Apply tf1-tf2 renames to tensorflow/python/kernel_tests docstrings and comments.

No code changes, only doc-strings and comments.

PiperOrigin-RevId: 244372113
This commit is contained in:
Mark Daoust 2019-04-19 09:43:10 -07:00 committed by TensorFlower Gardener
parent b6e4bf24eb
commit 41d03e186c
15 changed files with 32 additions and 27 deletions

View File

@ -1058,8 +1058,8 @@ class StridedSliceAssignChecker(object):
var = variables.Variable(self.x) var = variables.Variable(self.x)
sess.run(variables.variables_initializer([var])) sess.run(variables.variables_initializer([var]))
val = sess.run(var[index].assign(value)) val = sess.run(var[index].assign(value))
# val_copy is used to check that tf.assign works equivalently to the # val_copy is used to check that tf.compat.v1.assign works equivalently
# assign method above. # to the assign method above.
val_copy = sess.run(state_ops.assign(var[index], value)) val_copy = sess.run(state_ops.assign(var[index], value))
valnp = np.copy(self.x_np) valnp = np.copy(self.x_np)
valnp[index] = np.array(value) valnp[index] = np.array(value)

View File

@ -486,7 +486,7 @@ class ClipTest(test.TestCase):
def testClipByAverageNormReplacedWithClipByNorm(self): def testClipByAverageNormReplacedWithClipByNorm(self):
# Check clip_by_average_norm(t) is the same as # Check clip_by_average_norm(t) is the same as
# clip_by_norm(t, clip_norm * tf.to_float(tf.size(t))) # clip_by_norm(t, clip_norm * tf.compat.v1.to_float(tf.size(t)))
with self.session(use_gpu=True): with self.session(use_gpu=True):
x = constant_op.constant([-3.0, 0.0, 0.0, 4.0, 0.0, 0.0], shape=[2, 3]) x = constant_op.constant([-3.0, 0.0, 0.0, 4.0, 0.0, 0.0], shape=[2, 3])
# Average norm of x = sqrt(3^2 + 4^2) / 6 = 0.83333333 # Average norm of x = sqrt(3^2 + 4^2) / 6 = 0.83333333

View File

@ -865,7 +865,7 @@ class PlaceholderTest(test.TestCase):
# Load graph generated from earlier version of TF where # Load graph generated from earlier version of TF where
# placeholder shape was not set. # placeholder shape was not set.
# #
# a = tf.placeholder(tf.float32) # a = tf.compat.v1.placeholder(tf.float32)
# b = a + 1.0 # b = a + 1.0
# #
# Older graph's default shape is 'shape {}', not 'shape { # Older graph's default shape is 'shape {}', not 'shape {

View File

@ -295,8 +295,9 @@ class NdtrGradientTest(test.TestCase):
# grad_eval.shape = (N, N), with grad_eval[i, j] the partial derivative of # grad_eval.shape = (N, N), with grad_eval[i, j] the partial derivative of
# the ith output point w.r.t. the jth grid point. We only expect the # the ith output point w.r.t. the jth grid point. We only expect the
# diagonal to be nonzero. # diagonal to be nonzero.
# TODO(b/31131137): Replace tf.test.compute_gradient with our own custom # TODO(b/31131137): Replace tf.compat.v1.test.compute_gradient with our
# gradient evaluation to ensure we correctly handle small function delta. # own custom gradient evaluation to ensure we correctly handle small
# function delta.
grad_eval, _ = gradient_checker.compute_gradient(grid, grid_spec.shape, grad_eval, _ = gradient_checker.compute_gradient(grid, grid_spec.shape,
fn(grid), fn(grid),
grid_spec.shape) grid_spec.shape)

View File

@ -118,7 +118,8 @@ class ExtractImagePatchesGradTest(test.TestCase):
rates=[1, 1, 1, 1], rates=[1, 1, 1, 1],
padding='SAME') padding='SAME')
# Github issue: #20146 # Github issue: #20146
# tf.extract_image_patches() gradient very slow at graph construction time # tf.image.extract_image_patches() gradient very slow at graph construction
# time
gradients = gradients_impl.gradients(patches, images) gradients = gradients_impl.gradients(patches, images)
# Won't time out. # Won't time out.
self.assertIsNotNone(gradients) self.assertIsNotNone(gradients)

View File

@ -272,7 +272,8 @@ class GatherTest(test.TestCase, parameterized.TestCase):
expected=[[[[8, 9], [9, 8]], [[8, 8], [9, 9]]], expected=[[[[8, 9], [9, 8]], [[8, 8], [9, 9]]],
[[[9, 9], [8, 8]], [[8, 9], [9, 8]]]]), [[[9, 9], [8, 8]], [[8, 9], [9, 8]]]]),
# batch_dims=indices.shape.ndims - 1 (equivalent to tf.batch_gather) # batch_dims=indices.shape.ndims - 1
# (equivalent to tf.compat.v1.batch_gather)
dict( # 2D indices (1 batch dim) dict( # 2D indices (1 batch dim)
batch_dims=1, batch_dims=1,
params=[[10, 11, 12, 13], [20, 21, 22, 23]], params=[[10, 11, 12, 13], [20, 21, 22, 23]],

