) {
|
||||
reduction_dims[0] = 1;
|
||||
reduction_dims[1] = 2;
|
||||
} else {
|
||||
reduction_dims[0] = 2;
|
||||
reduction_dims[1] = 3;
|
||||
}
|
||||
#else
|
||||
// Take advantage of cxx11 to give the compiler information it can use to
|
||||
// optimize the code.
|
||||
typename internal::conditional<internal::traits<Input>::Layout == ColMajor, const Eigen::IndexList<Eigen::type2index<1>, Eigen::type2index<2> >, const Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3> > >::type reduction_dims;
|
||||
#endif
|
||||
return input.extract_image_patches(patchRows, patchCols, strideRows, strideCols, in_strideRows, in_strideCols, padding_type, -Eigen::NumTraits<typename internal::remove_const<typename internal::traits<Input>::Scalar>::type>::highest()).reduce(reduction_dims, mean_with_nan).reshape(post_reduce_dims);
|
||||
}
|
||||
|
||||
|
||||
/** CuboidAvgPooling
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Applies an average pooling over a multichannel input volume.
|
||||
*
|
||||
* The input parameter is expected to be a tensor with a rank of 5 (channels, depth, height, width, others, and the reverse of that in row-major).
|
||||
*
|
||||
* The result can be assigned to a tensor of rank equal to the rank of the input. The dimensions of the result will be channels, depth, width, and others (in col-major, and the reverse of that if the input was row-major).
|
||||
*
|
||||
* The order of the depth, width and height dimensions can be swapped if needed.
|
||||
*
|
||||
*/
|
||||
#if !defined(EIGEN_HAS_INDEX_LIST)
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE static const TensorReshapingOp<
|
||||
const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>,
|
||||
const TensorReductionOp<
|
||||
internal::AvgPoolMeanReducer<float>, const Eigen::array<int, 1>,
|
||||
const TensorReshapingOp<
|
||||
const Eigen::DSizes<DenseIndex, 3>,
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input> > > >
|
||||
#else
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE static const TensorReshapingOp<
|
||||
const Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions>,
|
||||
const TensorReductionOp<
|
||||
internal::AvgPoolMeanReducer<float>,
|
||||
const Eigen::IndexList<Eigen::type2index<1> >,
|
||||
const TensorReshapingOp<
|
||||
const Eigen::DSizes<DenseIndex, 3>,
|
||||
const TensorVolumePatchOp<Dynamic, Dynamic, Dynamic, const Input> > > >
|
||||
#endif
|
||||
CuboidAvgPooling(const Input& input, DenseIndex patchPlanes,
|
||||
DenseIndex patchRows, DenseIndex patchCols,
|
||||
DenseIndex stridePlanes, DenseIndex strideRows,
|
||||
DenseIndex strideCols, const PaddingType padding_type) {
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 5, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
|
||||
|
||||
typedef typename internal::traits<Input>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);
|
||||
|
||||
static const int idxPlanes = isColMajor ? 1 : 3;
|
||||
static const int idxRows = 2;
|
||||
static const int idxCols = isColMajor ? 3 : 1;
|
||||
// Molds the output of the reduction into the shape expected by the used
|
||||
// (assuming col-major):
|
||||
// - 1st dim: channels
|
||||
// - 2nd dim: outupt depth
|
||||
// - 3rd dim: output height
|
||||
// - 4th dim: output width
|
||||
// - 5th dim and beyond: everything else including batch size
|
||||
Eigen::DSizes<DenseIndex, internal::traits<Input>::NumDimensions> post_reduce_dims;
|
||||
post_reduce_dims[0] = in.dimension(0);
|
||||
if (padding_type == PADDING_VALID) {
|
||||
post_reduce_dims[idxPlanes] = numext::ceil((in.dimension(idxPlanes) - patchPlanes + 1.f) / static_cast<float>(stridePlanes));
|
||||
post_reduce_dims[idxRows] = numext::ceil((in.dimension(idxRows) - patchRows + 1.f) / static_cast<float>(strideRows));
|
||||
post_reduce_dims[idxCols] = numext::ceil((in.dimension(idxCols) - patchCols + 1.f) / static_cast<float>(strideCols));
|
||||
} else {
|
||||
post_reduce_dims[idxPlanes] = numext::ceil(in.dimension(idxPlanes) / static_cast<float>(stridePlanes));
|
||||
post_reduce_dims[idxRows] = numext::ceil(in.dimension(idxRows) / static_cast<float>(strideRows));
|
||||
post_reduce_dims[idxCols] = numext::ceil(in.dimension(idxCols) / static_cast<float>(strideCols));
|
||||
}
|
||||
post_reduce_dims[4] = in.dimension(4);
|
||||
|
||||
Eigen::DSizes<DenseIndex, 3> pre_reduce_dims;
|
||||
pre_reduce_dims[1] = patchRows * patchCols * patchPlanes;
|
||||
if (isColMajor) {
|
||||
pre_reduce_dims[0] = post_reduce_dims[0];
|
||||
pre_reduce_dims[2] = post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3] * post_reduce_dims[4];
|
||||
} else {
|
||||
pre_reduce_dims[0] = post_reduce_dims[0] * post_reduce_dims[1] * post_reduce_dims[2] * post_reduce_dims[3];
|
||||
pre_reduce_dims[2] = post_reduce_dims[4];
|
||||
}
|
||||
|
||||
typedef typename internal::remove_const<typename internal::traits<Input>::Scalar>::type CoeffReturnType;
|
||||
internal::AvgPoolMeanReducer<CoeffReturnType> mean_with_nan;
|
||||
|
||||
#if !defined(EIGEN_HAS_INDEX_LIST)
|
||||
// nvcc doesn't support cxx11
|
||||
Eigen::array<int, 1> reduction_dims;
|
||||
reduction_dims[0] = 1;
|
||||
#else
|
||||
// Take advantage of cxx11 to give the compiler information it can use to
|
||||
// optimize the code.
|
||||
Eigen::IndexList<Eigen::type2index<1> > reduction_dims;
|
||||
#endif
|
||||
return input.extract_volume_patches(patchPlanes, patchRows, patchCols,
|
||||
stridePlanes, strideRows, strideCols,
|
||||
padding_type, -Eigen::NumTraits<float>::highest())
|
||||
.reshape(pre_reduce_dims)
|
||||
.reduce(reduction_dims, mean_with_nan)
|
||||
.reshape(post_reduce_dims);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_POOLING_H_
|
@ -1,742 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/core/kernels/eigen_pooling.h"
|
||||
#include "tensorflow/core/framework/types.h"
|
||||
#include "tensorflow/core/platform/test.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace {
|
||||
void EigenApprox(float a, float b) {
|
||||
ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, Simple) {
|
||||
const int depth = 10;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_rows = 4;
|
||||
const int patch_cols = 4;
|
||||
const int output_rows = 2;
|
||||
const int output_cols = 2;
|
||||
|
||||
Tensor<float, 4> input(depth, input_rows, input_cols, num_batches);
|
||||
Tensor<float, 4> result(depth, output_rows, output_cols, num_batches);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
result = result.constant(-1000.f);
|
||||
|
||||
// Max pooling using a 4x4 window and a stride of 1.
|
||||
const int stride = 1;
|
||||
result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride,
|
||||
PADDING_VALID);
|
||||
|
||||
EXPECT_EQ(result.dimension(0), depth);
|
||||
EXPECT_EQ(result.dimension(1), output_rows);
|
||||
EXPECT_EQ(result.dimension(2), output_cols);
|
||||
EXPECT_EQ(result.dimension(3), num_batches);
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < depth; ++d) {
|
||||
for (int i = 0; i < output_rows; ++i) {
|
||||
for (int j = 0; j < output_cols; ++j) {
|
||||
float expected = -10000.f;
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
expected = (std::max)(expected, input(d, r + i, c + j, b));
|
||||
}
|
||||
}
|
||||
if (result(d, i, j, b) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j
|
||||
<< " " << result(d, i, j, b) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(d, i, j, b), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, SimpleRowMajor) {
|
||||
const int depth = 10;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_rows = 4;
|
||||
const int patch_cols = 4;
|
||||
const int output_rows = 2;
|
||||
const int output_cols = 2;
|
||||
|
||||
Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, depth);
|
||||
Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows,
|
||||
depth);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
result = result.constant(-1000.f);
|
||||
|
||||
// Max pooling using a 4x4 window and a stride of 1.
|
||||
const int stride = 1;
|
||||
result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride,
|
||||
PADDING_VALID);
|
||||
|
||||
EXPECT_EQ(result.dimension(3), depth);
|
||||
EXPECT_EQ(result.dimension(2), output_rows);
|
||||
EXPECT_EQ(result.dimension(1), output_cols);
|
||||
EXPECT_EQ(result.dimension(0), num_batches);
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < depth; ++d) {
|
||||
for (int i = 0; i < output_rows; ++i) {
|
||||
for (int j = 0; j < output_cols; ++j) {
|
||||
float expected = -10000.f;
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
expected = (std::max)(expected, input(b, c + j, r + i, d));
|
||||
}
|
||||
}
|
||||
if (result(b, j, i, d) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j
|
||||
<< " " << result(b, j, i, d) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(b, j, i, d), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, Cuboid) {
|
||||
const int channels = 10;
|
||||
const int input_planes = 5;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_rows = 4;
|
||||
const int patch_cols = 3;
|
||||
const int patch_planes = 2;
|
||||
const int output_rows = 2;
|
||||
const int output_cols = 3;
|
||||
const int output_planes = 4;
|
||||
|
||||
Tensor<float, 5> input(channels, input_planes, input_rows, input_cols,
|
||||
num_batches);
|
||||
Tensor<float, 5> result(channels, output_planes, output_rows, output_cols,
|
||||
num_batches);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
result = result.constant(-1000.0f);
|
||||
|
||||
// Max pooling using a 4x3x2 window and a stride of 1.
