Keras was the only user of the fully-internal composite_tensor_utils, but it forked all of the symbols. So, this CL removes it from TF core. Also moves the test into the Keras training_v1_utils test now that all of the methods from composite_tensor_utils have been moved into training_v1_utils.

PiperOrigin-RevId: 342906866
Change-Id: I7f8d01009d37d9b5b68f569b7808e04808021723
This commit is contained in:
Tomer Kaftan 2020-11-17 11:28:40 -08:00 committed by TensorFlower Gardener
parent da495851f9
commit 40c932c10a
6 changed files with 73 additions and 300 deletions

View File

@ -2180,22 +2180,6 @@ py_library(
],
)
py_library(
name = "composite_tensor_utils",
srcs = ["framework/composite_tensor_utils.py"],
srcs_version = "PY2AND3",
deps = [
":array_ops",
":composite_tensor",
":sparse_ops",
":sparse_tensor",
"//tensorflow/python/ops/ragged:ragged_concat_ops",
"//tensorflow/python/ops/ragged:ragged_tensor",
"//tensorflow/python/ops/ragged:ragged_tensor_value",
"//third_party/py/numpy",
],
)
py_test(
name = "framework_composite_tensor_test",
srcs = ["framework/composite_tensor_test.py"],
@ -2212,24 +2196,6 @@ py_test(
],
)
tf_py_test(
name = "framework_composite_tensor_utils_test",
srcs = ["framework/composite_tensor_utils_test.py"],
main = "framework/composite_tensor_utils_test.py",
python_version = "PY3",
deps = [
":array_ops",
":composite_tensor",
":composite_tensor_utils",
":framework_test_lib",
":sparse_ops",
":sparse_tensor",
"//tensorflow/python/ops/ragged:ragged_tensor",
"//tensorflow/python/ops/ragged:ragged_tensor_value",
"//third_party/py/numpy",
],
)
py_library(
name = "tensor_shape",
srcs = ["framework/tensor_shape.py"],