View File

@ -39,7 +39,7 @@ class LinearOperatorIdentityTest(
@property @property
def _dtypes_to_test(self): def _dtypes_to_test(self):
# TODO(langmore) Test tf.float16 once tf.matrix_solve works in # TODO(langmore) Test tf.float16 once tf.linalg.solve works in
# 16bit. # 16bit.
return [dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128] return [dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128]
@ -80,7 +80,7 @@ class LinearOperatorIdentityTest(
operator.assert_self_adjoint().run() # Should not fail operator.assert_self_adjoint().run() # Should not fail
def test_float16_matmul(self): def test_float16_matmul(self):
# float16 cannot be tested by base test class because tf.matrix_solve does # float16 cannot be tested by base test class because tf.linalg.solve does
# not work with float16. # not work with float16.
with self.cached_session(): with self.cached_session():
operator = linalg_lib.LinearOperatorIdentity( operator = linalg_lib.LinearOperatorIdentity(
@ -287,7 +287,7 @@ class LinearOperatorScaledIdentityTest(
@property @property
def _dtypes_to_test(self): def _dtypes_to_test(self):
# TODO(langmore) Test tf.float16 once tf.matrix_solve works in # TODO(langmore) Test tf.float16 once tf.linalg.solve works in
# 16bit. # 16bit.
return [dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128] return [dtypes.float32, dtypes.float64, dtypes.complex64, dtypes.complex128]
@ -374,7 +374,7 @@ class LinearOperatorScaledIdentityTest(
operator.assert_self_adjoint().run() operator.assert_self_adjoint().run()
def test_float16_matmul(self): def test_float16_matmul(self):
# float16 cannot be tested by base test class because tf.matrix_solve does # float16 cannot be tested by base test class because tf.linalg.solve does
# not work with float16. # not work with float16.
with self.cached_session(): with self.cached_session():
multiplier = rng.rand(3).astype(np.float16) multiplier = rng.rand(3).astype(np.float16)

View File

@ -212,7 +212,7 @@ class ParseExampleTest(test.TestCase):
"a": parsing_ops.FixedLenFeature((1, 3), dtypes.float32) "a": parsing_ops.FixedLenFeature((1, 3), dtypes.float32)
} }
}, },
# TODO(mrry): Consider matching the `tf.parse_example()` error message. # TODO(mrry): Consider matching the `io.parse_example()` error message.
expected_err=(errors_impl.OpError, "Key: a.")) expected_err=(errors_impl.OpError, "Key: a."))
def testDenseDefaultNoShapeShouldFail(self): def testDenseDefaultNoShapeShouldFail(self):
@ -774,7 +774,7 @@ class ParseExampleTest(test.TestCase):
(2, 1, 1), dtype=dtypes.string, allow_missing=True), (2, 1, 1), dtype=dtypes.string, allow_missing=True),
} }
}, },
# TODO(mrry): Consider matching the `tf.parse_example()` error message. # TODO(mrry): Consider matching the `io.parse_example()` error message.
expected_err=(errors_impl.OpError, "Key: b.")) expected_err=(errors_impl.OpError, "Key: b."))
self._test( self._test(

View File

@ -1131,7 +1131,7 @@ class ParseSequenceExampleTest(test.TestCase):
expected_context_values=None, expected_context_values=None,
expected_feat_list_values=None, expected_feat_list_values=None,
expected_err=None): expected_err=None):
# Test using tf.parse_single_sequence_example # Test using tf.io.parse_single_sequence_example
self._test( self._test(
kwargs, kwargs,
expected_context_values=expected_context_values, expected_context_values=expected_context_values,

View File

@ -335,8 +335,8 @@ class PyFuncTest(test.TestCase):
@test_util.run_v1_only("b/120545219") @test_util.run_v1_only("b/120545219")
def testGradientFunction(self): def testGradientFunction(self):
# Input to tf.py_func is necessary, otherwise get_gradient_function() # Input to tf.compat.v1.py_func is necessary,
# returns None per default. # otherwise get_gradient_function() returns None per default.
a = constant_op.constant(0) a = constant_op.constant(0)
x, = script_ops.py_func(lambda a: 0, [a], [dtypes.int64]) x, = script_ops.py_func(lambda a: 0, [a], [dtypes.int64])
y, = script_ops.py_func(lambda a: 0, [a], [dtypes.int64], stateful=False) y, = script_ops.py_func(lambda a: 0, [a], [dtypes.int64], stateful=False)
@ -353,7 +353,8 @@ class PyFuncTest(test.TestCase):
@test_util.run_v1_only("b/120545219") @test_util.run_v1_only("b/120545219")
def testParallel(self): def testParallel(self):
# Tests that tf.py_func's can run in parallel if they release the GIL. # Tests that tf.compat.v1.py_func's can run in parallel if they release
# the GIL.
with self.cached_session() as session: with self.cached_session() as session:
q = queue.Queue(1) q = queue.Queue(1)