|
||||
const int stride = 1;
|
||||
result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride,
|
||||
stride, stride, PADDING_VALID);
|
||||
|
||||
EXPECT_EQ(result.dimension(0), channels);
|
||||
EXPECT_EQ(result.dimension(1), output_planes);
|
||||
EXPECT_EQ(result.dimension(2), output_rows);
|
||||
EXPECT_EQ(result.dimension(3), output_cols);
|
||||
EXPECT_EQ(result.dimension(4), num_batches);
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < channels; ++d) {
|
||||
for (int i = 0; i < output_planes; ++i) {
|
||||
for (int j = 0; j < output_rows; ++j) {
|
||||
for (int k = 0; k < output_cols; ++k) {
|
||||
float expected = -10000.f;
|
||||
for (int p = 0; p < patch_planes; ++p) {
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
expected =
|
||||
(std::max)(expected, input(d, p + i, r + j, c + k, b));
|
||||
}
|
||||
}
|
||||
}
|
||||
if (result(d, i, j, k, b) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i
|
||||
<< " j=" << j << " k=" << k << " "
|
||||
<< result(d, i, j, k, b) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(d, i, j, k, b), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, CuboidRowMajor) {
|
||||
const int channels = 10;
|
||||
const int input_planes = 5;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_rows = 4;
|
||||
const int patch_cols = 3;
|
||||
const int patch_planes = 2;
|
||||
const int output_rows = 2;
|
||||
const int output_cols = 3;
|
||||
const int output_planes = 4;
|
||||
|
||||
Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows,
|
||||
input_planes, channels);
|
||||
Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows,
|
||||
output_planes, channels);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
result = result.constant(-1000.0f);
|
||||
|
||||
// Max pooling using a 4x3x2 window and a stride of 1.
|
||||
const int stride = 1;
|
||||
result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride,
|
||||
stride, stride, PADDING_VALID);
|
||||
|
||||
EXPECT_EQ(result.dimension(4), channels);
|
||||
EXPECT_EQ(result.dimension(3), output_planes);
|
||||
EXPECT_EQ(result.dimension(2), output_rows);
|
||||
EXPECT_EQ(result.dimension(1), output_cols);
|
||||
EXPECT_EQ(result.dimension(0), num_batches);
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < channels; ++d) {
|
||||
for (int i = 0; i < output_planes; ++i) {
|
||||
for (int j = 0; j < output_rows; ++j) {
|
||||
for (int k = 0; k < output_cols; ++k) {
|
||||
float expected = -10000.f;
|
||||
for (int p = 0; p < patch_planes; ++p) {
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
expected =
|
||||
(std::max)(expected, input(b, c + k, r + j, p + i, d));
|
||||
}
|
||||
}
|
||||
}
|
||||
if (result(b, k, j, i, d) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i
|
||||
<< " j=" << j << " k=" << k << " "
|
||||
<< result(b, k, j, i, d) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(b, k, j, i, d), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, ValidCuboid) {
|
||||
const int channels = 10;
|
||||
const int input_planes = 5;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_rows = 4;
|
||||
const int patch_cols = 3;
|
||||
const int patch_planes = 2;
|
||||
const int output_rows = 2;
|
||||
const int output_cols = 3;
|
||||
const int output_planes = 4;
|
||||
|
||||
Tensor<float, 5> input(channels, input_planes, input_rows, input_cols,
|
||||
num_batches);
|
||||
Tensor<float, 5> result(channels, output_planes, output_rows, output_cols,
|
||||
num_batches);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
result = result.constant(-1000.0f);
|
||||
|
||||
// Max pooling using a 4x3x2 window and a stride of 1.
|
||||
const int stride = 1;
|
||||
result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride,
|
||||
stride, stride, PADDING_VALID);
|
||||
|
||||
EXPECT_EQ(result.dimension(0), channels);
|
||||
EXPECT_EQ(result.dimension(1), output_planes);
|
||||
EXPECT_EQ(result.dimension(2), output_rows);
|
||||
EXPECT_EQ(result.dimension(3), output_cols);
|
||||
EXPECT_EQ(result.dimension(4), num_batches);
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < channels; ++d) {
|
||||
for (int i = 0; i < output_planes; ++i) {
|
||||
for (int j = 0; j < output_rows; ++j) {
|
||||
for (int k = 0; k < output_cols; ++k) {
|
||||
float expected_sum = 0.0f;
|
||||
int expected_count = 0;
|
||||
for (int p = 0; p < patch_planes; ++p) {
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
expected_sum += input(d, p + i, r + j, c + k, b);
|
||||
expected_count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
const float expected = expected_sum / expected_count;
|
||||
if (result(d, i, j, k, b) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i
|
||||
<< " j=" << j << " k=" << k << " "
|
||||
<< result(d, i, j, k, b) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(d, i, j, k, b), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, ValidCuboidRowMajor) {
|
||||
const int channels = 10;
|
||||
const int input_planes = 5;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_rows = 4;
|
||||
const int patch_cols = 3;
|
||||
const int patch_planes = 2;
|
||||
const int output_rows = 2;
|
||||
const int output_cols = 3;
|
||||
const int output_planes = 4;
|
||||
|
||||
Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows,
|
||||
input_planes, channels);
|
||||
Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows,
|
||||
output_planes, channels);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
result = result.constant(-1000.0f);
|
||||
|
||||
// Max pooling using a 4x3x2 window and a stride of 1.
|
||||
const int stride = 1;
|
||||
result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride,
|
||||
stride, stride, PADDING_VALID);
|
||||
|
||||
EXPECT_EQ(result.dimension(4), channels);
|
||||
EXPECT_EQ(result.dimension(3), output_planes);
|
||||
EXPECT_EQ(result.dimension(2), output_rows);
|
||||
EXPECT_EQ(result.dimension(1), output_cols);
|
||||
EXPECT_EQ(result.dimension(0), num_batches);
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < channels; ++d) {
|
||||
for (int i = 0; i < output_planes; ++i) {
|
||||
for (int j = 0; j < output_rows; ++j) {
|
||||
for (int k = 0; k < output_cols; ++k) {
|
||||
float expected_sum = 0.0f;
|
||||
int expected_count = 0;
|
||||
for (int p = 0; p < patch_planes; ++p) {
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
expected_sum += input(b, c + k, r + j, p + i, d);
|
||||
expected_count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
const float expected = expected_sum / expected_count;
|
||||
if (result(b, k, j, i, d) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i
|
||||
<< " j=" << j << " k=" << k << " "
|
||||
<< result(b, k, j, i, d) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(b, k, j, i, d), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, SameCuboid) {
|
||||
const int channels = 10;
|
||||
const int input_planes = 5;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_rows = 4;
|
||||
const int patch_cols = 3;
|
||||
const int patch_planes = 2;
|
||||
const int output_rows = input_rows;
|
||||
const int output_cols = input_cols;
|
||||
const int output_planes = input_planes;
|
||||
|
||||
Tensor<float, 5> input(channels, input_planes, input_rows, input_cols,
|
||||
num_batches);
|
||||
Tensor<float, 5> result(channels, output_planes, output_rows, output_cols,
|
||||
num_batches);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
result = result.constant(-1000.0f);
|
||||
|
||||
// Max pooling using a 4x3x2 window and a stride of 1.
|
||||
const int stride = 1;
|
||||
result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride,
|
||||
stride, stride, PADDING_SAME);
|
||||
|
||||
EXPECT_EQ(result.dimension(0), channels);
|
||||
EXPECT_EQ(result.dimension(1), output_planes);
|
||||
EXPECT_EQ(result.dimension(2), output_rows);
|
||||
EXPECT_EQ(result.dimension(3), output_cols);
|
||||
EXPECT_EQ(result.dimension(4), num_batches);
|
||||
|
||||
const int pad_p = output_planes - input_planes + patch_planes - 1;
|
||||
const int pad_r = output_rows - input_rows + patch_rows - 1;
|
||||
const int pad_c = output_cols - input_cols + patch_cols - 1;
|
||||
|
||||
// Number of pixels the input is extended with at the lower end in every
|
||||
// dimension.
|
||||
const int dp = pad_p - pad_p / 2;
|
||||
const int dr = pad_r - pad_r / 2;
|
||||
const int dc = pad_c - pad_c / 2;
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < channels; ++d) {
|
||||
for (int i = 0; i < output_planes; ++i) {
|
||||
for (int j = 0; j < output_rows; ++j) {
|
||||
for (int k = 0; k < output_cols; ++k) {
|
||||
float expected_sum = 0.0f;
|
||||
int expected_count = 0;
|
||||
for (int p = 0; p < patch_planes; ++p) {
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
const int in_p = p + i - dp;
|
||||
const int in_r = r + j - dr;
|
||||
const int in_c = c + k - dc;
|
||||
if (in_p >= 0 && in_p < input_planes && in_r >= 0 &&
|
||||
in_r < input_rows && in_c >= 0 && in_c < input_cols) {
|
||||
expected_sum += input(d, in_p, in_r, in_c, b);
|
||||
expected_count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
const float expected = expected_sum / expected_count;
|
||||
if (result(d, i, j, k, b) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i
|
||||
<< " j=" << j << " k=" << k << " "
|
||||
<< result(d, i, j, k, b) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(d, i, j, k, b), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, SameCuboidRowMajor) {
|
||||
const int channels = 10;
|
||||
const int input_planes = 5;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_rows = 4;
|
||||
const int patch_cols = 3;
|
||||
const int patch_planes = 2;
|
||||
const int output_rows = input_rows;
|
||||
const int output_cols = input_cols;
|
||||
const int output_planes = input_planes;
|
||||
|
||||
Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows,
|
||||
input_planes, channels);
|
||||
Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows,
|
||||
output_planes, channels);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
result = result.constant(-1000.0f);
|
||||
|
||||
// Max pooling using a 4x3x2 window and a stride of 1.
