Padding task modified to be Metal compatible.

Added padding_test_util with unified tests.
Added Metal padding unit tests.

PiperOrigin-RevId: 352851103
Change-Id: I4dff7a7c9d8c2be57dcfdf258d3ccbd1edd8e184
This commit is contained in:
Raman Sarokin 2021-01-20 12:32:31 -08:00 committed by TensorFlower Gardener
parent 1b70675e06
commit 3eac805944
8 changed files with 462 additions and 289 deletions

View File

@ -375,7 +375,7 @@ cc_test(
":cl_test",
"//tensorflow/lite/delegates/gpu/common:operations",
"//tensorflow/lite/delegates/gpu/common:status",
"//tensorflow/lite/delegates/gpu/common/tasks:padding",
"//tensorflow/lite/delegates/gpu/common/tasks:padding_test_util",
"@com_google_googletest//:gtest_main",
],
)

View File

@ -13,8 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/gpu/common/tasks/padding.h"
#include <vector>
#include <gmock/gmock.h>
@ -22,9 +20,7 @@ limitations under the License.
#include "tensorflow/lite/delegates/gpu/cl/kernels/cl_test.h"
#include "tensorflow/lite/delegates/gpu/common/operations.h"
#include "tensorflow/lite/delegates/gpu/common/status.h"
using ::testing::FloatNear;
using ::testing::Pointwise;
#include "tensorflow/lite/delegates/gpu/common/tasks/padding_test_util.h"
namespace tflite {
namespace gpu {
@ -32,308 +28,53 @@ namespace cl {
namespace {
TEST_F(OpenCLOperationTest, PaddingAppendWidth) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 0);
attr.appended = BHWC(0, 0, 1, 0);
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 2, 2, 2), &dst_tensor));
EXPECT_THAT(dst_tensor.data,
Pointwise(FloatNear(eps),
{0.0f, 1.0f, 0.0f, 0.0f, 2.0f, 3.0f, 0.0f, 0.0f}));
}
}
auto status = PaddingAppendWidthTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, PaddingPrependWidth) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 1, 0);
attr.appended = BHWC(0, 0, 0, 0);
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 2, 2, 2), &dst_tensor));
EXPECT_THAT(dst_tensor.data,
Pointwise(FloatNear(eps),
{0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 2.0f, 3.0f}));
}
}
auto status = PaddingPrependWidthTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, PaddingAppendHeight) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 0);
attr.appended = BHWC(0, 1, 0, 0);
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 3, 1, 2), &dst_tensor));
EXPECT_THAT(
dst_tensor.data,
Pointwise(FloatNear(eps), {0.0f, 1.0f, 2.0f, 3.0f, 0.0f, 0.0f}));
}
}
auto status = PaddingAppendHeightTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, PaddingPrependHeight) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 1, 0, 0);
attr.appended = BHWC(0, 0, 0, 0);
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 3, 1, 2), &dst_tensor));
EXPECT_THAT(
dst_tensor.data,
Pointwise(FloatNear(eps), {0.0f, 0.0f, 0.0f, 1.0f, 2.0f, 3.0f}));
}
}
auto status = PaddingPrependHeightTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, PaddingAppendChannels) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 0);
attr.appended = BHWC(0, 0, 0, 1);
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 2, 1, 3), &dst_tensor));
EXPECT_THAT(
dst_tensor.data,
Pointwise(FloatNear(eps), {0.0f, 1.0f, 0.0f, 2.0f, 3.0f, 0.0f}));
}
}
auto status = PaddingAppendChannelsTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, PaddingPrependChannels) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 1);
attr.appended = BHWC(0, 0, 0, 0);
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 2, 1, 3), &dst_tensor));
EXPECT_THAT(
dst_tensor.data,
Pointwise(FloatNear(eps), {0.0f, 0.0f, 1.0f, 0.0f, 2.0f, 3.0f}));
}
}
auto status = PaddingPrependChannelsTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, PaddingPrependChannelsX4) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 1, 1, 2);
src_tensor.data = {1.0f, 2.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 4);
attr.appended = BHWC(0, 0, 0, 0);
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 1, 1, 6), &dst_tensor));
EXPECT_THAT(
dst_tensor.data,
Pointwise(FloatNear(eps), {0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 2.0f}));
}
}
auto status = PaddingPrependChannelsX4Test(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, PaddingComplex) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 1, 1);
attr.appended = BHWC(0, 1, 1, 0);
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 3, 3, 3), &dst_tensor));
EXPECT_THAT(
dst_tensor.data,
Pointwise(FloatNear(eps),
{0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 2.0f, 3.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}));
}
}
auto status = PaddingComplexTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, PaddingReflectWidth) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 1, 3, 1);
src_tensor.data = {1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 2, 0);
attr.appended = BHWC(0, 0, 2, 0);
attr.type = PaddingContentType::REFLECT;
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 1, 7, 1), &dst_tensor));
EXPECT_THAT(dst_tensor.data,
Pointwise(FloatNear(eps),
{3.0f, 2.0f, 1.0f, 2.0f, 3.0f, 2.0f, 1.0f}));
}
}
auto status = PaddingReflectWidthTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
TEST_F(OpenCLOperationTest, PaddingReflectChannels) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 1, 1, 3);
src_tensor.data = {1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 2);
attr.appended = BHWC(0, 0, 0, 2);
attr.type = PaddingContentType::REFLECT;
for (auto storage : env_.GetSupportedStorages()) {
for (auto precision : env_.GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
ASSERT_OK(ExecuteGPUOperation(
src_tensor, creation_context_,
absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 1, 1, 7), &dst_tensor));
EXPECT_THAT(dst_tensor.data,
Pointwise(FloatNear(eps),
{3.0f, 2.0f, 1.0f, 2.0f, 3.0f, 2.0f, 1.0f}));
}
}
auto status = PaddingReflectChannelsTest(&exec_env_);
ASSERT_TRUE(status.ok()) << status.error_message();
}
} // namespace

