diff --git a/tensorflow/python/keras/callbacks.py b/tensorflow/python/keras/callbacks.py index 1fae5abd84b..138a682c739 100644 --- a/tensorflow/python/keras/callbacks.py +++ b/tensorflow/python/keras/callbacks.py @@ -420,8 +420,9 @@ class CallbackList(object): Arguments: batch: Integer, index of batch within the current epoch. - logs: Dict. Has keys `batch` and `size` representing the current batch - number and the size of the batch. + logs: Dict, contains the return value of `model.train_step`. Typically, + the values of the `Model`'s metrics are returned. Example: + `{'loss': 0.2, 'accuracy': 0.7}`. """ # TODO(b/150629188): Make ProgBarLogger callback not use batch hooks # when verbose != 1 @@ -443,8 +444,9 @@ class CallbackList(object): Arguments: batch: Integer, index of batch within the current epoch. - logs: Dict. Has keys `batch` and `size` representing the current batch - number and the size of the batch. + logs: Dict, contains the return value of `model.test_step`. Typically, + the values of the `Model`'s metrics are returned. Example: + `{'loss': 0.2, 'accuracy': 0.7}`. """ if self._should_call_test_batch_hooks: self._call_batch_hook(ModeKeys.TEST, 'begin', batch, logs=logs) @@ -464,8 +466,9 @@ class CallbackList(object): Arguments: batch: Integer, index of batch within the current epoch. - logs: Dict. Has keys `batch` and `size` representing the current batch - number and the size of the batch. + logs: Dict, contains the return value of `model.predict_step`, + it typically returns a dict with a key 'outputs' containing + the model's outputs. """ if self._should_call_predict_batch_hooks: self._call_batch_hook(ModeKeys.PREDICT, 'begin', batch, logs=logs)