View File

@ -1144,7 +1144,8 @@ class ResourceVariableOpsTest(test_util.TensorFlowTestCase,
expected=[[[[8, 9], [9, 8]], [[8, 8], [9, 9]]], expected=[[[[8, 9], [9, 8]], [[8, 8], [9, 9]]],
[[[9, 9], [8, 8]], [[8, 9], [9, 8]]]]), [[[9, 9], [8, 8]], [[8, 9], [9, 8]]]]),
# batch_dims=indices.shape.ndims - 1 (equivalent to tf.batch_gather) # batch_dims=indices.shape.ndims - 1 (equivalent to
# tf.compat.v1.batch_gather)
dict( # 2D indices (1 batch dim) dict( # 2D indices (1 batch dim)
batch_dims=1, batch_dims=1,
params=[[10, 11, 12, 13], [20, 21, 22, 23]], params=[[10, 11, 12, 13], [20, 21, 22, 23]],

View File

@ -250,8 +250,8 @@ class StatefulScatterNdTest(test.TestCase):
# def testBooleanScatterUpdate(self): # def testBooleanScatterUpdate(self):
# with self.session(use_gpu=False) as session: # with self.session(use_gpu=False) as session:
# var = tf.Variable([True, False]) # var = tf.Variable([True, False])
# update0 = tf.scatter_nd_update(var, [[1]], [True]) # update0 = tf.compat.v1.scatter_nd_update(var, [[1]], [True])
# update1 = tf.scatter_nd_update( # update1 = tf.compat.v1.scatter_nd_update(
# var, tf.constant( # var, tf.constant(
# [[0]], dtype=tf.int64), [False]) # [[0]], dtype=tf.int64), [False])
# var.initializer.run() # var.initializer.run()

View File

@ -31,11 +31,11 @@ def grappler_optimize(graph, fetches=None, config_proto=None):
fetches: An optional list of `Tensor`s to fetch (i.e. not optimize away). fetches: An optional list of `Tensor`s to fetch (i.e. not optimize away).
Grappler uses the 'train_op' collection to look for fetches, so if not Grappler uses the 'train_op' collection to look for fetches, so if not
provided this collection should be non-empty. provided this collection should be non-empty.
config_proto: An optional `tf.ConfigProto` to use when rewriting the config_proto: An optional `tf.compat.v1.ConfigProto` to use when rewriting
graph. the graph.
Returns: Returns:
A `tf.GraphDef` containing the rewritten graph. A `tf.compat.v1.GraphDef` containing the rewritten graph.
""" """
if config_proto is None: if config_proto is None:
config_proto = config_pb2.ConfigProto() config_proto = config_pb2.ConfigProto()

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
# ============================================================================== # ==============================================================================
"""Tests for the gradient of `tf.sparse_tensor_dense_matmul()`.""" """Tests for the gradient of `tf.sparse.sparse_dense_matmul()`."""
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division

View File

@ -737,7 +737,7 @@ class SummaryWriterTest(test_util.TensorFlowTestCase):
with summary_ops.create_file_writer_v2( with summary_ops.create_file_writer_v2(
logdir, max_queue=1, flush_millis=999999).as_default(): logdir, max_queue=1, flush_millis=999999).as_default():
get_total = lambda: len(events_from_logdir(logdir)) get_total = lambda: len(events_from_logdir(logdir))
# Note: First tf.Event is always file_version. # Note: First tf.compat.v1.Event is always file_version.
self.assertEqual(1, get_total()) self.assertEqual(1, get_total())
summary_ops.write('tag', 1, step=0) summary_ops.write('tag', 1, step=0)
self.assertEqual(1, get_total()) self.assertEqual(1, get_total())
@ -769,7 +769,7 @@ class SummaryWriterTest(test_util.TensorFlowTestCase):
logdir, max_queue=999999, flush_millis=999999) logdir, max_queue=999999, flush_millis=999999)
with writer.as_default(): with writer.as_default():
get_total = lambda: len(events_from_logdir(logdir)) get_total = lambda: len(events_from_logdir(logdir))
# Note: First tf.Event is always file_version. # Note: First tf.compat.v1.Event is always file_version.
self.assertEqual(1, get_total()) self.assertEqual(1, get_total())
summary_ops.write('tag', 1, step=0) summary_ops.write('tag', 1, step=0)
summary_ops.write('tag', 1, step=0) summary_ops.write('tag', 1, step=0)