View File

@ -421,6 +421,19 @@ cc_library(
],
)
cc_library(
name = "padding_test_util",
testonly = 1,
srcs = ["padding_test_util.cc"],
hdrs = ["padding_test_util.h"],
deps = [
":padding",
"//tensorflow/lite/delegates/gpu/common:operations",
"//tensorflow/lite/delegates/gpu/common:status",
"//tensorflow/lite/delegates/gpu/common/task:testing_util",
],
)
cc_library(
name = "pooling",
srcs = ["pooling.cc"],

View File

@ -45,23 +45,22 @@ std::string GetPaddingCode(const OperationDef& op_def,
c += "}\n\n";
}
c += "__kernel void main_function(\n";
c += "$0) {\n";
c += "MAIN_FUNCTION($0) {\n";
if (op_def.dst_tensors[0].HasAxis(Axis::BATCH)) {
c += " int linear_id = get_global_id(0);\n";
c += " int linear_id = GLOBAL_ID_0;\n";
c += " int X = linear_id / args.dst_tensor.Batch();\n";
c += " int B = linear_id % args.dst_tensor.Batch();\n";
c += " args.dst_tensor.SetBatchRef(B);\n";
} else {
c += " int X = get_global_id(0);\n";
c += " int X = GLOBAL_ID_0;\n";
}
c += " int Y = get_global_id(1);\n";
c += " int Z = get_global_id(2);\n";
c += " int Y = GLOBAL_ID_1;\n";
c += " int Z = GLOBAL_ID_2;\n";
c += " if (X >= args.dst_tensor.Width() || Y >= args.dst_tensor.Height() || "
"Z >= args.dst_tensor.Slices()) { \n";
c += " return; \n";
c += " } \n";
c += " FLT4 result = (FLT4)(0.0);\n";
c += " FLT4 result = INIT_FLT4(0.0);\n";
c += " int s_x = X - args.prepended_x;\n";
c += " int s_y = Y - args.prepended_y;\n";
if (op_def.src_tensors[0].HasAxis(Axis::BATCH)) {