|
||||
const int stride = 1;
|
||||
result = CuboidAvgPooling(input, patch_planes, patch_rows, patch_cols, stride,
|
||||
stride, stride, PADDING_SAME);
|
||||
|
||||
EXPECT_EQ(result.dimension(4), channels);
|
||||
EXPECT_EQ(result.dimension(3), output_planes);
|
||||
EXPECT_EQ(result.dimension(2), output_rows);
|
||||
EXPECT_EQ(result.dimension(1), output_cols);
|
||||
EXPECT_EQ(result.dimension(0), num_batches);
|
||||
|
||||
const int pad_p = output_planes - input_planes + patch_planes - 1;
|
||||
const int pad_r = output_rows - input_rows + patch_rows - 1;
|
||||
const int pad_c = output_cols - input_cols + patch_cols - 1;
|
||||
|
||||
// Number of pixels the input is extended with at the lower end in every
|
||||
// dimension.
|
||||
const int dp = pad_p - pad_p / 2;
|
||||
const int dr = pad_r - pad_r / 2;
|
||||
const int dc = pad_c - pad_c / 2;
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < channels; ++d) {
|
||||
for (int i = 0; i < output_planes; ++i) {
|
||||
for (int j = 0; j < output_rows; ++j) {
|
||||
for (int k = 0; k < output_cols; ++k) {
|
||||
float expected_sum = 0.0f;
|
||||
int expected_count = 0;
|
||||
for (int p = 0; p < patch_planes; ++p) {
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
const int in_p = p + i - dp;
|
||||
const int in_r = r + j - dr;
|
||||
const int in_c = c + k - dc;
|
||||
if (in_p >= 0 && in_p < input_planes && in_r >= 0 &&
|
||||
in_r < input_rows && in_c >= 0 && in_c < input_cols) {
|
||||
expected_sum += input(b, in_c, in_r, in_p, d);
|
||||
expected_count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
const float expected = expected_sum / expected_count;
|
||||
if (result(b, k, j, i, d) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i
|
||||
<< " j=" << j << " k=" << k << " "
|
||||
<< result(b, k, j, i, d) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(b, k, j, i, d), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void test_strided_max_pooling_layer() {
|
||||
const int depth = 10;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_rows = 3;
|
||||
const int patch_cols = 3;
|
||||
const int output_rows = 2;
|
||||
const int output_cols = 2;
|
||||
|
||||
Tensor<float, 4> input(depth, input_rows, input_cols, num_batches);
|
||||
Tensor<float, 4> result(depth, output_rows, output_cols, num_batches);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
|
||||
// Max pooling using a 3x3 window and a stride of 2.
|
||||
int stride = 2;
|
||||
result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride,
|
||||
PADDING_VALID);
|
||||
|
||||
EXPECT_EQ(result.dimension(0), depth);
|
||||
EXPECT_EQ(result.dimension(1), output_rows);
|
||||
EXPECT_EQ(result.dimension(2), output_cols);
|
||||
EXPECT_EQ(result.dimension(3), num_batches);
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < depth; ++d) {
|
||||
for (int i = 0; i < output_rows; ++i) {
|
||||
for (int j = 0; j < output_cols; ++j) {
|
||||
float expected = -10000.f;
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
expected = (std::max)(
|
||||
expected, input(d, r + stride * i, c + stride * j, b));
|
||||
}
|
||||
}
|
||||
if (result(d, i, j, b) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j
|
||||
<< " " << result(d, i, j, b) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(d, i, j, b), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, Strided) {
|
||||
const int depth = 10;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_rows = 3;
|
||||
const int patch_cols = 3;
|
||||
const int output_rows = 2;
|
||||
const int output_cols = 2;
|
||||
|
||||
Tensor<float, 4, RowMajor> input(num_batches, input_cols, input_rows, depth);
|
||||
Tensor<float, 4, RowMajor> result(num_batches, output_cols, output_rows,
|
||||
depth);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
|
||||
// Max pooling using a 3x3 window and a stride of 2.
|
||||
int stride = 2;
|
||||
result = SpatialMaxPooling(input, patch_rows, patch_cols, stride, stride,
|
||||
PADDING_VALID);
|
||||
|
||||
EXPECT_EQ(result.dimension(3), depth);
|
||||
EXPECT_EQ(result.dimension(2), output_rows);
|
||||
EXPECT_EQ(result.dimension(1), output_cols);
|
||||
EXPECT_EQ(result.dimension(0), num_batches);
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < depth; ++d) {
|
||||
for (int i = 0; i < output_rows; ++i) {
|
||||
for (int j = 0; j < output_cols; ++j) {
|
||||
float expected = -10000.f;
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
expected = (std::max)(
|
||||
expected, input(b, c + stride * j, r + stride * i, d));
|
||||
}
|
||||
}
|
||||
if (result(b, j, i, d) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i << " j=" << j
|
||||
<< " " << result(b, j, i, d) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(b, j, i, d), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, StridedCuboid) {
|
||||
const int channels = 10;
|
||||
const int input_planes = 5;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_planes = 3;
|
||||
const int patch_rows = 3;
|
||||
const int patch_cols = 3;
|
||||
const int output_planes = 2;
|
||||
const int output_rows = 2;
|
||||
const int output_cols = 2;
|
||||
|
||||
Tensor<float, 5> input(channels, input_planes, input_rows, input_cols,
|
||||
num_batches);
|
||||
Tensor<float, 5> result(channels, output_planes, output_rows, output_cols,
|
||||
num_batches);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
|
||||
// Max pooling using a 3x3x3 window and a stride of 2.
|
||||
int stride = 2;
|
||||
result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride,
|
||||
stride, stride, PADDING_VALID);
|
||||
|
||||
EXPECT_EQ(result.dimension(0), channels);
|
||||
EXPECT_EQ(result.dimension(1), output_planes);
|
||||
EXPECT_EQ(result.dimension(2), output_rows);
|
||||
EXPECT_EQ(result.dimension(3), output_cols);
|
||||
EXPECT_EQ(result.dimension(4), num_batches);
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < channels; ++d) {
|
||||
for (int i = 0; i < output_planes; ++i) {
|
||||
for (int j = 0; j < output_rows; ++j) {
|
||||
for (int k = 0; k < output_cols; ++k) {
|
||||
float expected = -10000.f;
|
||||
for (int p = 0; p < patch_planes; ++p) {
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
expected = (std::max)(expected,
|
||||
input(d, p + stride * i, r + stride * j,
|
||||
c + stride * k, b));
|
||||
}
|
||||
}
|
||||
}
|
||||
if (result(d, i, j, k, b) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i
|
||||
<< " j=" << j << " " << k << " "
|
||||
<< result(d, i, j, k, b) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(d, i, j, k, b), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenPoolingTest, StridedCuboidRowMajor) {
|
||||
const int channels = 10;
|
||||
const int input_planes = 5;
|
||||
const int input_rows = 5;
|
||||
const int input_cols = 5;
|
||||
const int num_batches = 13;
|
||||
const int patch_planes = 3;
|
||||
const int patch_rows = 3;
|
||||
const int patch_cols = 3;
|
||||
const int output_planes = 2;
|
||||
const int output_rows = 2;
|
||||
const int output_cols = 2;
|
||||
|
||||
Tensor<float, 5, RowMajor> input(num_batches, input_cols, input_rows,
|
||||
input_planes, channels);
|
||||
Tensor<float, 5, RowMajor> result(num_batches, output_cols, output_rows,
|
||||
output_planes, channels);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
result.setRandom();
|
||||
|
||||
// Max pooling using a 3x3x3 window and a stride of 2.
|
||||
int stride = 2;
|
||||
result = CuboidMaxPooling(input, patch_planes, patch_rows, patch_cols, stride,
|
||||
stride, stride, PADDING_VALID);
|
||||
|
||||
EXPECT_EQ(result.dimension(4), channels);
|
||||
EXPECT_EQ(result.dimension(3), output_planes);
|
||||
EXPECT_EQ(result.dimension(2), output_rows);
|
||||
EXPECT_EQ(result.dimension(1), output_cols);
|
||||
EXPECT_EQ(result.dimension(0), num_batches);
|
||||
|
||||
for (int b = 0; b < num_batches; ++b) {
|
||||
for (int d = 0; d < channels; ++d) {
|
||||
for (int i = 0; i < output_planes; ++i) {
|
||||
for (int j = 0; j < output_rows; ++j) {
|
||||
for (int k = 0; k < output_cols; ++k) {
|
||||
float expected = -10000.f;
|
||||
for (int p = 0; p < patch_planes; ++p) {
|
||||
for (int r = 0; r < patch_rows; ++r) {
|
||||
for (int c = 0; c < patch_cols; ++c) {
|
||||
expected = (std::max)(expected,
|
||||
input(b, c + stride * k, r + stride * j,
|
||||
p + stride * i, d));
|
||||
}
|
||||
}
|
||||
}
|
||||
if (result(b, k, j, i, d) != expected) {
|
||||
std::cout << "at d=" << d << " b=" << b << " i=" << i
|
||||
<< " j=" << j << " " << k << " "
|
||||
<< result(b, k, j, i, d) << " vs " << expected
|
||||
<< std::endl;
|
||||
}
|
||||
EigenApprox(result(b, k, j, i, d), expected);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Eigen
|
@ -1,90 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_SOFTMAX_H_
|
||||
#define THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_SOFTMAX_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
/** SoftMax
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Applies a softmax
|
||||
*
|
||||
* The input parameter is expected to be a col-major tensor with a rank of 2 (depth and other).
|
||||
*
|
||||
* The result can be assigned to a tensor of rank and dimensions equal to that of the input. The result will be laid out in col-major order.