View File

@ -1,160 +0,0 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helpers for handling composite tensors and composite tensor values."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import composite_tensor
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.ops import sparse_ops
from tensorflow.python.ops.ragged import ragged_concat_ops
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.ops.ragged import ragged_tensor_value
def is_composite_or_composite_value(tensor):
"""Returns true if 'tensor' is a CompositeTensor or a CT Value object."""
# TODO(b/125094323): This should be isinstance(CompositeTensor) or
# isinstance(CompositeTensorValue) once we support that.
return isinstance(
tensor,
(composite_tensor.CompositeTensor, sparse_tensor.SparseTensorValue,
ragged_tensor_value.RaggedTensorValue))
def get_shape(tensor):
"""Returns the shape of the passed composite tensor."""
if isinstance(tensor, sparse_tensor.SparseTensorValue):
# SparseTensorValues use a 'dense_shape' attribute
return tensor.dense_shape
else:
return tensor.shape
def _append_sparse_tensor_value(target, to_append):
"""Append sparse tensor value objects."""
# Make sure the sparse tensors are of the same size (except for the 0th dim).
if len(target.dense_shape) != len(to_append.dense_shape):
raise RuntimeError(
'Unable to concatenate %s and %s. The inner dense shapes do not '
'have the same number of dimensions (%s vs %s)' %
(target, to_append, target.dense_shape, to_append.dense_shape))
if target.dense_shape[1:] != to_append.dense_shape[1:]:
raise RuntimeError(
'Unable to concatenate %s and %s. The inner dense shapes do not '
'match inner dimensions (%s vs %s)' %
(target, to_append, target.dense_shape[1:], to_append.dense_shape[1:]))
# Add the to_append indices to target, updating the 0th value, and keeping
# track of the maximum so we know the final dense_shape of this tensor.
base_dim0_value = target.dense_shape[0]
max_dim0_value = target.dense_shape[0]
new_indices = target.indices
for index in to_append.indices:
# Here, we iterate through the sparse indices of the tensor to append. For
# each index, we update its zeroth value (the batch index) by adding the
# number of batch items in the tensor we are appending to (so an index
# of [0, 0, 1] for a value that is being appended to a tensor with 0th dim
# size 3 would become [3, 0, 1].)
index[0] += base_dim0_value
max_dim0_value = max(max_dim0_value, index[0])
new_indices = np.append(new_indices, [index], axis=0)
# Extend the values array to contain all of the appended values. These will
# be in the same order as the indices added above.
new_values = np.concatenate((target.values, to_append.values), axis=0)
# Create a new dense shape by replacing the value for the 0th dimension
# with the new max dim0 value.
new_dense_shape = list(target.dense_shape)
new_dense_shape[0] = max_dim0_value + 1
new_dense_shape = tuple(new_dense_shape)
return sparse_tensor.SparseTensorValue(
indices=new_indices, values=new_values, dense_shape=new_dense_shape)
def _append_ragged_tensor_value(target, to_append):
"""Append ragged tensor value objects."""
# Make sure the ragged tensors are of the same size (save for the 0th dim).
if len(target.shape) != len(to_append.shape):
raise RuntimeError('Unable to concatenate %s and %s' % (target, to_append))
if target.shape[1:] != to_append.shape[1:]:
raise RuntimeError('Unable to concatenate %s and %s' % (target, to_append))
adjusted_row_splits = to_append.row_splits[1:] + target.row_splits[-1]
new_row_splits = np.append(target.row_splits, adjusted_row_splits)
if isinstance(target.values, ragged_tensor_value.RaggedTensorValue):
new_values = _append_ragged_tensor_value(target.values, to_append.values)
else:
new_values = np.concatenate((target.values, to_append.values), axis=0)
return ragged_tensor_value.RaggedTensorValue(new_values, new_row_splits)
def append_composite_tensor(target, to_append):
"""Helper function to append composite tensors to each other in the 0 axis.
In order to support batching within a fit/evaluate/predict call, we need
to be able to aggregate within a CompositeTensor. Unfortunately, the CT
API currently does not make this easy - especially in V1 mode, where we're
working with CompositeTensor Value objects that have no connection with the
CompositeTensors that created them.
Arguments:
target: CompositeTensor or CompositeTensor value object that will be
appended to.
to_append: CompositeTensor or CompositeTensor value object to append to.
'target'.
Returns:
A CompositeTensor or CompositeTensor value object.
Raises:
RuntimeError: if concatenation is not possible.
"""
if type(target) is not type(to_append):
raise RuntimeError('Unable to concatenate %s and %s' %
(type(target), type(to_append)))
# Perform type-specific concatenation.
# TODO(b/125094323): This should be replaced by a simple call to
# target.append() that should work on all of the below classes.
# If we're seeing a CompositeTensor here, we know it's because we're in
# Eager mode (or else we'd have evaluated the CT to a CT Value object
# already). Therefore, it's safe to call concat() on it without evaluating
# the result any further. If not - that is, if we're seeing a
# SparseTensorValue or a RaggedTensorValue - we need to hand-update it
# since we're outside of the graph anyways.
if isinstance(target, sparse_tensor.SparseTensor):
# We need to invoke the sparse version of concatenate here - tf.concat
# won't work.
return sparse_ops.sparse_concat(sp_inputs=[target, to_append], axis=0)
elif isinstance(target, ragged_tensor.RaggedTensor):
return ragged_concat_ops.concat([target, to_append], axis=0)
elif isinstance(target, sparse_tensor.SparseTensorValue):
return _append_sparse_tensor_value(target, to_append)
elif isinstance(target, ragged_tensor_value.RaggedTensorValue):
return _append_ragged_tensor_value(target, to_append)
else:
raise RuntimeError('Attempted to concatenate unsupported object %s.' %
type(target))