View File

@ -0,0 +1,326 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/delegates/gpu/common/tasks/padding_test_util.h"
#include <vector>
#include "tensorflow/lite/delegates/gpu/common/operations.h"
#include "tensorflow/lite/delegates/gpu/common/status.h"
#include "tensorflow/lite/delegates/gpu/common/task/testing_util.h"
#include "tensorflow/lite/delegates/gpu/common/tasks/padding.h"
namespace tflite {
namespace gpu {
absl::Status PaddingAppendWidthTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 0);
attr.appended = BHWC(0, 0, 1, 0);
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 2, 2, 2), &dst_tensor));
RETURN_IF_ERROR(
PointWiseNear({0.0f, 1.0f, 0.0f, 0.0f, 2.0f, 3.0f, 0.0f, 0.0f},
dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status PaddingPrependWidthTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 1, 0);
attr.appended = BHWC(0, 0, 0, 0);
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 2, 2, 2), &dst_tensor));
RETURN_IF_ERROR(
PointWiseNear({0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 2.0f, 3.0f},
dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status PaddingAppendHeightTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 0);
attr.appended = BHWC(0, 1, 0, 0);
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 3, 1, 2), &dst_tensor));
RETURN_IF_ERROR(PointWiseNear({0.0f, 1.0f, 2.0f, 3.0f, 0.0f, 0.0f},
dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status PaddingPrependHeightTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 1, 0, 0);
attr.appended = BHWC(0, 0, 0, 0);
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 3, 1, 2), &dst_tensor));
RETURN_IF_ERROR(PointWiseNear({0.0f, 0.0f, 0.0f, 1.0f, 2.0f, 3.0f},
dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status PaddingAppendChannelsTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 0);
attr.appended = BHWC(0, 0, 0, 1);
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 2, 1, 3), &dst_tensor));
RETURN_IF_ERROR(PointWiseNear({0.0f, 1.0f, 0.0f, 2.0f, 3.0f, 0.0f},
dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status PaddingPrependChannelsTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 1);
attr.appended = BHWC(0, 0, 0, 0);
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 2, 1, 3), &dst_tensor));
RETURN_IF_ERROR(PointWiseNear({0.0f, 0.0f, 1.0f, 0.0f, 2.0f, 3.0f},
dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status PaddingPrependChannelsX4Test(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 1, 1, 2);
src_tensor.data = {1.0f, 2.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 4);
attr.appended = BHWC(0, 0, 0, 0);
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 1, 1, 6), &dst_tensor));
RETURN_IF_ERROR(PointWiseNear({0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 2.0f},
dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status PaddingComplexTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 2, 1, 2);
src_tensor.data = {0.0f, 1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 1, 1);
attr.appended = BHWC(0, 1, 1, 0);
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 3, 3, 3), &dst_tensor));
RETURN_IF_ERROR(
PointWiseNear({0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 2.0f, 3.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status PaddingReflectWidthTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 1, 3, 1);
src_tensor.data = {1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 2, 0);
attr.appended = BHWC(0, 0, 2, 0);
attr.type = PaddingContentType::REFLECT;
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 1, 7, 1), &dst_tensor));
RETURN_IF_ERROR(PointWiseNear({3.0f, 2.0f, 1.0f, 2.0f, 3.0f, 2.0f, 1.0f},
dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
absl::Status PaddingReflectChannelsTest(TestExecutionEnvironment* env) {
TensorFloat32 src_tensor;
src_tensor.shape = BHWC(1, 1, 1, 3);
src_tensor.data = {1.0f, 2.0f, 3.0f};
PadAttributes attr;
attr.prepended = BHWC(0, 0, 0, 2);
attr.appended = BHWC(0, 0, 0, 2);
attr.type = PaddingContentType::REFLECT;
for (auto storage : env->GetSupportedStorages()) {
for (auto precision : env->GetSupportedPrecisions()) {
const float eps = precision == CalculationsPrecision::F32 ? 1e-6f : 1e-3f;
OperationDef op_def;
op_def.precision = precision;
auto data_type = DeduceDataTypeFromPrecision(precision);
op_def.src_tensors.push_back({data_type, storage, Layout::HWC});
op_def.dst_tensors.push_back({data_type, storage, Layout::HWC});
TensorFloat32 dst_tensor;
GPUOperation operation = CreatePadding(op_def, attr);
RETURN_IF_ERROR(env->ExecuteGPUOperation(
src_tensor, absl::make_unique<GPUOperation>(std::move(operation)),
BHWC(1, 1, 1, 7), &dst_tensor));
RETURN_IF_ERROR(PointWiseNear({3.0f, 2.0f, 1.0f, 2.0f, 3.0f, 2.0f, 1.0f},
dst_tensor.data, eps));
}
}
return absl::OkStatus();
}
} // namespace gpu
} // namespace tflite