|
||||
*
|
||||
*/
|
||||
|
||||
namespace {
|
||||
struct SoftmaxOp {
|
||||
SoftmaxOp(const float beta) : beta_(beta) { }
|
||||
|
||||
template <typename Input>
|
||||
typename Input::Dimensions dimensions(const Input& input) const {
|
||||
return input.dimensions();
|
||||
}
|
||||
|
||||
template <typename Input, typename Output, typename Device>
|
||||
void eval(const Input& input, Output& output, const Device& device) const
|
||||
{
|
||||
#if !defined(EIGEN_HAS_INDEX_LIST)
|
||||
// nvcc doesn't support cxx11
|
||||
Eigen::array<typename internal::traits<Input>::Index, 1> depth_dim;
|
||||
depth_dim[0] = 0;
|
||||
Eigen::array<typename internal::traits<Input>::Index, 2> bcast;
|
||||
bcast[0] = dimensions(input)[0];
|
||||
bcast[1] = 1;
|
||||
DSizes<typename internal::traits<Input>::Index, 2> dims2d;
|
||||
dims2d[0] = 1;
|
||||
dims2d[1] = dimensions(input)[1];
|
||||
#else
|
||||
// Take advantage of cxx11 to give the compiler information it can use to
|
||||
// optimize the code.
|
||||
Eigen::IndexList<Eigen::type2index<0>> depth_dim;
|
||||
Eigen::IndexList<int, Eigen::type2index<1>> bcast;
|
||||
bcast.set(0, dimensions(input)[0]);
|
||||
Eigen::IndexList<Eigen::type2index<1>, typename internal::traits<Input>::Index> dims2d;
|
||||
dims2d.set(1, dimensions(input)[1]);
|
||||
#endif
|
||||
|
||||
output.device(device) = ((input - input.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast)) * beta_).exp();
|
||||
output.device(device) = output / (output.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast));
|
||||
}
|
||||
|
||||
private:
|
||||
const float beta_;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
template <typename Input>
|
||||
EIGEN_ALWAYS_INLINE
|
||||
static const TensorCustomUnaryOp<const SoftmaxOp, const Input>
|
||||
SoftMax(const Input& input, const float beta)
|
||||
{
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == ColMajor, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::NumDimensions == 2, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
|
||||
const SoftmaxOp op(beta);
|
||||
return input.customOp(op);
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_SOFTMAX_H_
|
@ -1,65 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/core/kernels/eigen_softmax.h"
|
||||
#include "tensorflow/core/framework/types.h"
|
||||
#include "tensorflow/core/platform/test.h"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace {
|
||||
void EigenApprox(float a, float b) {
|
||||
ASSERT_TRUE(std::abs(a - b) <= std::min(std::abs(a), std::abs(b)) * 1e-3);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EigenSoftmaxTest, Simple) {
|
||||
const int depth = 1024;
|
||||
const int batch = 32;
|
||||
const float beta = 1.2f;
|
||||
|
||||
Tensor<float, 2> input(depth, batch);
|
||||
input = input.constant(11.0f) + input.random();
|
||||
|
||||
Tensor<float, 2> reference(depth, batch);
|
||||
reference.setRandom();
|
||||
|
||||
Eigen::array<int, 1> depth_dim;
|
||||
depth_dim[0] = 0;
|
||||
Eigen::array<int, 2> bcast;
|
||||
bcast[0] = depth;
|
||||
bcast[1] = 1;
|
||||
Tensor<float, 2>::Dimensions dims2d;
|
||||
dims2d[0] = 1;
|
||||
dims2d[1] = batch;
|
||||
reference =
|
||||
((input -
|
||||
input.maximum(depth_dim).eval().reshape(dims2d).broadcast(bcast)) *
|
||||
beta)
|
||||
.exp();
|
||||
reference =
|
||||
reference /
|
||||
(reference.sum(depth_dim).eval().reshape(dims2d).broadcast(bcast));
|
||||
|
||||
Tensor<float, 2> result = SoftMax(input, beta);
|
||||
|
||||
for (int i = 0; i < depth; ++i) {
|
||||
for (int j = 0; j < batch; ++j) {
|
||||
EigenApprox(result(i, j), reference(i, j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace Eigen
|
@ -1,785 +0,0 @@
|
||||
/* Copyright 2015 Google Inc. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_SPATIAL_CONVOLUTIONS_H_
|
||||
#define THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_SPATIAL_CONVOLUTIONS_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
|
||||
namespace Eigen {
|
||||
|
||||
namespace internal {
|
||||
|
||||
// These optimizations require vector instructions
|
||||
#ifdef EIGEN_VECTORIZE
|
||||
|
||||
// TODO: Consolidate this part of the code with the image patch extraction code
|
||||
// since they are both very similar.
|
||||
template <typename NewDimension, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device,
|
||||
typename Scalar_, typename Index,
|
||||
typename nocontract_t, typename contract_t,
|
||||
int Side, size_t packet_size,
|
||||
bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
|
||||
class TensorContractionInputMapper<Scalar_, Index, Side, TensorEvaluator<const TensorReshapingOp<NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment>
|
||||
{
|
||||
public:
|
||||
typedef Scalar_ Scalar;
|
||||
typedef TensorContractionInputMapper<Scalar, Index, Side, TensorEvaluator<const TensorReshapingOp<NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Self;
|
||||
typedef TensorContractionSubMapper<Scalar, Index, Side, TensorEvaluator<const TensorReshapingOp<NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper;
|
||||
typedef SubMapper VectorMapper;
|
||||
typedef SubMapper LinearMapper;
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
|
||||
TensorContractionInputMapper(const TensorEvaluator<const TensorReshapingOp<NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >, Device>& tensor,
|
||||
const nocontract_t&, const nocontract_t&,
|
||||
const contract_t&, const contract_t&)
|
||||
: m_impl(tensor.impl().impl())
|
||||
{
|
||||
Index patch_rows;
|
||||
Index patch_depth;
|
||||
if (internal::traits<ArgType>::Layout == ColMajor) {
|
||||
patch_depth = tensor.impl().dimensions()[0];
|
||||
patch_rows = tensor.impl().dimensions()[1];
|
||||
m_patch_cols = tensor.impl().dimensions()[2];
|
||||
m_num_patches = tensor.impl().dimensions()[3];
|
||||
} else {
|
||||
static const int NumDims = tensor.impl().dimensions().size();
|
||||
patch_depth = tensor.impl().dimensions()[NumDims - 1];
|
||||
patch_rows = tensor.impl().dimensions()[NumDims - 2];
|
||||
m_patch_cols = tensor.impl().dimensions()[NumDims - 3];
|
||||
m_num_patches = tensor.impl().dimensions()[NumDims - 4];
|
||||
}
|
||||
m_patch_row_inflate_strides = tensor.impl().rowInflateStride();
|
||||
m_patch_col_inflate_strides = tensor.impl().colInflateStride();
|
||||
|
||||
m_colStride = patch_rows;
|
||||
|
||||
m_outputRows = tensor.impl().outputRows();
|
||||
m_row_strides = tensor.impl().userRowStride();
|
||||
m_col_strides = tensor.impl().userColStride();
|
||||
|
||||
m_in_row_strides = tensor.impl().userInRowStride();
|
||||
m_in_col_strides = tensor.impl().userInColStride();
|
||||
|
||||
if (internal::traits<ArgType>::Layout == ColMajor) {
|
||||
m_inputRows = tensor.impl().impl().dimensions()[1];
|
||||
m_inputCols = tensor.impl().impl().dimensions()[2];
|
||||
} else {
|
||||
static const int NumDims = tensor.impl().impl().dimensions().size();
|
||||
m_inputRows = tensor.impl().impl().dimensions()[NumDims - 2];
|
||||
m_inputCols = tensor.impl().impl().dimensions()[NumDims - 3];
|
||||
}
|
||||
|
||||
m_rowInputStride = patch_depth;
|
||||
m_colInputStride = patch_depth * m_inputRows;
|
||||
m_patchInputStride = patch_depth * m_inputRows * m_inputCols;
|
||||
|
||||
m_rowPaddingTop = tensor.impl().rowPaddingTop();
|
||||
m_colPaddingLeft = tensor.impl().colPaddingLeft();
|
||||
|
||||
m_fastInputRowStride = internal::TensorIntDivisor<Index>(m_patch_row_inflate_strides);
|
||||
m_fastInputColStride = internal::TensorIntDivisor<Index>(m_patch_col_inflate_strides);
|
||||
m_fastNumPatches = internal::TensorIntDivisor<Index>(m_num_patches);
|
||||
m_fastColStride = internal::TensorIntDivisor<Index>(m_colStride);
|
||||
m_fastOutputRows = internal::TensorIntDivisor<Index>(m_outputRows);
|
||||
m_fastDimZero = internal::TensorIntDivisor<Index>(patch_depth);
|
||||
}
|
||||
|
||||
TensorContractionInputMapper(const TensorContractionInputMapper& base_mapper) :
|
||||
m_impl(base_mapper.m_impl) {
|
||||
m_patch_cols = base_mapper.m_patch_cols;
|
||||
m_num_patches = base_mapper.m_num_patches;
|
||||
m_patch_row_inflate_strides = base_mapper.m_patch_row_inflate_strides;
|
||||
m_patch_col_inflate_strides = base_mapper.m_patch_col_inflate_strides;
|
||||
|
||||
m_colStride = base_mapper.m_colStride;
|
||||
|
||||
m_rowInputStride = base_mapper.m_rowInputStride;
|
||||
m_colInputStride = base_mapper.m_colInputStride;
|
||||
m_patchInputStride = base_mapper.m_patchInputStride;
|
||||
|
||||
m_inputRows = base_mapper.m_inputRows;
|
||||
m_inputCols = base_mapper.m_inputCols;
|
||||
|
||||
m_outputRows = base_mapper.m_outputRows;
|
||||
m_row_strides = base_mapper.m_row_strides;
|
||||
m_col_strides = base_mapper.m_col_strides;
|
||||
|
||||
m_in_row_strides = base_mapper.m_in_row_strides;
|
||||
m_in_col_strides = base_mapper.m_in_col_strides;
|
||||
|
||||
m_rowPaddingTop = base_mapper.m_rowPaddingTop;
|
||||
m_colPaddingLeft = base_mapper.m_colPaddingLeft;
|
||||
|
||||
m_fastInputRowStride = base_mapper.m_fastInputRowStride;
|
||||
m_fastInputColStride = base_mapper.m_fastInputColStride;
|
||||
m_fastNumPatches = base_mapper.m_fastNumPatches;
|
||||
m_fastColStride = base_mapper.m_fastColStride;
|
||||
m_fastOutputRows = base_mapper.m_fastOutputRows;
|
||||
m_fastDimZero = base_mapper.m_fastDimZero;
|
||||
}
|
||||
|
||||
// If true, turns off some optimizations for loading packets since the image
|
||||
// patches are "non-standard" such as there are non-trivial strides or
|
||||
// inflations in the input.