View File

@ -1,103 +0,0 @@
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for tensorflow.python.framework.composite_tensor_utils."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import composite_tensor_utils
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import test_util
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.ops.ragged import ragged_tensor_value
from tensorflow.python.platform import googletest
class CompositeTensorTest(test_util.TensorFlowTestCase):
def test_is_composite(self):
# Validate that all composite tensor and value types return true.
self.assertTrue(
composite_tensor_utils.is_composite_or_composite_value(
sparse_tensor.SparseTensor([[0, 0]], [1], [1, 1])))
self.assertTrue(
composite_tensor_utils.is_composite_or_composite_value(
sparse_tensor.SparseTensorValue([[0, 0]], [1], [1, 1])))
self.assertTrue(
composite_tensor_utils.is_composite_or_composite_value(
ragged_tensor.RaggedTensor.from_row_splits(
np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64))))
self.assertTrue(
composite_tensor_utils.is_composite_or_composite_value(
ragged_tensor_value.RaggedTensorValue(
np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64))))
# Test that numpy arrays and tensors return false.
self.assertFalse(
composite_tensor_utils.is_composite_or_composite_value(
np.ndarray([0, 1])))
self.assertFalse(
composite_tensor_utils.is_composite_or_composite_value(
ops.convert_to_tensor([3, 1])))
def test_sparse_concatenation(self):
tensor_1 = sparse_tensor.SparseTensor([[0, 0]], [1], [1, 1])
tensor_2 = sparse_tensor.SparseTensor([[0, 0]], [2], [1, 1])
concatenated_tensor = composite_tensor_utils.append_composite_tensor(
tensor_1, tensor_2)
evaluated_tensor = self.evaluate(concatenated_tensor)
self.assertAllEqual(evaluated_tensor.indices, [[0, 0], [1, 0]])
self.assertAllEqual(evaluated_tensor.values, [1, 2])
self.assertAllEqual(evaluated_tensor.dense_shape, [2, 1])
def test_sparse_value_concatenation(self):
tensor_1 = sparse_tensor.SparseTensorValue([[0, 0]], [1], [1, 1])
tensor_2 = sparse_tensor.SparseTensorValue([[0, 0]], [2], [1, 1])
concatenated_tensor = composite_tensor_utils.append_composite_tensor(
tensor_1, tensor_2)
self.assertAllEqual(concatenated_tensor.indices, [[0, 0], [1, 0]])
self.assertAllEqual(concatenated_tensor.values, [1, 2])
self.assertAllEqual(concatenated_tensor.dense_shape, [2, 1])
def test_ragged_concatenation(self):
tensor_1 = ragged_tensor.RaggedTensor.from_row_splits(
np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64))
tensor_2 = ragged_tensor.RaggedTensor.from_row_splits(
np.array([3, 4, 5]), np.array([0, 2, 3], dtype=np.int64))
concatenated_tensor = composite_tensor_utils.append_composite_tensor(
tensor_1, tensor_2)
evaluated_tensor = self.evaluate(concatenated_tensor)
self.assertAllEqual(evaluated_tensor.values, [0, 1, 2, 3, 4, 5])
self.assertAllEqual(evaluated_tensor.row_splits, [0, 1, 3, 5, 6])
def test_ragged_value_concatenation(self):
tensor_1 = ragged_tensor_value.RaggedTensorValue(
np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64))
tensor_2 = ragged_tensor_value.RaggedTensorValue(
np.array([3, 4, 5]), np.array([0, 2, 3], dtype=np.int64))
concatenated_tensor = composite_tensor_utils.append_composite_tensor(
tensor_1, tensor_2)
self.assertAllEqual(concatenated_tensor.values, [0, 1, 2, 3, 4, 5])
self.assertAllEqual(concatenated_tensor.row_splits, [0, 1, 3, 5, 6])
if __name__ == '__main__':
googletest.main()

View File

@ -61,7 +61,6 @@ py_library(
"//tensorflow/python:check_ops",
"//tensorflow/python:client",
"//tensorflow/python:clip_ops",
"//tensorflow/python:composite_tensor_utils",
"//tensorflow/python:constant_op",
"//tensorflow/python:control_flow_ops",
"//tensorflow/python:ctc_ops",

View File

@ -47,7 +47,6 @@ py_library(
":input_spec",
":keras_tensor",
":node",
"//tensorflow/python:composite_tensor_utils",
"//tensorflow/python:py_checkpoint_reader",
"//tensorflow/python/data",
"//tensorflow/python/distribute:distribute_coordinator",
@ -221,7 +220,6 @@ py_library(
srcs_version = "PY2AND3",
deps = [
":base_layer",
"//tensorflow/python:composite_tensor_utils",
"//tensorflow/python/data",
"//tensorflow/python/eager:monitoring",
"//tensorflow/python/keras:backend",