View File

@ -0,0 +1,39 @@
/* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_PADDING_TEST_UTIL_H_
#define TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_PADDING_TEST_UTIL_H_
#include "tensorflow/lite/delegates/gpu/common/status.h"
#include "tensorflow/lite/delegates/gpu/common/task/testing_util.h"
namespace tflite {
namespace gpu {
absl::Status PaddingAppendWidthTest(TestExecutionEnvironment* env);
absl::Status PaddingPrependWidthTest(TestExecutionEnvironment* env);
absl::Status PaddingAppendHeightTest(TestExecutionEnvironment* env);
absl::Status PaddingPrependHeightTest(TestExecutionEnvironment* env);
absl::Status PaddingAppendChannelsTest(TestExecutionEnvironment* env);
absl::Status PaddingPrependChannelsTest(TestExecutionEnvironment* env);
absl::Status PaddingPrependChannelsX4Test(TestExecutionEnvironment* env);
absl::Status PaddingComplexTest(TestExecutionEnvironment* env);
absl::Status PaddingReflectWidthTest(TestExecutionEnvironment* env);
absl::Status PaddingReflectChannelsTest(TestExecutionEnvironment* env);
} // namespace gpu
} // namespace tflite
#endif // TENSORFLOW_LITE_DELEGATES_GPU_COMMON_TASKS_PADDING_TEST_UTIL_H_

View File

@ -373,6 +373,7 @@ objc_library(
deps = [
":padding",
":test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:padding_test_util",
],
)
@ -878,6 +879,7 @@ objc_library(
"//tensorflow/lite/delegates/gpu/common/tasks:concat_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:elementwise_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:lstm_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:padding_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:prelu_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:quantize_and_dequantize_test_util",
"//tensorflow/lite/delegates/gpu/common/tasks:relu_test_util",

View File

@ -21,6 +21,7 @@ limitations under the License.
#include "tensorflow/lite/delegates/gpu/common/operations.h"
#include "tensorflow/lite/delegates/gpu/common/shape.h"
#include "tensorflow/lite/delegates/gpu/common/status.h"
#include "tensorflow/lite/delegates/gpu/common/tasks/padding_test_util.h"
#include "tensorflow/lite/delegates/gpu/common/tensor.h"
#include "tensorflow/lite/delegates/gpu/common/util.h"
#include "tensorflow/lite/delegates/gpu/metal/compute_task_descriptor.h"
@ -49,7 +50,10 @@ using ::tflite::gpu::metal::SingleOpModel;
expected:(std::vector<float>&&)expected;
@end
@implementation PaddingTest
@implementation PaddingTest {
tflite::gpu::metal::MetalExecutionEnvironment exec_env_;
}
- (void)setUp {
[super setUp];
}
@ -191,5 +195,54 @@ using ::tflite::gpu::metal::SingleOpModel;
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testPaddingAppendWidth {
auto status = PaddingAppendWidthTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testPaddingPrependWidth {
auto status = PaddingPrependWidthTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testPaddingAppendHeight {
auto status = PaddingAppendHeightTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testPaddingPrependHeight {
auto status = PaddingPrependHeightTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testPaddingAppendChannels {
auto status = PaddingAppendChannelsTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testPaddingPrependChannels {
auto status = PaddingPrependChannelsTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testPaddingPrependChannelsX4 {
auto status = PaddingPrependChannelsX4Test(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testPaddingComplex {
auto status = PaddingComplexTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testPaddingReflectWidth {
auto status = PaddingReflectWidthTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
- (void)testPaddingReflectChannels {
auto status = PaddingReflectChannelsTest(&exec_env_);
XCTAssertTrue(status.ok(), @"%s", std::string(status.message()).c_str());
}
@end