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE bool nonStandardPatches() const {
|
||||
return m_in_row_strides != 1 || m_in_col_strides != 1 || m_patch_row_inflate_strides != 1 || m_patch_col_inflate_strides != 1;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE SubMapper getSubMapper(Index i, Index j) const {
|
||||
return SubMapper(*this, i, j);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE LinearMapper getLinearMapper(Index i, Index j) const {
|
||||
return LinearMapper(*this, i, j);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Scalar operator()(Index row) const {
|
||||
Index rowIndex, colIndex, otherIndex;
|
||||
computeBaseIndices(0, rowIndex, colIndex, otherIndex);
|
||||
return loadCoeff(row, rowIndex, colIndex, otherIndex);
|
||||
}
|
||||
|
||||
// Load the coefficient at the patchIndex location instead of the usual m_rowIndex,
|
||||
// m_colIndex, m_otherIndex. This is currently only used by the gpu code. EIGEN_DEVICE_FUNC
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Scalar operator()(Index row, Index patchIndex) const {
|
||||
Index rowIndex, colIndex, otherIndex;
|
||||
computeBaseIndices(patchIndex, rowIndex, colIndex, otherIndex);
|
||||
return loadCoeff(row, rowIndex, colIndex, otherIndex);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Packet loadPacket(Index row) const {
|
||||
Index rowIndex, colIndex, otherIndex;
|
||||
computeBaseIndices(0, rowIndex, colIndex, otherIndex);
|
||||
return loadPacket(row, rowIndex, colIndex, otherIndex);
|
||||
}
|
||||
|
||||
// Load the packet at the patchIndex location instead of the usual m_rowIndex,
|
||||
// m_colIndex, m_otherIndex. This is currently only used by the gpu code.
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Packet loadPacket(Index row, Index patchIndex) const {
|
||||
Index rowIndex, colIndex, otherIndex;
|
||||
computeBaseIndices(patchIndex, rowIndex, colIndex, otherIndex);
|
||||
return loadPacket(row, rowIndex, colIndex, otherIndex);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Index patchDepth() const { return m_rowInputStride; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Index patchRows() const { return m_colStride; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Index patchCols() const { return m_patch_cols; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Packet packetNoPadding(const Index depth, const Index baseIndex) const {
|
||||
const Index inputIndex = depth + baseIndex;
|
||||
return m_impl.template packet<Unaligned>(inputIndex);
|
||||
}
|
||||
|
||||
private:
|
||||
friend class TensorContractionSubMapper<Scalar, Index, Side, TensorEvaluator<const TensorReshapingOp<NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment>;
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Scalar loadCoeff(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const {
|
||||
// Find the offset of the element wrt the location of the first element.
|
||||
const Index patchOffset = patchId / m_fastDimZero;
|
||||
|
||||
const Index colOffset = patchOffset / m_fastColStride;
|
||||
const Index inputCol = colIndex + colOffset * m_in_col_strides;
|
||||
const Index origInputCol = (m_patch_col_inflate_strides == 1) ? inputCol : ((inputCol >= 0) ? (inputCol / m_fastInputColStride) : 0);
|
||||
const Index rowOffset = patchOffset - colOffset * m_colStride;
|
||||
const Index inputRow = rowIndex + rowOffset * m_in_row_strides;
|
||||
const Index origInputRow = (m_patch_row_inflate_strides == 1) ? inputRow : ((inputRow >= 0) ? (inputRow / m_fastInputRowStride) : 0);
|
||||
if (origInputCol < 0 || origInputRow < 0 || origInputCol >= m_inputCols ||
|
||||
origInputRow >= m_inputRows ||
|
||||
(inputCol != origInputCol * m_patch_col_inflate_strides) ||
|
||||
(inputRow != origInputRow * m_patch_row_inflate_strides)) {
|
||||
return Scalar(0);
|
||||
}
|
||||
const Index depth = patchId - patchOffset * patchDepth();
|
||||
const Index inputIndex = depth + origInputRow * m_rowInputStride + origInputCol * m_colInputStride + otherIndex;
|
||||
return m_impl.coeff(inputIndex);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_STRONG_INLINE Scalar loadCoeffStandard(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const {
|
||||
eigen_assert(!nonStandardPatches());
|
||||
|
||||
// Find the offset of the element wrt the location of the first element.
|
||||
const Index patchOffset = patchId / m_fastDimZero;
|
||||
|
||||
const Index colOffset = patchOffset / m_fastColStride;
|
||||
const Index inputCol = colIndex + colOffset;
|
||||
const Index rowOffset = patchOffset - colOffset * m_colStride;
|
||||
const Index inputRow = rowIndex + rowOffset;
|
||||
if (inputCol < 0 || inputCol >= m_inputCols || inputRow < 0 || inputRow >= m_inputRows) {
|
||||
return Scalar(0);
|
||||
}
|
||||
const Index depth = patchId - patchOffset * patchDepth();
|
||||
const Index inputIndex = depth + inputRow * m_rowInputStride + inputCol * m_colInputStride + otherIndex;
|
||||
return m_impl.coeff(inputIndex);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Packet loadPacket(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const {
|
||||
const Index packetSize = internal::unpacket_traits<Packet>::size;
|
||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(patchId < patchDepth()*patchRows()*m_patch_cols);
|
||||
|
||||
if (nonStandardPatches()) {
|
||||
return packetWithPossibleZero(patchId, rowIndex, colIndex, otherIndex);
|
||||
}
|
||||
return loadPacketStandard(patchId, rowIndex, colIndex, otherIndex);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Packet loadPacketStandard(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const {
|
||||
const Index packetSize = internal::unpacket_traits<Packet>::size;
|
||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(patchId < patchDepth()*patchRows()*m_patch_cols);
|
||||
|
||||
eigen_assert(!nonStandardPatches());
|
||||
|
||||
if ((patchDepth() % packetSize) == 0) {
|
||||
return loadPacketFast(patchId, rowIndex, colIndex, otherIndex);
|
||||
}
|
||||
else {
|
||||
const Index patchOffsets[2] = {patchId / m_fastDimZero, (patchId + packetSize - 1) / m_fastDimZero};
|
||||
|
||||
const Index colOffsets[2] = {patchOffsets[0] / m_fastColStride, patchOffsets[1] / m_fastColStride};
|
||||
|
||||
const Index inputCols[2] = {colIndex + colOffsets[0], colIndex + colOffsets[1]};
|
||||
if (inputCols[0] >= m_inputCols || inputCols[1] < 0) {
|
||||
// all zeros
|
||||
return internal::pset1<Packet>(Scalar(0));
|
||||
}
|
||||
|
||||
if (inputCols[0] == inputCols[1]) {
|
||||
const Index rowOffsets[2] = {patchOffsets[0] - colOffsets[0]*m_colStride, patchOffsets[1] - colOffsets[1]*m_colStride};
|
||||
eigen_assert(rowOffsets[0] <= rowOffsets[1]);
|
||||
const Index inputRows[2] = {rowIndex + rowOffsets[0], rowIndex + rowOffsets[1]};
|
||||
|
||||
if (inputRows[0] >= m_inputRows || inputRows[1] < 0) {
|
||||
// all zeros
|
||||
return internal::pset1<Packet>(Scalar(0));
|
||||
}
|
||||
|
||||
if (inputRows[0] >= 0 && inputRows[1] < m_inputRows) {
|
||||
// no padding
|
||||
const Index depth = patchId - patchOffsets[0] * patchDepth();
|
||||
const Index inputIndex = depth + inputRows[0] * m_rowInputStride + inputCols[0] * m_colInputStride + otherIndex;
|
||||
return m_impl.template packet<Unaligned>(inputIndex);
|
||||
}
|
||||
}
|
||||
}
|
||||
return packetWithPossibleZero(patchId, rowIndex, colIndex, otherIndex);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Packet loadPacketFast(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const {
|
||||
const Index packetSize = internal::unpacket_traits<Packet>::size;
|
||||
EIGEN_STATIC_ASSERT(packetSize > 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
|
||||
eigen_assert(patchId < patchDepth()*patchRows()*m_patch_cols);
|
||||
|
||||
eigen_assert(!nonStandardPatches());
|
||||
eigen_assert((patchDepth() % packetSize) == 0);
|
||||
// Find the offset of the element wrt the location of the first element.