View File

@ -30,6 +30,8 @@ from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import readers
from tensorflow.python.eager import context
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import sparse_tensor
from tensorflow.python.framework import tensor_util
from tensorflow.python.keras import backend
from tensorflow.python.keras import keras_parameterized
@ -37,6 +39,8 @@ from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.engine import keras_tensor
from tensorflow.python.keras.engine import training_utils_v1
from tensorflow.python.keras.utils import tf_utils
from tensorflow.python.ops.ragged import ragged_tensor
from tensorflow.python.ops.ragged import ragged_tensor_value
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging as logging
@ -392,5 +396,74 @@ class AggregationTest(keras_parameterized.TestCase):
self._run_without_steps()
class CompositeTensorTestUtils(keras_parameterized.TestCase):
def test_is_composite(self):
# Validate that all composite tensor and value types return true.
self.assertTrue(
training_utils_v1.is_composite_or_composite_value(
sparse_tensor.SparseTensor([[0, 0]], [1], [1, 1])))
self.assertTrue(
training_utils_v1.is_composite_or_composite_value(
sparse_tensor.SparseTensorValue([[0, 0]], [1], [1, 1])))
self.assertTrue(
training_utils_v1.is_composite_or_composite_value(
ragged_tensor.RaggedTensor.from_row_splits(
np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64))))
self.assertTrue(
training_utils_v1.is_composite_or_composite_value(
ragged_tensor_value.RaggedTensorValue(
np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64))))
# Test that numpy arrays and tensors return false.
self.assertFalse(
training_utils_v1.is_composite_or_composite_value(np.ndarray([0, 1])))
self.assertFalse(
training_utils_v1.is_composite_or_composite_value(
ops.convert_to_tensor_v2_with_dispatch([3, 1])))
def test_sparse_concatenation(self):
tensor_1 = sparse_tensor.SparseTensor([[0, 0]], [1], [1, 1])
tensor_2 = sparse_tensor.SparseTensor([[0, 0]], [2], [1, 1])
concatenated_tensor = training_utils_v1._append_composite_tensor(
tensor_1, tensor_2)
evaluated_tensor = self.evaluate(concatenated_tensor)
self.assertAllEqual(evaluated_tensor.indices, [[0, 0], [1, 0]])
self.assertAllEqual(evaluated_tensor.values, [1, 2])
self.assertAllEqual(evaluated_tensor.dense_shape, [2, 1])
def test_sparse_value_concatenation(self):
tensor_1 = sparse_tensor.SparseTensorValue([[0, 0]], [1], [1, 1])
tensor_2 = sparse_tensor.SparseTensorValue([[0, 0]], [2], [1, 1])
concatenated_tensor = training_utils_v1._append_composite_tensor(
tensor_1, tensor_2)
self.assertAllEqual(concatenated_tensor.indices, [[0, 0], [1, 0]])
self.assertAllEqual(concatenated_tensor.values, [1, 2])
self.assertAllEqual(concatenated_tensor.dense_shape, [2, 1])
def test_ragged_concatenation(self):
tensor_1 = ragged_tensor.RaggedTensor.from_row_splits(
np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64))
tensor_2 = ragged_tensor.RaggedTensor.from_row_splits(
np.array([3, 4, 5]), np.array([0, 2, 3], dtype=np.int64))
concatenated_tensor = training_utils_v1._append_composite_tensor(
tensor_1, tensor_2)
evaluated_tensor = self.evaluate(concatenated_tensor)
self.assertAllEqual(evaluated_tensor.values, [0, 1, 2, 3, 4, 5])
self.assertAllEqual(evaluated_tensor.row_splits, [0, 1, 3, 5, 6])
def test_ragged_value_concatenation(self):
tensor_1 = ragged_tensor_value.RaggedTensorValue(
np.array([0, 1, 2]), np.array([0, 1, 3], dtype=np.int64))
tensor_2 = ragged_tensor_value.RaggedTensorValue(
np.array([3, 4, 5]), np.array([0, 2, 3], dtype=np.int64))
concatenated_tensor = training_utils_v1._append_composite_tensor(
tensor_1, tensor_2)
self.assertAllEqual(concatenated_tensor.values, [0, 1, 2, 3, 4, 5])
self.assertAllEqual(concatenated_tensor.row_splits, [0, 1, 3, 5, 6])
if __name__ == '__main__':
test.main()