|
||||
const Index patchOffset = patchId / m_fastDimZero;
|
||||
eigen_assert((patchId + packetSize - 1) / m_fastDimZero == patchOffset);
|
||||
|
||||
const Index colOffset = patchOffset / m_fastColStride;
|
||||
const Index inputCol = colIndex + colOffset;
|
||||
const Index rowOffset = patchOffset - colOffset*m_colStride;
|
||||
const Index inputRow = rowIndex + rowOffset;
|
||||
if (inputCol < 0 || inputRow < 0 || inputCol >= m_inputCols ||
|
||||
inputRow >= m_inputRows) {
|
||||
// all zeros
|
||||
return internal::pset1<Packet>(Scalar(0));
|
||||
}
|
||||
// no padding
|
||||
const Index depth = patchId - patchOffset * patchDepth();
|
||||
const Index inputIndex = depth + inputRow * m_rowInputStride + inputCol * m_colInputStride + otherIndex;
|
||||
return m_impl.template packet<Unaligned>(inputIndex);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet packetWithPossibleZero(Index patchId, Index rowIndex, Index colIndex, Index otherIndex) const
|
||||
{
|
||||
const int packetSize = internal::unpacket_traits<Packet>::size;
|
||||
EIGEN_ALIGN_MAX typename internal::remove_const<Scalar>::type values[packetSize];
|
||||
for (int i = 0; i < packetSize; ++i) {
|
||||
values[i] = loadCoeff(patchId+i, rowIndex, colIndex, otherIndex);
|
||||
}
|
||||
Packet rslt = internal::pload<Packet>(values);
|
||||
return rslt;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void computeBaseIndices(Index patchIndex, Index& rowIndex, Index& colIndex, Index& otherIndex) const {
|
||||
const int NumInputDims = array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value;
|
||||
otherIndex = (NumInputDims == 3) ? 0 : patchIndex / m_fastNumPatches;
|
||||
const Index patch2DIndex = (NumInputDims == 3) ? patchIndex : (patchIndex - otherIndex * m_num_patches);
|
||||
otherIndex *= m_patchInputStride;
|
||||
colIndex = patch2DIndex / m_fastOutputRows;
|
||||
rowIndex = patch2DIndex - colIndex * m_outputRows;
|
||||
colIndex = colIndex * m_col_strides - m_colPaddingLeft;
|
||||
rowIndex = rowIndex * m_row_strides - m_rowPaddingTop;
|
||||
}
|
||||
|
||||
Index m_patch_cols; // number of colums in the patch
|
||||
Index m_num_patches; // number of patches to extract.
|
||||
Index m_patch_row_inflate_strides; // the strides for row inflation in the image patch
|
||||
Index m_patch_col_inflate_strides; // the strides for col inflation in the image patch
|
||||
// Fast representation of inflation strides.
|
||||
internal::TensorIntDivisor<Index> m_fastInputRowStride;
|
||||
internal::TensorIntDivisor<Index> m_fastInputColStride;
|
||||
|
||||
Index m_otherStride;
|
||||
Index m_colStride;
|
||||
internal::TensorIntDivisor<Index> m_fastNumPatches;
|
||||
internal::TensorIntDivisor<Index> m_fastColStride;
|
||||
|
||||
Index m_rowInputStride; // row stride in the input tensor
|
||||
Index m_colInputStride; // col stride in the input tensor
|
||||
Index m_patchInputStride; // patch stride in the input tensor
|
||||
|
||||
Index m_inputRows; // Number of rows in the input tensor
|
||||
Index m_inputCols; // Number of cols in the input tensor
|
||||
|
||||
Index m_outputRows; // Number of patch rows
|
||||
|
||||
Index m_row_strides; // User specified row stride
|
||||
Index m_col_strides; // User specified col stride
|
||||
|
||||
Index m_in_row_strides; // User specified input row stride
|
||||
Index m_in_col_strides; // User specified input col stride
|
||||
|
||||
Index m_rowPaddingTop; // Row padding
|
||||
Index m_colPaddingLeft; // Column padding
|
||||
|
||||
internal::TensorIntDivisor<Index> m_fastOutputRows;
|
||||
internal::TensorIntDivisor<Index> m_fastDimZero;
|
||||
|
||||
const TensorEvaluator<ArgType, Device> m_impl;
|
||||
};
|
||||
|
||||
|
||||
template <typename NewDimension, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device,
|
||||
typename Scalar, typename Index,
|
||||
typename nocontract_t, typename contract_t,
|
||||
int Side, size_t packet_size,
|
||||
bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment>
|
||||
class TensorContractionSubMapper<Scalar, Index, Side, TensorEvaluator<const TensorReshapingOp<NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment>
|
||||
{
|
||||
public:
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
typedef typename packet_traits<Scalar>::half HalfPacket;
|
||||
|
||||
typedef TensorContractionInputMapper<Scalar, Index, Side, TensorEvaluator<const TensorReshapingOp<NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> ParentMapper;
|
||||
typedef TensorContractionSubMapper<Scalar, Index, Side, TensorEvaluator<const TensorReshapingOp<NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> Self;
|
||||
typedef Self LinearMapper;
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionSubMapper(const ParentMapper& base_mapper, Index vert_offset, Index horiz_offset)
|
||||
: m_base_mapper(base_mapper), m_depth_offset(vert_offset), m_col_offset(horiz_offset) {
|
||||
m_base_mapper.computeBaseIndices(m_col_offset, m_rowIndex, m_colIndex, m_otherIndex);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorContractionSubMapper(const Self& base_mapper, Index vert_offset, Index horiz_offset)
|
||||
: m_base_mapper(base_mapper.m_base_mapper), m_depth_offset(vert_offset+base_mapper.m_depth_offset), m_col_offset(horiz_offset+base_mapper.m_col_offset) {
|
||||
m_base_mapper.computeBaseIndices(m_col_offset, m_rowIndex, m_colIndex, m_otherIndex);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i) const {
|
||||
return m_base_mapper.loadCoeff(i + m_depth_offset, m_rowIndex, m_colIndex, m_otherIndex);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar operator()(Index i, Index j) const {
|
||||
return m_base_mapper(i + m_depth_offset, j + m_col_offset);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i) const {
|
||||
return m_base_mapper.loadPacket(i + m_depth_offset, m_rowIndex, m_colIndex, m_otherIndex);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacket(Index i, Index j) const {
|
||||
return m_base_mapper.template loadPacket(i + m_depth_offset, j + m_col_offset);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Scalar loadCoeffStandard(Index i) const {
|
||||
return m_base_mapper.loadCoeffStandard(i + m_depth_offset, m_rowIndex, m_colIndex, m_otherIndex);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacketFast(Index i) const {
|
||||
return m_base_mapper.loadPacketFast(i + m_depth_offset, m_rowIndex, m_colIndex, m_otherIndex);
|
||||
}
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet loadPacketStandard(Index i) const {
|
||||
return m_base_mapper.loadPacketStandard(i + m_depth_offset, m_rowIndex, m_colIndex, m_otherIndex);
|
||||
}
|
||||
template <typename Packet>
|
||||
EIGEN_DEVICE_FUNC bool aligned(Index) const {
|
||||
return false;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE bool nonStandardPatches() const {
|
||||
return m_base_mapper.nonStandardPatches();
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Index patchDepth() const { return m_base_mapper.m_rowInputStride; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Index patchRows() const { return m_base_mapper.m_colStride; }
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Index patchCols() const { return m_base_mapper.m_patch_cols; }
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Packet packetNoPadding(const Index depth, const Index baseIndex) const {
|
||||
const Index inputIndex = depth + baseIndex;
|
||||
return m_base_mapper.m_impl.template packet<Unaligned>(inputIndex);
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE bool padRow(const Index row) const {
|
||||
const Index r = m_rowIndex + row;
|
||||
return r < 0 || r >= m_base_mapper.m_inputRows;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE bool padCol(const Index col) const {
|
||||
const Index c = m_colIndex + col;
|
||||
return c < 0 || c >= m_base_mapper.m_inputCols;
|
||||
}
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Index baseIndex(const Index row, const Index col) const {
|
||||
const Index r = m_rowIndex + row;
|
||||
const Index c = m_colIndex + col;
|
||||
return r * m_base_mapper.m_rowInputStride + c * m_base_mapper.m_colInputStride + m_otherIndex;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Index rowOffset() const {
|
||||
const Index patchOffset = m_depth_offset / m_base_mapper.m_fastDimZero;
|
||||
const Index colOffset = patchOffset / m_base_mapper.m_fastColStride;
|
||||
return patchOffset-colOffset*m_base_mapper.m_colStride;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Index colOffset() const {
|
||||
const Index patchOffset = m_depth_offset / m_base_mapper.m_fastDimZero;
|
||||
const Index colOffset = patchOffset / m_base_mapper.m_fastColStride;
|
||||
return colOffset;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC
|
||||
EIGEN_ALWAYS_INLINE Index depthOffset() const {
|
||||
const Index patchOffset = m_depth_offset % m_base_mapper.patchDepth();
|
||||
return patchOffset;
|
||||
}
|
||||
|
||||
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE LinearMapper getLinearMapper(Index i, Index j) const {
|
||||
return LinearMapper(m_base_mapper, i + m_depth_offset, j + m_col_offset);
|
||||
}
|
||||
|
||||
private:
|
||||
const ParentMapper& m_base_mapper; // that was a reference before
|
||||
Index m_depth_offset; // First row in the input matrix
|
||||
Index m_col_offset; // First col in the input matrix
|
||||
|
||||
Index m_rowIndex; // precomputed row index corresponding to the col offset
|
||||
Index m_colIndex; // precomputed col index corresponding to the col offset
|
||||
Index m_otherIndex; // precomputed other index corresponding to the col offset
|
||||
};
|
||||
|
||||
|
||||
template <typename NewDimension, DenseIndex Rows, DenseIndex Cols, typename ArgType, typename Device,
|
||||
typename Scalar, typename Index,
|
||||
typename nocontract_t, typename contract_t,
|
||||
int Side, size_t packet_size,
|
||||
bool inner_dim_contiguous, bool inner_dim_reordered, int Alignment, int nr>
|
||||
struct gemm_pack_rhs<Scalar, Index, TensorContractionSubMapper<Scalar, Index, Side, TensorEvaluator<const TensorReshapingOp<NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment>, nr, ColMajor, false, false> {
|
||||
|
||||
typedef TensorContractionSubMapper<Scalar, Index, Side, TensorEvaluator<const TensorReshapingOp<NewDimension, const TensorImagePatchOp<Rows, Cols, ArgType> >, Device>, nocontract_t, contract_t, packet_size, inner_dim_contiguous, inner_dim_reordered, Alignment> SubMapper;
|
||||
typedef SubMapper DataMapper;
|
||||
|
||||
static inline Index ceil_div(Index a, Index b) {
|
||||
return (a + b - 1) / b;
|
||||
}
|
||||
|
||||
EIGEN_DONT_INLINE void operator()(Scalar* block, const DataMapper& rhs, Index depth, Index cols, Index stride=0, Index offset=0) const {
|
||||
eigen_assert(stride == 0);
|
||||
eigen_assert(offset == 0);
|
||||
|
||||
EIGEN_STATIC_ASSERT((nr == 4), YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
typedef typename DataMapper::LinearMapper LinearMapper;
|
||||
typedef typename packet_traits<Scalar>::type Packet;
|
||||
|
||||
const Index packet_cols4 = (cols/4) * 4;
|
||||
const Index peeled_k = (depth/packet_size) * packet_size;
|
||||
const bool non_standard_patches = rhs.nonStandardPatches();
|
||||
|
||||
for(Index j2=0; j2<packet_cols4; j2+=4)
|
||||
{
|
||||
const SubMapper dm0 = rhs.getLinearMapper(0, j2 + 0);
|
||||
const SubMapper dm1 = rhs.getLinearMapper(0, j2 + 1);
|
||||
const SubMapper dm2 = rhs.getLinearMapper(0, j2 + 2);
|
||||
const SubMapper dm3 = rhs.getLinearMapper(0, j2 + 3);
|
||||
|
||||
Index k=0;
|
||||
if((packet_size%4)==0 && !non_standard_patches)
|
||||
{
|
||||
const Index patch_depth = rhs.patchDepth();
|
||||
if ((patch_depth % packet_size) == 0) {
|
||||
const Index patch_cols = rhs.patchCols();
|
||||
const Index patch_rows = rhs.patchRows();
|
||||
|
||||
const Index startCol = rhs.colOffset();
|
||||
const Index max_cols = std::min<Index>(ceil_div(peeled_k, patch_rows*patch_depth)+startCol, patch_cols);
|
||||
|
||||
for (Index c = startCol; c < max_cols; ++c) {
|
||||
eigen_assert(k < peeled_k);
|
||||
const Index startRow = (c == startCol) ? rhs.rowOffset() : 0;
|
||||
const Index max_rows = std::min<Index>(ceil_div(peeled_k-c*patch_rows*patch_depth, patch_depth)+startRow, patch_rows);
|
||||
|
||||
const bool pad_col0 = dm0.padCol(c);
|
||||
const bool pad_col1 = dm1.padCol(c);
|
||||
const bool pad_col2 = dm2.padCol(c);
|
||||
const bool pad_col3 = dm3.padCol(c);
|
||||
for (Index r = startRow; r < max_rows; ++r) {
|
||||
eigen_assert(k < peeled_k);
|
||||
const bool pad0 = pad_col0 || dm0.padRow(r);
|
||||
const bool pad1 = pad_col1 || dm1.padRow(r);
|
||||
const bool pad2 = pad_col2 || dm2.padRow(r);
|
||||
const bool pad3 = pad_col3 || dm3.padRow(r);
|
||||
|
||||
const Index idx0 = dm0.baseIndex(r, c);
|
||||
const Index idx1 = dm1.baseIndex(r, c);
|
||||
const Index idx2 = dm2.baseIndex(r, c);
|
||||
const Index idx3 = dm3.baseIndex(r, c);
|
||||
|
||||
const Index startDepth = ((c == startCol) && (r == startRow)) ? rhs.depthOffset() : 0;
|
||||
const Index max_depth = std::min<Index>(peeled_k-c*patch_rows*patch_depth-r*patch_depth+startDepth, patch_depth);
|
||||
eigen_assert(max_depth % packet_size == 0);
|
||||
for (Index d = startDepth; d < max_depth; d += packet_size) {
|
||||
eigen_assert(k < peeled_k);
|
||||
PacketBlock<Packet, 4> kernel;
|
||||
kernel.packet[0] = pad0 ? pset1<Packet>(0) : rhs.packetNoPadding(d, idx0);
|
||||
kernel.packet[1] = pad1 ? pset1<Packet>(0) : rhs.packetNoPadding(d, idx1);
|
||||
kernel.packet[2] = pad2 ? pset1<Packet>(0) : rhs.packetNoPadding(d, idx2);
|
||||
kernel.packet[3] = pad3 ? pset1<Packet>(0) : rhs.packetNoPadding(d, idx3);
|
||||
ptranspose(kernel);
|
||||
pstoreu(block+0*packet_size, kernel.packet[0]);
|
||||
pstoreu(block+1*packet_size, kernel.packet[1]);
|
||||
pstoreu(block+2*packet_size, kernel.packet[2]);
|
||||
pstoreu(block+3*packet_size, kernel.packet[3]);
|
||||
block+=4*packet_size;
|
||||
k += packet_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for(; k<peeled_k; k+=packet_size) {
|
||||
PacketBlock<Packet, 4> kernel;
|
||||
kernel.packet[0] = dm0.loadPacketFast(k);
|
||||
kernel.packet[1] = dm1.loadPacketFast(k);
|
||||
kernel.packet[2] = dm2.loadPacketFast(k);
|
||||
kernel.packet[3] = dm3.loadPacketFast(k);
|
||||
ptranspose(kernel);
|
||||
pstoreu(block+0*packet_size, kernel.packet[0]);
|
||||
pstoreu(block+1*packet_size, kernel.packet[1]);
|
||||
pstoreu(block+2*packet_size, kernel.packet[2]);
|
||||
pstoreu(block+3*packet_size, kernel.packet[3]);
|
||||
block+=4*packet_size;
|
||||
}
|
||||
}
|
||||
else {
|
||||
for(; k<peeled_k; k+=packet_size) {
|
||||
PacketBlock<Packet, 4> kernel;
|
||||
kernel.packet[0] = dm0.loadPacketStandard(k);
|
||||
kernel.packet[1] = dm1.loadPacketStandard(k);
|
||||
kernel.packet[2] = dm2.loadPacketStandard(k);
|
||||
kernel.packet[3] = dm3.loadPacketStandard(k);
|
||||
ptranspose(kernel);
|
||||
pstoreu(block+0*packet_size, kernel.packet[0]);
|
||||
pstoreu(block+1*packet_size, kernel.packet[1]);
|
||||
pstoreu(block+2*packet_size, kernel.packet[2]);
|
||||
pstoreu(block+3*packet_size, kernel.packet[3]);
|
||||
block+=4*packet_size;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!rhs.nonStandardPatches()) {
|
||||
for(; k<depth; k++)
|
||||
{
|
||||
block[0] = dm0.loadCoeffStandard(k);
|
||||
block[1] = dm1.loadCoeffStandard(k);
|
||||
block[2] = dm2.loadCoeffStandard(k);
|
||||
block[3] = dm3.loadCoeffStandard(k);
|
||||
block += 4;
|
||||
}
|
||||
}
|
||||
else {
|
||||
for(; k<depth; k++)
|
||||
{
|
||||
block[0] = dm0(k);
|
||||
block[1] = dm1(k);
|
||||
block[2] = dm2(k);
|
||||
block[3] = dm3(k);
|
||||
block += 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// copy the remaining columns one at a time (nr==1)
|
||||
for(Index j2=packet_cols4; j2<cols; ++j2)
|
||||
{
|
||||
const SubMapper dm0 = rhs.getLinearMapper(0, j2);
|
||||
for(Index k=0; k<depth; k++)
|
||||
{
|
||||
*block = dm0(k);
|
||||
block += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
#endif // EIGEN_VECTORIZE
|
||||
} // end namespace internal
|
||||
|
||||
|
||||
/** SpatialConvolution
|
||||
* \ingroup CXX11_NeuralNetworks_Module
|
||||
*
|
||||
* \brief Applies a 2D convolution over a multichannel input image.
|
||||
*
|
||||
* The input parameter is expected to be a tensor with a rank of 3 or more (channels, height, width, and optionally others)
|
||||
* The kernel parameter is expected to be a 4D tensor (filters, channels, kernel_height, kernel_width)
|
||||
* The input and the kernel must both be in col-major layout. The result will also be in col-major layout.
|
||||
*
|
||||
* If in_stride > 1, then applies convolution with holes (aka atrous convolution), sampling every in_stride input pixels.
|
||||
*
|
||||
* The result can be assigned to a tensor of rank equal to the rank of the input. The dimensions of the result will be filters, height, width (and others if applicable).
|
||||
*
|
||||
* It is possible to swap the order of the width and height dimensions provided that the same order is used in the input, the kernel, and the output.
|
||||
*
|
||||
*/
|
||||
template <typename Input, typename Kernel>
|
||||
EIGEN_ALWAYS_INLINE
|
||||
static const typename internal::conditional<
|
||||
internal::traits<Input>::Layout == ColMajor,
|
||||
TensorReshapingOp<const DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorContractionOp<const array<IndexPair<typename internal::traits<Input>::Index>, 1>, const TensorReshapingOp<const DSizes<typename internal::traits<Input>::Index, 2>, const Kernel>, const TensorReshapingOp<const DSizes<typename internal::traits<Input>::Index, 2>, const TensorImagePatchOp<Dynamic, Dynamic, const Input> > > >,
|
||||
TensorReshapingOp<const DSizes<typename internal::traits<Input>::Index, internal::traits<Input>::NumDimensions>, const TensorContractionOp<const array<IndexPair<typename internal::traits<Input>::Index>, 1>, const TensorReshapingOp<const DSizes<typename internal::traits<Input>::Index, 2>, const TensorImagePatchOp<Dynamic, Dynamic, const Input> >, const TensorReshapingOp<const DSizes<typename internal::traits<Input>::Index, 2>, const Kernel> > > >::type
|
||||
SpatialConvolution(const Input& input, const Kernel& kernel, const DenseIndex stride = 1, const PaddingType padding_type = PADDING_SAME, const DenseIndex in_stride = 1) {
|
||||
|
||||
typedef typename internal::traits<Input>::Index TensorIndex;
|
||||
TensorRef<Tensor<typename internal::traits<Input>::Scalar, internal::traits<Input>::NumDimensions, internal::traits<Input>::Layout, TensorIndex> > in(input);
|
||||
TensorRef<Tensor<typename internal::traits<Kernel>::Scalar, internal::traits<Kernel>::NumDimensions, internal::traits<Kernel>::Layout, TensorIndex> > kern(kernel);
|
||||
|
||||
EIGEN_STATIC_ASSERT(internal::traits<Input>::Layout == internal::traits<Kernel>::Layout, YOU_MADE_A_PROGRAMMING_MISTAKE);
|
||||
static const bool isColMajor = (internal::traits<Input>::Layout == ColMajor);
|
||||
|
||||
static const int NumDims = internal::traits<Input>::NumDimensions;
|
||||
|
||||
// Number of filters to apply. This is the same as the output depth of the result
|
||||
const TensorIndex kernelFilters = isColMajor ? kern.dimensions()[0] : kern.dimensions()[3];
|
||||
// Number of channels. This is the same as the input depth.
|
||||
const TensorIndex kernelChannels = isColMajor ? kern.dimensions()[1] : kern.dimensions()[2];
|
||||
const TensorIndex kernelRows = isColMajor ? kern.dimensions()[2] : kern.dimensions()[1];
|
||||
const TensorIndex kernelCols = isColMajor ? kern.dimensions()[3] : kern.dimensions()[0];
|
||||
|
||||
const DenseIndex kernelRowsEff = kernelRows + (kernelRows - 1) * (in_stride - 1);
|
||||
const DenseIndex kernelColsEff = kernelCols + (kernelCols - 1) * (in_stride - 1);
|
||||
|
||||
array<IndexPair<TensorIndex>, 1> contract_dims;
|
||||
contract_dims[0] = IndexPair<TensorIndex>(1, 0);
|
||||
|
||||
const TensorIndex InputRows = isColMajor ? in.dimension(1) : in.dimension(NumDims - 2);
|
||||
const TensorIndex InputCols = isColMajor ? in.dimension(2) : in.dimension(NumDims - 3);
|
||||
|
||||
TensorIndex out_height;
|
||||
TensorIndex out_width;
|
||||
switch (padding_type) {
|
||||
case PADDING_VALID:
|
||||
out_height = numext::ceil((InputRows - kernelRowsEff + 1.f) / static_cast<float>(stride));
|
||||
out_width = numext::ceil((InputCols - kernelColsEff + 1.f) / static_cast<float>(stride));
|
||||
break;
|
||||
case PADDING_SAME:
|
||||
out_height = numext::ceil(InputRows / static_cast<float>(stride));
|
||||
out_width = numext::ceil(InputCols / static_cast<float>(stride));
|
||||
break;
|
||||
default:
|
||||
eigen_assert(false && "unexpected padding");
|
||||
}
|
||||
|
||||
// Molds the output of the patch extraction code into a 2d tensor:
|
||||
// - the first dimension (dims[0]): the patch values to be multiplied with the kernels
|
||||
// - the second dimension (dims[1]): everything else
|
||||
DSizes<TensorIndex, 2> pre_contract_dims;
|
||||
if (isColMajor) {
|
||||
pre_contract_dims[0] = kernelChannels * kernelRows * kernelCols;
|
||||
pre_contract_dims[1] = out_height * out_width;
|
||||
for (int i = 3; i < NumDims; ++i) {
|
||||
pre_contract_dims[1] *= in.dimension(i);
|
||||
}
|
||||
} else {
|
||||
pre_contract_dims[1] = kernelChannels * kernelRows * kernelCols;
|
||||
pre_contract_dims[0] = out_height * out_width;
|
||||
for (int i = 0; i < NumDims - 3; ++i) {
|
||||
pre_contract_dims[0] *= in.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
// Molds the output of the contraction into the shape expected by the used
|
||||
// (assuming this is ColMajor):
|
||||
// - 1st dim: kernel filters
|
||||
// - 2nd dim: output height
|
||||
// - 3rd dim: output width
|
||||
// - 4th dim and beyond: everything else including batch size
|
||||
DSizes<TensorIndex, NumDims> post_contract_dims;
|
||||
if (isColMajor) {
|
||||
post_contract_dims[0] = kernelFilters;
|
||||
post_contract_dims[1] = out_height;
|
||||
post_contract_dims[2] = out_width;
|
||||
for (int i = 3; i < NumDims; ++i) {
|
||||
post_contract_dims[i] = in.dimension(i);
|
||||
}
|
||||
} else {
|
||||
post_contract_dims[NumDims - 1] = kernelFilters;
|
||||
post_contract_dims[NumDims - 2] = out_height;
|
||||
post_contract_dims[NumDims - 3] = out_width;
|
||||
for (int i = 0; i < NumDims - 3; ++i) {
|
||||
post_contract_dims[i] = in.dimension(i);
|
||||
}
|
||||
}
|
||||
|
||||
DSizes<TensorIndex, 2> kernel_dims;
|
||||
if (isColMajor) {
|
||||
kernel_dims[0] = kernelFilters;
|
||||
kernel_dims[1] = kernelChannels * kernelRows * kernelCols;
|
||||
} else {
|
||||
kernel_dims[0] = kernelChannels * kernelRows * kernelCols;
|
||||
kernel_dims[1] = kernelFilters;
|
||||
}
|
||||
// TODO(yangke): choose() is defined in TensorContraction.h -- consider
|
||||
// moving it to somewhere more "common".
|
||||
return choose(Cond<internal::traits<Input>::Layout == ColMajor>(),
|
||||
kernel.reshape(kernel_dims).contract(input.extract_image_patches(kernelRows, kernelCols, stride, stride, in_stride, in_stride, padding_type).reshape(pre_contract_dims), contract_dims).reshape(post_contract_dims),
|
||||
input.extract_image_patches(kernelRows, kernelCols, stride, stride, in_stride, in_stride, padding_type).reshape(pre_contract_dims).contract(kernel.reshape(kernel_dims), contract_dims).reshape(post_contract_dims));
|
||||
}
|
||||
|
||||
} // end namespace Eigen
|
||||
|
||||
#endif // THIRD_PARTY_TENSORFLOW_CORE_KERNELS_EIGEN_SPATIAL_CONVOLUTIONS_H_
|
File diff suppressed because it is too large
Load Diff
@ -20,6 +20,7 @@ limitations under the License.
|
||||
#include "tensorflow/core/kernels/maxpooling_op.h"
|
||||
|
||||
#include <vector>
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/NeuralNetworks"
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "tensorflow/core/common_runtime/device.h"
|
||||
#include "tensorflow/core/framework/numeric_op.h"
|
||||
@ -28,7 +29,6 @@ limitations under the License.
|
||||
#include "tensorflow/core/framework/tensor_shape.h"
|
||||
#include "tensorflow/core/framework/tensor_slice.h"
|
||||
#include "tensorflow/core/kernels/conv_2d.h"
|
||||
#include "tensorflow/core/kernels/eigen_pooling.h"
|
||||
#include "tensorflow/core/kernels/ops_util.h"
|
||||
#include "tensorflow/core/kernels/pooling_ops_common.h"
|
||||
#include "tensorflow/core/lib/core/errors.h"
|
||||
|
@ -17,8 +17,8 @@ limitations under the License.
|
||||
#define TENSORFLOW_KERNELS_MAXPOOLING_OP_H_
|
||||
// Functor definition for MaxPoolingOp, must be compilable by nvcc.
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/NeuralNetworks"
|
||||
#include "tensorflow/core/framework/tensor_types.h"
|
||||
#include "tensorflow/core/kernels/eigen_pooling.h"
|
||||
#include "tensorflow/core/platform/types.h"
|
||||
|
||||
namespace tensorflow {
|
||||
|
@ -22,6 +22,7 @@ limitations under the License.
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/NeuralNetworks"
|
||||
#include "tensorflow/core/framework/tensor_types.h"
|
||||
#include "tensorflow/core/platform/types.h"
|
||||
|
||||
|
@ -18,6 +18,7 @@ limitations under the License.
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/NeuralNetworks"
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "tensorflow/core/framework/numeric_op.h"
|
||||
#include "tensorflow/core/framework/op_kernel.h"
|
||||
|
@ -21,6 +21,7 @@ limitations under the License.
|
||||
#define TENSORFLOW_CORE_KERNELS_POOLING_OPS_COMMON_GPU_H_
|
||||
|
||||
#include <vector>
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/NeuralNetworks"
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor"
|
||||
#include "tensorflow/core/framework/numeric_op.h"
|
||||
#include "tensorflow/core/framework/op_kernel.h"
|
||||
|
@ -20,6 +20,7 @@ limitations under the License.
|
||||
#ifndef TENSORFLOW_CORE_KERNELS_RESIZE_NEAREST_NEIGHBOR_OP_GPU_H_
|
||||
#define TENSORFLOW_CORE_KERNELS_RESIZE_NEAREST_NEIGHBOR_OP_GPU_H_
|
||||
|
||||
#include "third_party/eigen3/unsupported/Eigen/CXX11/NeuralNetworks"
|
||||
#include "tensorflow/core/framework/tensor_types.h"
|
||||
#include "tensorflow/core/platform/types.h"
|
||||
|
||||
|
2
third_party/eigen3/BUILD
vendored
2
third_party/eigen3/BUILD
vendored
@ -11,6 +11,8 @@ cc_library(
|
||||
"unsupported/Eigen/CXX11/Tensor",
|
||||
"unsupported/Eigen/CXX11/FixedPoint",
|
||||
"unsupported/Eigen/CXX11/src/FixedPoint/*.h",
|
||||
"unsupported/Eigen/CXX11/NeuralNetworks",
|
||||
"unsupported/Eigen/CXX11/src/NeuralNetworks/*.h",
|
||||
]),
|
||||
includes = ["."],
|
||||
visibility = ["//visibility:public"],
|
||||
|
Loading…
Reference in New Issue
Block a user